首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MEROPS website ( https://www.ebi.ac.uk/merops ) and database was established in 1996 to present the classification and nomenclature of proteolytic enzymes. This was expanded to include a classification of protein inhibitors of proteolytic enzymes in 2004. Each peptidase or inhibitor is assigned to a distinct identifier, based on its biochemical and biological properties, and homologous sequences are assembled into a family. Families in which the proteins share similar tertiary structures are assembled into a clan. The MEROPS classification is thus a hierarchy with at least three levels (protein‐species, family, and clan) showing the evolutionary relationship. Several other data collections have been assembled, which are accessed from all levels in the hierarchy. These include, sequence homologs, selective bibliographies, substrate cleavage sites, peptidase–inhibitor interactions, alignments, and phylogenetic trees. The substrate cleavage collection has been assembled from the literature and includes physiological, pathological, and nonphysiological cleavages in proteins, peptides, and synthetic substrates. In this article, we make recommendations about how best to analyze these data and show analyses to indicate peptidase binding site preferences and exclusions. We also identify peptidases where co‐operative binding occurs between adjacent binding sites.  相似文献   

2.
Sequences of peptidases with conserved motifs around the active site residues that are characteristic of trypsins (similar to trypsin peptidases, STP) were obtained from publicly-available fungal genomes and related databases. Among the 75 fungal genomes, 29 species of parasitic Ascomycota contained genes encoding STP and their homologs. Searches of non-redundant protein sequences, patented protein sequences, and expressed sequence tags resulted in another 18 STP sequences in 10 fungal species from Ascomycota, Basidiomycota, and Zygomycota. A comparison of fungi species containing STP sequences revealed that almost all are pathogens of plants, animals or fungi. A comparison of the primary structure of homologous proteins, including the residues responsible for substrate binding and specificity of the enzyme, revealed three groups of homologous sequences, all presumably from S1 family: trypsin-like peptidases, chymotrypsin-like peptidases and serine peptidases with unknown substrate specificity. Homologs that are presumably functionally inactive were predicted in all groups. The results in general support the hypothesis that the expression of trypsin-like peptidases in fungi represents a marker of fungal phytopathogenicity. A phylogenetic tree was constructed using peptidase and homolog amino acid sequences, demonstrating that all have noticeable differences and almost immediately deviate from the common root. Therefore, we conclude that the changes that occurred in STP of pathogenic fungi in the course of evolution represent specific adaptations to proteins of their respective hosts, and mutations in peptidase genes are important components of life-style changes and taxonomic divergence.  相似文献   

3.
Streptococcus thermophilus is widely used in the dairy industry but little is known about its peptidase system. The aim of this study was to determine the biochemical and genetic characteristics of this system, and to compare it to the well known system of Lactococcus lactis . We separated the intracellular proteins of Strep. thermophilus CNRZ 302 and L. lactis NCDO 763 by ion-exchange chromatography and we detected the activity of the different types of peptidases. In both L. lactis and Strep. thermophilus strains, we showed 13 different peptidase activities with biochemical homologies between both species. Streptococcus thermophilus also possessed two peptidases which we did not find in L. lactis : an aminopeptidase and an oligopeptidase. We performed Southern blot experiments and among the eight peptidase genes tested, only the genes encoding the general aminopeptidases, pepC and pepN , were homologous between the L. lactis and Strep. thermophilus strains. Besides biochemical and genetic similarities, the peptidase systems of Strep. thermophilus and L. lactis thus differed by the presence of additional peptidases in Strep. thermophilus .  相似文献   

4.
Genes encoding novel murine cysteine peptidases of the papain family C1A and related genes were cloned and mapped to mouse chromosome 13, colocalizing with the previously assigned cathepsin J gene. We constructed a <460-kb phage artificial chromosome (PAC) contig and characterized a dense cluster comprising eight C1A cysteine peptidase genes, cathepsins J, M, Q, R, -1, -2, -3, and -6; three pseudogenes of cathepsins M, -1, and -2; and four genes encoding putative cysteine peptidase inhibitors related to the proregion of C1A peptidases (trophoblast-specific proteins alpha and beta and cytotoxic T-lymphocyte-associated proteins 2alpha and -beta). Because of sequence homologies of 61.9-72.0% between cathepsin J and the other seven putative cysteine peptidases of the cluster, these peptidases are classified as "cathepsin J-like". The absence of cathepsin J-like peptidases and related genes from the human genome suggests that the cathepsin J cluster arose by partial and complete gene duplication events after the divergence of primate and rodent lineages. The expression of cathepsin J-like peptidases and related genes in the cluster is restricted to the placenta only. Clustered genes are induced at specific time points, and their expression increases toward the end of gestation. The specific expression pattern and high expression level suggest an essential role of cathepsin J-like peptidases and related genes in formation and development of the murine placenta.  相似文献   

5.
Type I signal peptidase: an overview   总被引:5,自引:0,他引:5  
The signal hypothesis suggests that proteins contain information within their amino acid sequences for protein targeting to the membrane. These distinct targeting sequences are cleaved by specific enzymes known as signal peptidases. There are various type of signal peptidases known such as type I, type II, and type IV. Type I signal peptidases are indispensable enzymes, which catalyze the cleavage of the amino-terminal signal-peptide sequences from preproteins, which are translocated across biological membranes. These enzymes belong to a novel group of serine proteases, which generally utilize a Ser-Lys or Ser-His catalytic dyad instead of the prototypical Ser-His-Asp triad. Despite having no distinct consensus sequence other than a commonly found 'Ala-X-Ala' motif preceding the cleavage site, signal sequences are recognized by type I signal peptidase with high fidelity. Type I signal peptidases have been found in bacteria, archaea, fungi, plants, and animals. In this review, I present an overview of bacterial type I signal peptidases and describe some of their properties in detail.  相似文献   

6.
Signal peptide peptidases (SPPs) are enzymes involved in the initial degradation of signal peptides after they are released from the precursor proteins by signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppA(Tk)), we have identified amino acid residues that are essential for the peptidase activity of the enzyme. DeltaN54SppA(Tk), a truncated protein without the N-terminal 54 residues and putative transmembrane domain, exhibits high peptidase activity, and was used as the wild-type protein. Sixteen residues, highly conserved among archaeal SPP homologue sequences, were selected and replaced by alanine residues. The mutations S162A and K214A were found to abolish peptidase activity of the protein, whereas all other mutant proteins displayed activity to various extents. The results indicated the function of Ser(162) as the nucleophilic serine and that of Lys(214) as the general base, comprising a Ser/Lys catalytic dyad in SppA(Tk). Kinetic analyses indicated that Ser(184), His(191) Lys(209), Asp(215), and Arg(221) supported peptidase activity. Intriguingly, a large number of mutations led to an increase in activity levels of the enzyme. In particular, mutations in Ser(128) and Tyr(165) not only increased activity levels but also broadened the substrate specificity of SppA(Tk), suggesting that these residues may be present to prevent the enzyme from cleaving unintended peptide/protein substrates in the cell. A detailed alignment of prokaryotic SPP sequences strongly suggested that the majority of archaeal enzymes, along with the bacterial enzyme from Bacillus subtilis, adopt the same catalytic mechanism for peptide hydrolysis.  相似文献   

7.
Digestive fluid of the araneid spider Argiope aurantia is known to contain zinc metallopeptidases. Using anion-exchange chromatography, size-exclusion chromatography, sucrose density gradient centrifugation, and gel electrophoresis, we isolated two lower-molecular-mass peptidases, designated p16 and p18. The N-terminal amino acid sequences of p16 (37 residues) and p18 (20 residues) are 85% identical over the first 20 residues and are most similar to the N-terminal sequences of the fully active form of meprin (beta subunits) from several vertebrates (47-52% and 50-60% identical, respectively). Meprin is a peptidase in the astacin (M12A) subfamily of the astacin (M12) family. Additionally, a 66-residue internal sequence obtained from p16 aligns with the conserved astacin subfamily domain. Thus, at least some spider digestive peptidases appear related to astacin of decapod crustaceans. However, important differences between spider and crustacean metallopeptidases with regard to isoelectric point and their susceptibility to hemolymph-borne inhibitors are demonstrated. Anomalous behavior of the lower-molecular-mass Argiope peptidases during certain fractionation procedures indicates that these peptidases may take part in reversible associations with each other or with other proteins. A. aurantia digestive fluid also contains inhibitory activity effective against insect digestive peptidases. Here we present evidence for at least thirteen, heat-stable serine peptidase inhibitors ranging in molecular mass from about 15 to 32 kDa.  相似文献   

8.
Dipeptidyl peptidases 8 and 9 have been identified as gene members of the S9b family of dipeptidyl peptidases. In the present paper, we report the characterization of recombinant dipeptidyl peptidases 8 and 9 using the baculovirus expression system. We have found that only the full-length variants of the two proteins can be expressed as active peptidases, which are 882 and 892 amino acids in length for dipeptidyl peptidase 8 and 9 respectively. We show further that the purified proteins are active dimers and that they show similar Michaelis-Menten kinetics and substrate specificity. Both cleave the peptide hormones glucagon-like peptide-1, glucagon-like peptide-2, neuropeptide Y and peptide YY with marked kinetic differences compared with dipeptidyl peptidase IV. Inhibition of dipeptidyl peptidases IV, 8 and 9 using the well-known dipeptidyl peptidase IV inhibitor valine pyrrolidide resulted in similar K(i) values, indicating that this inhibitor is non-selective for any of the three dipeptidyl peptidases.  相似文献   

9.
Xu X  Yu D  Fang W  Cheng Y  Qian Z  Lu W  Cai Y  Feng K 《Journal of proteome research》2008,7(10):4521-4524
Peptidases play pivotal regulatory roles in conception, birth, digestion, growth, maturation, aging, and death of all organisms. These regulatory roles include activation, synthesis and turnover of proteins. In the proteomics era, computational methods to identify peptidases and catalog the peptidases into six different major classes-aspartic peptidases, cysteine peptidases, glutamic peptidases, metallo peptidases, serine peptidases and threonine peptidases can give an instant glance at the biological functions of a newly identified protein. In this contribution, by combining the nearest neighbor algorithm and the functional domain composition, we introduce both an automatic peptidase identifier and an automatic peptidase classier. The successful identification and classification rates are 93.7% and 96.5% for our peptidase identifier and peptidase classifier, respectively. Free online peptidase identifier and peptidase classifier are provided on our Web page http://pcal.biosino.org/protease_classification.html.  相似文献   

10.
Peptidases (often termed proteases) are of great relevance to biology, medicine, and biotechnology. This practical importance creates a need for an integrated source of information about peptidases. In the MEROPS database (www.merops.ac.uk), peptidases are classified by structural similarities in the parts of the molecules responsible for their enzymatic activity. They are grouped into families on the basis of amino acid sequence homology, and the families are assembled into clans in light of evidence that they share common ancestry. The evidence for clan-level relationships usually comes from similarities in tertiary structure, but we suggest that secondary structure profiles may also be useful in the future. The classification forms a framework around which a wealth of supplementary information about the peptidases is organized. This includes images of three-dimensional structures, alignments of matching human and mouse ESTs, comments on biomedical relevance, human and other gene symbols, and literature references linked to PubMed. For each family, there is an amino acid sequence alignment and a dendrogram. There is a list of all peptidases known from each of over 1000 species, together with summary data for the distributions of the families and clans throughout the major groups of organisms. A set of online searches provides access to information about the location of peptidases on human chromosomes and peptidase substrate specificity.  相似文献   

11.
12.
Seminal fluid proteins (SFPs) produced in the male accessory glands and ejaculatory duct are subject to strong sexual selection, often evolve rapidly and therefore may play a key role in reproductive isolation and species formation. However, little is known about reproductive proteins for species in which males transfer ejaculate to females using a spermatophore package. By combining RNA sequencing and proteomics, we characterize putative SFPs, identify proteins transferred in the male spermatophore and identify candidate genes contributing to a one‐way gametic incompatibility between Z and E strains of the European corn borer moth Ostrinia nubilalis. We find that the accessory glands and ejaculatory duct secrete over 200 highly expressed gene products, including peptidases, peptidase regulators and odourant‐binding proteins. A comparison between Ostrinia strains reveals that accessory gland and ejaculatory duct sequences with hormone degradation and peptidase activity are among the most extremely differentially expressed. However, most spermatophore peptides lack reproductive tissue bias or canonical secretory signal motifs and aproximately one‐quarter may be produced elsewhere before being sequestered by the male accessory glands during spermatophore production. In addition, most potential gene candidates for postmating reproductive isolation do not meet standard criteria for predicted SFPs and almost three‐quarters are novel, suggesting that both postmating sexual interactions and gametic isolation likely involve molecular products beyond traditionally recognized SFPs.  相似文献   

13.
A wide variety of peptidases associate with vital biological pathways, but the origin and evolution of their tremendous diversity are poorly defined. Application of the MEROPS classification to a comprehensive set of genomes yields a simple pattern of peptidase distribution and provides insight into the organization of proteolysis in all forms of life. Unexpectedly, a near ubiquitous core set of peptidases is shown to contain more types than those unique to higher multicellular organisms. From this core group, an array of eukaryote-specific peptidases evolved to yield well known intracellular and extracellular processes. The paucity of peptidase families unique to higher metazoa suggests gains in proteolytic network complexity required a limited number of biochemical inventions. These findings provide a framework for deeper investigation into the evolutionary forces that shaped each peptidase family and a roadmap to develop a timeline for their expansion as an interconnected system.  相似文献   

14.

Background

Peptidases are key proteins involved in essential plant physiological processes. Although protein peptidase inhibitors are essential molecules that modulate peptidase activity, their global presence in different plant species remains still unknown. Comparative genomic analyses are powerful tools to get advanced knowledge into the presence and evolution of both, peptidases and their inhibitors across the Viridiplantae kingdom.

Results

A genomic comparative analysis of peptidase inhibitors and several groups of peptidases in representative species of different plant taxonomic groups has been performed. The results point out: i) clade-specific presence is common to many families of peptidase inhibitors, being some families present in most land plants; ii) variability is a widespread feature for peptidase inhibitory families, with abundant species-specific (or clade-specific) gene family proliferations; iii) peptidases are more conserved in different plant clades, being C1A papain and S8 subtilisin families present in all species analyzed; and iv) a moderate correlation among peptidases and their inhibitors suggests that inhibitors proliferated to control both endogenous and exogenous peptidases.

Conclusions

Comparative genomics has provided valuable insights on plant peptidase inhibitor families and could explain the evolutionary reasons that lead to the current variable repertoire of peptidase inhibitors in specific plant clades.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-812) contains supplementary material, which is available to authorized users.  相似文献   

15.
The white-rot basidiomycete Phanerochaete chrysosporium employs extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose, and lignin. Analysis of a total of 10,048 v2.1 gene models predicts 769 secreted proteins, a substantial increase over the 268 models identified in the earlier database (v1.0). Within the v2.1 'computational secretome,' 43% showed no significant similarity to known proteins, but were structurally related to other hypothetical protein sequences. In contrast, 53% showed significant similarity to known protein sequences including 87 models assigned to 33 glycoside hydrolase families and 52 sequences distributed among 13 peptidase families. When grown under standard ligninolytic conditions, peptides corresponding to 11 peptidase genes were identified in culture filtrates by mass spectrometry (LS-MS/MS). Five peptidases were members of a large family of aspartyl proteases, many of which were localized to gene clusters. Consistent with a role in dephosphorylation of lignin peroxidase, a mannose-6-phosphatase (M6Pase) was also identified in carbon-starved cultures. Beyond proteases and M6Pase, 28 specific gene products were identified including several representatives of gene families. These included 4 lignin peroxidases, 3 lipases, 2 carboxylesterases, and 8 glycosyl hydrolases. The results underscore the rich genetic diversity and complexity of P. chrysosporium's extracellular enzyme systems.  相似文献   

16.
Type I signal peptidases are a widespread family of enzymes which remove the presequences from proteins translocated across cell membranes, including thylakoid and cytoplasmic membranes of cyanobacteria and thylakoid membranes of chloroplasts. We have cloned and sequenced a signal peptidase gene from the thermophilic cyanobacterium Phormidium laminosum which is believed to encode an enzyme common to both membrane systems. The deduced amino acid sequence is 203 residues long and although the overall similarity among signal peptidases is rather low there are a number of identifiable conserved regions present. The P. laminosum enzyme is predicted to have a single transmembrane domain, in contrast to other Gram-negative bacterial sequences, but similar to other type I signal peptidases.  相似文献   

17.
Thermopsin is a peptidase from Sulfolobus acidocaldarius that is active at low pH and high temperature. From reversible inhibition with pepstatin, thermopsin is thought to be an aspartic peptidase. It is a member of the only family of peptidases to be restricted entirely to the archaea, namely peptidase family A5. Evolution within this family has been mapped, using a taxonomic tree based on the known classification of archaea. Homologues are found only in archaeans that are both hyperthermophiles and acidophiles, and this implies lateral transfer of genes between archaea, because species with homologues are not necessarily closely related. Despite the remarkable stability and activity in extreme conditions, no tertiary structure has been solved for any member of the family, and the catalytic mechanism is unknown. Putative catalytic residues have been predicted here by examination of aligned sequences.  相似文献   

18.
Cysteine peptidase inhibitor genes (ICP) of the chagasin family have been identified in protozoan (Leishmania mexicana and Trypanosoma brucei) and bacterial (Pseudomonas aeruginosa) pathogens. The encoded proteins have low sequence identities with each other and no significant identity with cystatins or other known cysteine peptidase inhibitors. Recombinant forms of each ICP inhibit protozoan and mammalian clan CA, family C1 cysteine peptidases but do not inhibit the clan CD cysteine peptidase caspase 3, the serine peptidase trypsin or the aspartic peptidases pepsin and thrombin. The functional homology between ICPs implies a common evolutionary origin for these bacterial and protozoal proteins.  相似文献   

19.
The last decade has witnessed an effervescence of research interest in the development of potent inhibitors of various aspartic peptidases. As an enzyme family, aspartic peptidases are relatively a small group that has received enormous interest because of their significant roles in human diseases like involvement of renin in hypertension, cathepsin D in metastasis of breast cancer, beta-Secretase in Alzheimer's Disease, plasmepsins in malaria, HIV-1 peptidase in acquired immune deficiency syndrome, and secreted aspartic peptidases in candidal infections. There have been developments on clinically active inhibitors of HIV-1 peptidase, which have been licensed for the treatment of AIDS. The inhibitors of plasmepsins and renin are considered a viable therapeutic strategy for the treatment of malaria and hypertension. Relatively few inhibitors of cathepsin D have been reported, partly because of its uncertain role as a viable target for therapeutic intervention. The beta-secretase inhibitors OM99-2 and OM003 were designed based on the substrate specificity information. The present article is a comprehensive state-of-the-art review describing the aspartic peptidase inhibitors illustrating the recent developments in the area. In addition, the homologies between the reported inhibitor sequences have been analyzed. The understanding of the structure-function relationships of aspartic peptidases and inhibitors will have a direct impact on the design of new inhibitor drugs.  相似文献   

20.
Rawlings ND  Morton FR 《Biochimie》2008,90(2):243-259
Many of the 181 families of peptidases contain homologues that are known to have functions other than peptide bond hydrolysis. Distinguishing an active peptidase from a homologue that is not a peptidase requires specialist knowledge of the important active site residues, because replacement or lack of one of these catalytic residues is an important clue that the homologue in question is unlikely to hydrolyse peptide bonds. Now that the rate at which proteins are characterized is outstripped by the rate that genome sequences are determined, many genes are being incorrectly annotated because only sequence similarity is taken into consideration. We present a tool called the MEROPS batch BLAST which not only performs a comparison against the MEROPS sequence collection, but also does a pair-wise alignment with the closest homologue detected and calculates the position of the active site residues. A non-peptidase homologue can be distinguished by the absence or unacceptable replacement of any of these residues. An analysis of peptidase homologues in the genome of the bacterium Erythrobacter litoralis is presented as an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号