首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemistry of [Cu(OEP)] and [Ni(OEP)] are compared with the mixed-valence π-cations and . These electrochemical studies, carried out with cyclic voltammetry and hydrodynamic voltammetry, show that the mixed valence π-cations have distinct electrochemical properties, although the differences between the [M(OEP)]+/0 and processes are subtle.  相似文献   

2.
The glutathione thiyl radical does not react with nitrogen monoxide   总被引:1,自引:0,他引:1  
Laser flash photolysis experiments shows that the rate constant for the reaction of the glutathione thiyl radical with nitrogen monoxide to give S-nitrosoglutathione is lower than 2.8+/-0.6 x 10(7)M(-1)s(-1). The conversion of the thiyl radical to its carbon-centred form at 10(3)s(-1) exceeds the formation of S-nitrosoglutathione when physiological concentrations of nitrogen monoxide are taken into account.  相似文献   

3.
4.
Mechanical loading can counteract inflammatory pathways induced by IL-1beta by inhibiting *NO and PGE2, catabolic mediators known to be involved in cartilage degradation. The current study investigates the potential of dynamic compression, in combination with the anti-inflammatory cytokine, IL-4, to further abrogate the IL-1beta induced effects. The data presented demonstrate that IL-4 alone can inhibit nitrite release in the presence and absence of IL-1beta and partially reverse the IL-1beta induced PGE2 release. When provided in combination, IL-4 and dynamic compression could further abrogate the IL-1beta induced nitrite and PGE2 release. IL-1beta inhibited [3H]thymidine incorporation and this effect could be reversed by IL-4 or dynamic strain alone or both in combination. By contrast, 35SO4 incorporation was not influenced by IL-4 and/or dynamic strain in IL-1beta stimulated constructs. IL-4 and mechanical loading may therefore provide a potential protective mechanism for cartilage destruction as observed in OA.  相似文献   

5.
Two crystals of holmium(III) double-decker iodine doped phthalocyanines, HoPc2I5/3 (I) and HoPc2I (II), were grown directly in the reaction of holmium chips with 1,2-dicyanobenzene under versatile quantity of iodine at 180-160 °C. The complex I crystallises in the P4/mcc space group of tetragonal system, while the complex II crystallises in the P2/c space group of monoclinic system. The space group of P4/mcc and z = 1 requires that the Ho(III) atom is statistically disordered in the HoPc2I5/3 structure. The iodine atoms form linear symmetrical triiodide ions in I, while the I ions in II. Assignment of iodine species as in the HoPc2I5/3 and I in HoPc2I complexes point to the +5/9 and +1 oxidation state of the HoPc2 unit in these complexes. Thus one Pc macrocycle of the double-decker HoPc2 units has a non-integer oxidation state of −1.222 in I, while both Pc-rings are one-electron oxidised radical Pc in II. Magnetic susceptibilities of HoPc2I5/3 and HoPcI at room temperature are 4.56 × 10−2 and 5.12 × 10−2 emu/mol and the calculated magnetic moments are 10.46 and 11.08 μB, respectively. UV-Vis spectroscopic measurement of I and II in benzene solution were carried out and discussed.  相似文献   

6.
7.
Pentachloronitrosyliridate(III) ([IrCl5(NO)]), the most electrophilic NO+ known to date, can be reduced chemically and/or electrochemically by one or two electrons to produce the NO and HNO/NO forms. The nitroxyl complex can be formed either by hydride attack to the NO+ in organic solvent, or by decomposition of iridium-coordinated nitrosothiols in aqueous solutions, while NO is produced electrochemically or by reduction of [IrCl5(NO)] with H2O2. Both NO and HNO/NO complexes are stable under certain conditions but tend to labilize the trans chloride and even the cis ones after long periods of time. As expected, the NO+ is practically linear, although the IrNO moiety is affected by the counterions due to dramatic changes in the solid state arrangement. The other two nitrosyl redox states comprise bent structures.  相似文献   

8.
To fully explore the trends of atomic composition during the macroevolution from prokaryote to eukaryote, five atoms (oxygen, sulfur, nitrogen, carbon, hydrogen) and related functional groups in prokaryotic and eukaryotic proteins were surveyed and compared. Genome-wide analysis showed that eukaryotic proteins have more oxygen, sulfur and nitrogen atoms than prokaryotes do. Clusters of Orthologous Groups (COG) analysis revealed that oxygen, sulfur, carbon and hydrogen frequencies are higher in eukaryotic proteins than in their prokaryotic orthologs. Furthermore, functional group analysis demonstrated that eukaryotic proteins tend to have higher proportions of sulfhydryl, hydroxyl and acylamino, but lower of sulfide and carboxyl. Taken together, an apparent trend of increase was observed for oxygen and sulfur atoms in the macroevolution; the variation of oxygen and sulfur compositions and their related functional groups in macroevolution made eukaryotic proteins carry more useful functional groups. These results will be helpful for better understanding the functional significances of atomic composition evolution.  相似文献   

9.
Cell cycle regulation is performed by cyclins and cyclin dependent kinases (CDKs). Recently, it has become clear that reactive oxygen species (ROS) influence the presence and activity of these enzymes and thereby control cell cycle progression. In this review, we first describe the discovery of enzymes specialized in ROS production: the NADPH oxidase (NOX) complexes. This discovery led to the recognition of ROS as essential players in many cellular processes, including cell cycle progression. ROS influence cell cycle progression in a context-dependent manner via phosphorylation and ubiquitination of CDKs and cell cycle regulatory molecules. We show that ROS often regulate ubiquitination via intermediate phosphorylation and that phosphorylation is thus the major regulatory mechanism influenced by ROS. In addition, ROS have recently been shown to be able to activate growth factor receptors. We will illustrate the diverse roles of ROS as mediators in cell cycle regulation by incorporating phosphorylation, ubiquitination and receptor activation in a model of cell cycle regulation involving EGF-receptor activation. We conclude that ROS can no longer be ignored when studying cell cycle progression.  相似文献   

10.
This paper presents an automatic spectrofluorimetric method (flow injection spectrofluorimetry) using a novel fluorescent probe named H. Py. Bzt (2-(2-pyridil)-benzothiazoline) for determining superoxide dismutase (SOD) activity. The fluorescent probe was synthesized in house and fully characterized by elemental analysis and by infrared and (1)H nuclear magnetic resonance spectra. It could specially identify and trap O(2)(*-) and was oxidized by O(2)(*-) to form a strong fluorescence product. Based on this reaction, the flow injection spectrofluorimetric method was proposed and successfully used to determine SOD activity. The proposed method has a better selectivity in the determination of reactive oxygen species because the probe can be oxidized only by O(2)(*-) excluding H(2)O(2). As a kind of simple, rapid, precise, sensitive and automatic technique, it was applied to measurement of SOD activity in scallion, garlic, and onion with satisfactory results.  相似文献   

11.
The origin of nitric oxide (*NO) in plants is unclear and an *NO synthase (NOS)-like enzyme and nitrate reductase (NR) are claimed as potential sources. Here we used wild-type and NR-defective double mutant plants to investigate *NO production in Arabidopsis thaliana in response to Pseudomonas syringae pv maculicola. NOS activity increased substantially in leaves inoculated with P. syringae. However, electron paramagnetic resonance experiments showed a much higher *NO formation that was dependent on nitrite and mitochondrial electron transport rather than on arginine or nitrate. Overall, these results indicate that NOS, NR and a mitochondrial-dependent nitrite-reducing activity cooperate to produce *NO during A. thaliana-P. syringae interaction.  相似文献   

12.
Reduction of the N1, N1′-C3-bridged di(benzimidazol-2-thione) (5) with a sodium/potassium alloy leads to the N1, N1′-C3-bridged dibenzotetraazafulvalene (6). One equivalent of 6 reacts with palladium diiodide to give the dicarbene complex 1,3-(2,2-dimethylpropane)-N1,N1′-bis(N3-ethylbenzimidazol-2-ylidene)palladium diiodide (7). The X-ray crystal structure analysis of 7 reveals a slightly distorted square-planar coordination environment for the palladium center and a Ccarbene-Pd-Ccarbene angle of 85.0(15)°. The carbene planes are oriented almost perpendicular (82.7° and 79.3°) to the PdI2C2 plane.  相似文献   

13.
14.
Ascorbate peroxidase (APX) isoforms localized in the stroma and thylakoid of the chloroplast play a principle role in detoxifying hydrogen peroxide (H2O2) generated in photosystem I; however, once the ascorbate is depleted, the enzyme is attacked by H2O2 and rapidly loses its activity. Here, we report that radical transfer across the porphyrin moiety and amino acid residues in the reaction intermediate and H2O2-mediated enzyme inactivation involve cooperative interactions of the Cys26, Trp35, and Cys126 residues of stromal APX. The wild-type enzyme had a half-time of inactivation of <10 s, while the triple mutant of the three residues retained 50% of the initial activity after H2O2 treatment for 3 min. The H2O2 tolerance of this mutant was comparable to that of the H2O2-tolerant APX isoform localized in the cytosol.  相似文献   

15.
The oxidation of the PQ-pool after illumination with 50 or 500 micromol quantam(-2)s(-1) was measured in isolated thylakoids as the increase in DeltaA(263), i.e., as the appearance of PQ. While it was not observed under anaerobic conditions, under aerobic conditions it was biphasic. The first faster phase constituted 26% or 44% of total reappearance of PQ, after weak or strong light respectively. The dependence on oxygen presence as well as the correlation with the rate of oxygen consumption led to conclusion that this phase represents the appearance of PQ from PQ(*-) produced in the course of PQH(2) oxidation by superoxide accumulated in the light within the membrane.  相似文献   

16.
17.
The discovery of superoxide dismutases (SODs), which convert superoxide radicals to molecular oxygen and hydrogen peroxide, has been termed the most important discovery of modern biology never to win a Nobel Prize. Here, we review the reasons this discovery has been underappreciated, as well as discuss the robust results supporting its premier biological importance and utility for current research. We highlight our understanding of SOD function gained through structural biology analyses, which reveal important hydrogen-bonding schemes and metal-binding motifs. These structural features create remarkable enzymes that promote catalysis at faster than diffusion-limited rates by using electrostatic guidance. These architectures additionally alter the redox potential of the active site metal center to a range suitable for the superoxide disproportionation reaction and protect against inhibition of catalysis by molecules such as phosphate. SOD structures may also control their enzymatic activity through product inhibition; manipulation of these product inhibition levels has the potential to generate therapeutic forms of SOD. Markedly, structural destabilization of the SOD architecture can lead to disease, as mutations in Cu,ZnSOD may result in familial amyotrophic lateral sclerosis, a relatively common, rapidly progressing and fatal neurodegenerative disorder. We describe our current understanding of how these Cu,ZnSOD mutations may lead to aggregation/fibril formation, as a detailed understanding of these mechanisms provides new avenues for the development of therapeutics against this so far untreatable neurodegenerative pathology.  相似文献   

18.
Kinetics of ferric Mycobacterium leprae truncated hemoglobin O (trHbOFe(III)) oxidation by H2O2 and of trHbOFe(IV)O reduction by NO and NO2 are reported. The value of the second-order rate constant for H2O2-mediated oxidation of trHbOFe(III) is 2.4 × 103 M−1 s−1. The value of the second-order rate constant for NO-mediated reduction of trHbOFe(IV)O is 7.8 × 106 M−1 s−1. The value of the first-order rate constant for trHbOFe(III)ONO decay to the resting form trHbOFe(III) is 2.1 × 101 s−1. The value of the second-order rate constant for NO2-mediated reduction of trHbOFe(IV)O is 3.1 × 103 M−1 s−1. As a whole, trHbOFe(IV)O, generated upon reaction with H2O2, catalyzes NO reduction to NO2. In turn, NO and NO2 act as antioxidants of trHbOFe(IV)O, which could be responsible for the oxidative damage of the mycobacterium. Therefore, Mycobacterium leprae trHbO could be involved in both H2O2 and NO scavenging, protecting from nitrosative and oxidative stress, and sustaining mycobacterial respiration.  相似文献   

19.
Hu L  Li H  Pang H  Fu J 《Journal of plant physiology》2012,169(2):146-156
Salinity could damage cellular membranes through overproduction of reactive oxygen species (ROS), while antioxidant capacities play a vital role in protecting plants from salinity caused oxidative damages. The objective of this study was to investigate the toxic effect of salt on the antioxidant enzyme activities, isoforms and gene expressions in perennial ryegrass (Lolium perenne L.). Salt-tolerant ‘Quickstart II’ and salt-sensitive ‘DP1′ were subjected to 0 and 250 mM NaCl for 12 d. Salt stress increased the content of lipid peroxidation (MDA), electrolyte leakage (EL) and hydrogen peroxide (H2O2), to a greater extent in salt-sensitive genotype. Salt-stressed plant leaves exhibited a greater activity of superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11) at 4 d after treatment (DAT), but a lower level of enzyme activity at 8 and 12 d, when compared to the control. Catalase (CAT, EC 1.11.1.6) activity was greater at 4 DAT and thereafter decreased in salt tolerant genotype relative to the control, whereas lower than the control during whole experiment period for salt-sensitive genotype. There were different patterns of five isoforms of SOD, POD and two isoforms of APX between two genotypes. Antioxidant gene expression was positively related to isoenzymatic and total enzymatic activities during 12-d salt-treated leaves of two genotypes, with a relatively higher level in salt-tolerant genotype. Thus, salt tolerance could be related to the constitutive/induced antioxidant gene, leading to more efficient enzyme stimulation and protection in perennial ryegrass.  相似文献   

20.
The effect of agents disrupting cholesterol-rich microdomains of the cell membrane was studied on the chemoattractant receptor (FPR and FRPL1) coupled effector responses of promyelocytic PLB-985 cells. Both methyl-beta-cyclodextrin (MbetaCD) and filipin III inhibited exocytosis of primary granules and O(2)(.-) production induced by stimulation of either chemotactic receptor. Alteration of calcium homeostasis of MbetaCD-treated cells does not account for the impairment of the effector responses. Disruption of microfilaments by cytochalasin B (CB) partially reverses the inhibitory effect of cholesterol depletion. Our results provide functional support for the involvement of cholesterol-rich membrane domains in the signaling of chemotactic receptors and call the attention to the possible role of microfilaments in the organization of lipid microdomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号