首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Alignment of class I-hybridizing cosmids from an R21 (A l B l D l E u grc + ) genomic DNA library gave two contigs: one [150 kilobases (kb)] encompassed the E/C region, or a large part thereof, and the other (110 kb) contained the grc region which has genes influencing resistance to chemical carcinogens (rcc), fertility (ft), and growth (dw-3). Amplification of gene sequences in the four cosmids in the E/C region using E u -specific and LW2 (RT1.C)-specific primers showed that each cosmid contained both E u -like and C-like genes. They are clearly different but closely associated, and they show some variation from the prototypic E (E u ) and C (LW2) genes, respectively. Comparison of DNA from grc + and grc strains of rats showed that the deletion in the grc strains was approximately 50 kb, and that it was located on two of the three cosmids in the grc-region contig. The use of specific class I probes showed that the grc region contained tandemly duplicated RT1.O-RT1.N genes and that the RT.BM1 loci lay outside of the grc region. Neither contig reacted with probes specific for class II, TNFA, Hsp70, or RT1.M genes. The data presented here and the previous data in the literature (summarized in Gill et al. 1995) suggest that the gene order in the major histocompatibility complex (MHC) and MHC-linked region of the rat is: A-E/C-grc-M. Received: 6 November 1995 / Revised: 24 January 1996  相似文献   

2.
The development of the physical map of the major histocompatibility complex of the rat was undertaken using pulse field gel electrophoresis of fragments of genomic DNA from the BIL/2 (grc +) and BIL/1 (grc ) strains obtained primarily from single and double digests with the enzymes Mlu I, Not I, and Sfi I and hybridized with a variety of mouse, rat, and human probes. Both strains are maintained by inbreeding the BIL heterozygote (forced heterozygosity; F31); hence, their differences lie almost entirely in the MHC-grc regions. The MHC-grc region was contained in five fragments of DNA comprising 3000–3200 kilobases (kb); thus, its size appears to be closer to that of the human MHC than to that of the mouse MHC. This didstance may be an underestimate of the size of the entire region, however, because the cluster of class I loci in the RT1.A region could not be defined in detail in this study. The most striking difference between the BIL/2 strain, which has normal growth and reproductive characteristics, and the BIL/1 strain, which has growth and reproductive defects and an enhanced susceptibility to chemical carcinogens, is a deletion of approximately 70 kb in the latter strain. The studies og grc + and grc strain suggest that the phenotypic defects of the grc stains may be due to the loss of genes that are normally present in this deleted region. Address correspondence and offprint request to: T. J. Gill III.  相似文献   

3.
Genes in the grc-G/C region, which is linked to the rat major histocompatibility complex, influence the control of growth, development, and susceptibility to chemical carcinogens. As an initial approach to analyzing the structure and organization of these genes, a class I hybridizing fragment designated RT(5.8) was isolated from an R21 genomic DNA library and sequenced from overlapping restriction enzyme fragments. The RT(5.8) clone has 5788 base pairs and contains the eight exons characteristic of a class I gene. There are CAAT and TATA boxes upstream of the signal peptide, and the recognition sequence that precedes the site of polyadenylation is located downstream from the third cytoplasmic domain. Comparison of the RT(5.8) gene with respect class I genes from the rat and other species shows that the nucleotide sequences of RT(5.8) have a high level of similarity to those of TL region genes of several strains of mice. The peptide sequence deduced from the RT(5.8) clone is distinct from all previously published class I gene sequences, and at many positions there are amino acid residues that are unique to the RT(5.8) sequence. Probes have been isolated from the third exon and from the 5 and 3 flanking regions of the RT(5.8) clone, and Southern blot analysis with genomic DNA of various rat strains shows that these probes are specific for the RT(5.8) fragment. Northern blot analysis shows that the gene is transcribed in the thymus but not in the liver or spleen. The RT(5.8) sequence is more similar to some mouse TL genes (especially in the 2 and cytoplasmic domains and in the 5 and 3 untranslated regions) than it is to other rat class I genes. Hence, TL-like genes are not restricted to the mouse.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M74822. Address correspondence and offprint requests to: T. J. Gill III.  相似文献   

4.
CD1 and TL were once thought to be genetic homologues because of their thymus-specific expression. We investigated their equivalents in the rat to clarify whether their structure and pattern of expression are conserved in rodents. Two rat class Ib genes, containing 3′ sequences very similar to mouse TL, were identified and designated RT1.P. Neither of them, however, can encode ordinary class I molecules due to the accumulation of harmful mutations in the 5′ regions that are unique to RT1.P, while the 3′TL-like regions still retain protein-coding capacity. Comparison of the structural organization of three types of TL family genes, which include mouse T3/T18-encoding TL antigens, mouse T1/T16, and rat RT1.P1/P2 pseudogenes, revealed the presence of a clear demarcation between the type-specific and TL-specific sequences at intron 3. This finding suggests that recombination plays an important role in creating the TL family genes in rodents. Characteristic features of TL, such as a low level of polymorphism and linkage to the major histocompatibility complex, were also observed in the rat. On the other hand, rat CD1 molecules were expressed at a high level on the surface of thymocytes. Absence of authentic TL antigens and thymic expression of CD1d molecules in the rat suggest the plasticity and conservation of class Ib genes in rodent evolution. Functions of TL may be substituted with CD1 or other class Ib molecules expressed by rat thymus. Received: 16 December 1996 / Revised: 11 March 1997  相似文献   

5.
6.
Roos C  Walter L 《Immunogenetics》2005,56(10):773-777
The major histocompatibility complex (MHC) class I region extending between the Bat1 and Pou5f1 genes shows considerable genomic plasticity in mouse and rhesus macaque but not in human haplotypes. In the rat, this region is known as the RT1-CE region. The recently published rat MHC sequence gave rise to a complete set of class I gene sequences in a single MHC haplotype, namely the RT1n haplotype of the widely used BN inbred strain. To study the degree of genetic diversity, we compared the RT1-CE region-derived class I genes of the RT1n haplotype with class I sequences of other rat haplotypes. By using phylogenetic tree analyses, we obtained evidence for extensive presence and absence polymorphisms of single loci and even small subfamilies of class I genes in the rat. Alleles of RT1-CE region class I genes could also be identified, but the rate of allelic nucleotide substitutions appeared rather low, indicating that the diversity in the RT1-CE region is mainly based on genomic plasticity.  相似文献   

7.
A region of the TL b locus encompassing T11 to T13 contains retroviral sequences TLev1 and TLev2. As part of a study to determine whether the retroviral elements are involved in the expression of TL genes, the genomic organization of this region was reexamined in greater detail. A result of these investigations is the extension of the H-2 TLb molecular map. Two additional TL genes have been isolated from C57BL/6 mice, T14 and T15. The genomic organization of T9 through T15 is presented. The nucleotide sequence has been determined for exons 4, 5, and 6 of T13. As a result of a C to T conversion, a termination codon is introduced into exon 4, indicating that T13 either encodes a secreted protein or is a pseudogene. T13 was found to be more homologous to the H-2 genes outside the TL region. T14 has been physically disrupted by the integration of TLevl , and the H-2 sequences appear to have diverged greatly. The relationship of the TL regions of the b and c haplotypes has been investigated using numerous low copy probes. The genome of BALB/c (TLc) is shown to lack a counterpart of the T13–T15 b region. Homologous regions exist in the two haplotypes; yet considerable polymorphism is observed. TLb mice do not express TLa on the cell surface of normal thymocytes while TLc mice do; TLa expression is activated in many TO leukemias. The diversity seen in the T13–T15 region may provide insights into the phenotypic expression or regulatory mechanisms of TL expression in these two haplotypes.  相似文献   

8.
《Genomics》2022,114(4):110411
Gene duplications increase genetic and phenotypic diversity and occur in complex genomic regions that are still difficult to sequence and assemble. PHD Finger Protein 7 (PHF7) acts during spermiogenesis for histone-to-histone protamine exchange and is a determinant of male fertility in Drosophila and the mouse. We aimed to explore and characterise in the chicken genome the expanding family of the numerous orthologues of the unique mouse Phf7 gene (highly expressed in the testis), observing the fact that this information is unclear and/or variable according to the versions of databases. We validated nine primer pairs by in silico PCR for their use in screening the chicken bacterial artificial chromosome (BAC) library to produce BAC-derived probes to detect and localise PHF7-like loci by fluorescence in situ hybridisation (FISH). We selected nine BAC that highlighted nine chromosomal regions for a total of 10 distinct PHF7-like loci on five Gallus gallus chromosomes: Chr1 (three loci), Chr2 (two loci), Chr12 (one locus), Chr19 (one locus) and ChrZ (three loci). We sequenced the corresponding BAC by using high-performance PacBio technology. After assembly, we performed annotation with the FGENESH program: there were a total of 116 peptides, including 39 PHF7-like proteins identified by BLASTP. These proteins share a common exon-intron core structure of 8–11 exons. Phylogeny revealed that the duplications occurred first between chromosomal regions and then inside each region. There are other duplicated genes in the identified BAC sequences, suggesting that these genomic regions exhibit a high rate of tandem duplication. We showed that the PHF7 gene, which is highly expressed in the rooster testis, is a highly duplicated gene family in the chicken genome, and this phenomenon probably concerns other bird species.  相似文献   

9.
The major histocompatibility complex of the rat (RTI) contains genes that code for two class II histocompatibility antigens. The r12 rat strain (WRC) was derived from a mating which revealed a genetic recombination that defines the two loci, RTI.B and RT1.D, that code for the class II antigens. The RT1.B and RT1.D antigens of the RT1 complex are protein dimers consisting of an alpha and beta glycoprotein chain and are homologous to I-A and I-E genes, respectively, in the H-2 complex of the mouse. We have performed Southern blot analysis on liver DNA from the r12 and parental strains to examine the precise location of the recombinant event. After digestion with restriction enzymes, the DNA was separated on agarose gels, blotted onto nitrocellulose, and hybridized with mouse H-2 cDNA probes specific for I-A alpha and beta genes. The pattern of restriction fragment polymorphisms demonstrated that the site of recombination is between the RT1.B alpha and the RTI.B beta genes. As a result of these findings, we suggest that the sequence of genes within the RTI complex consists of RT1.A ... RT1.B ... RT1.B ... RT1.D(, ) ... Other class I genes, possibly corresponding to mouse Qa and Tla-like genes, were also apparent in these experiments.  相似文献   

10.
CML characterization of a product of a second class I locus in the rat MHC   总被引:2,自引:0,他引:2  
In the rat, genes that control the expression of target antigens detected by cell-mediated lympholysis (CML) are present in the major histocompatibility complex (MHC). The relationship of these loci, CT and Ag-L, to each other and to other loci within the MHC is unknown. In this report, we demonstrate the existence of a CML target antigen in the (DA × BN)F1 anti-DA.11(BI) strain combination. The gene coding for this antigen is linked to the RT1 complex as indicated by the CML reactivity of targets from backcross and congenic animals. Inhibition studies demonstrated that this antigen has the widespread tissue distribution characteristic of class I antigens, and the gene coding for this CML antigen maps coincident with the RT1.E class I locus as indicated by the lysis of targets from the recombinant strains r10 and r11. The CML can be blocked by antisera directed against a product of the RT1.E locus. The locus controlling this CML reactivity, like CT and Ag-L, has been separated from RT1.A by recombination; unlike CT and Ag-L, the product of this CML locus appears to be identical with an RT1.E allelic product that has been serologically identified and biochemically characterized.Abbreviations used in this paper MHC major histocompatibility complex - CML cell-mediated lympholysis - Con A concanavalin A - SD standard deviation - HEPES N-2-hydroxy-piperazine-N-2-ethanesulfonic acid - CPM counts per minute - grc growth and reproduction complex  相似文献   

11.
The proportion of non-tandem duplicated loci detected by DNA hybridization and the segregation of RFLPs using 90 independent randomly isolated cDNA probes was estimated by segregation analysis to be 17%. The 14 cDNA probes showing duplicate loci in progeny derived from a cross between Arabidopsis-thaliana ecotypes Columbia x Landsberg erecta detected an average of 3.6 loci per probe (ranging from 2 to 6). The 50 loci detected with these 14 probes were arranged on a genetic map of 587 cM and assigned to the five A. Thaliana chromosomes. An additional duplicated locus was detected in progeny from a cross between Landsberg erecta x Niederzenz. The majority of duplicated loci were on different chromosomes, and when linkage between duplicate locus pairs was detected, these loci were always separated by at least 15 cM. When partial nucleotide sequence data were compared with GENBANK databases, the identities of 2 cDNA clones which recognized duplicate unlinked sequences in the A. Thaliana genome were determined to encode a chlorophyll a/b-binding protein and a beta-tubulin. Of the 8 loci carrying beta-tubulin genes 6 were placed on the genetic map. These results imply that gene duplication has been an important factor in the evolution of the Arabidopsis genome.  相似文献   

12.
Class II genes of the human major histocompatibility complex (MHC) are polymorphic. Allelic variation of the coding region of these genes is involved in the antigen presentation and is associated with susceptibility to certain autoimmune diseases. The DR region is unique among human class II regions in that multiple DRB genes are expressed. Differential expression of the different DRB loci has been demonstrated, and we sequenced the proximal promoter region of the HLA-DRB genes, known to be involved in the regulation of nucleotide variations in their regulatory regions and we determined the relationship between the regulatory regions of HLA-DRB genes. This polymorphism found in the regulatory conserved boxes could be involved in the observed differential expression of DRB loci. In addition, we found a polymorphism between the regulatory regions of DRB1 alleles which might be involved in an allele-specific regulation and therefore could be considered as an additional factor in susceptibility to autoimmune diseases.The nucleotide sequence data reported in this paper have been submitted to the EMBL nucleotide sequence database and have been assigned the accession numbers X64436–X64442, X64544, X64546–X64549, X65558–X65569, and X65585–X65587. Correspondence to: J. F. Eliaou.  相似文献   

13.
14.
The results of a variety of studies on the genetic and immunological aspects of reproduction can be integrated into a hypothesis about the factors that regulate implantation and development and that may also cause an increased susceptibility to cancer. The primary condition for successful reproduction is genetic compatibility between the mating partners: there must be no recessive lethal genes that could act alone or epistatically to cause embryonic or fetal death. Such recessive lethal genes have been identified in the mouse (t-haplotypes) and in the rat (grc), and there is some evidence that they also exist in humans. Immunological factors may modulate the implantation of the fertilized ovum under some cireumstances after the genetic condition has been met. The same genetic factors that affect development may also affect susceptibility to cancer. This part of the hypothesis is supported by a number of clinical correlations between congenital defects and a higher incidence of cancer and by the demonstration of an increased susceptibility to the effects of chemical carcinogens in rats carrying the grc.  相似文献   

15.
The most telomeric class I region of the MHC in rat and mouse is the M region, which contains about 20 class I genes or gene fragments. The central part carries three class I genes—M4, M5, and M6—which are orthologous between the two species. M4 and M6 are pseudogenes in the mouse but transcribed, intact genes in the rat. To analyze the pseudogene status for the mouse genes in more detail, we have sequenced the respective exons in multiple representative haplotypes. The stop codons are conserved in all mouse strains analyzed, and, consistent with the pseudogene status, all strains show additional insertions and deletions, taking the genes further away from functionality. Thus, M4 and M6 indeed have a split status. They are silent in the mouse but intact in the closely related rodent, the rat.GenBank accession numbers: AF057065 to AF057072 (exon 3 of H2-M4 of reported mouse strains), AF057976 to AF057985 (exon 3 of RT1.M4 of reported rat strains), AF058923 and AF058924 (exon 2 of RT1.M4 of strains PVG and BN), AY286080 to AY286092 (exon 4 of H2-M6 of reported mouse stains), and AY303772 (full-length genomic sequence of RT1.M6-1l)  相似文献   

16.
We have mapped and annotated the variable region of the immunoglobulin heavy (IGH) gene locus of the Brown Norway (BN) rat (assembly V3.4; Rat Genomic Sequence Consortium). In addition to known variable region genes, we found 12 novel previously unidentified functional IGHV genes and 1 novel functional IGHD gene. In total, the variable region of the rat IGH locus is composed of at least 353 unique IGHV genes, 21 IGHD genes, and 5 IGHJ genes, of which 131, 14, and 4 are potentially functional genes, respectively. Of all species studied so far, the rat seems to have the highest number of functional IGHV genes in the genome. Rat IGHV genes can be classified into 13 IGHV families based on nucleotide sequence identity. The variable region of the BN rat spans a total length of approximately 4.9 Mb and is organized in a typical translocon organization. Like the mouse, members of the various IGHV gene families are more or less grouped together on the genome, albeit some members of IGHV gene families are found intermingled with each other. In the rat, the largest IGHV gene families are IGHV1, IGHV2, and IGHV5. The overall conclusion is that the genomic organization of the variable region of the rat IGH locus is strikingly similar to that of the mouse, illustrating the close evolutionary relationship between these two species.  相似文献   

17.
18.
The organization of the rat major histocompatibility complex, RT1, was studied at the DNA level by Southern blot hybridization. Genomic DNA from eight different RT1 congenic rat strains was digested by various restriction enzymes and was hybridized under stringent conditions with probes of mouse class I and class II H-2 genes. Few cross-hybridizing DNA fragments, showing no polymorphism, were seen with class II A alpha and A beta probes. The class I probes allowed for the distinction of about 8 to 19 cross-hybridizing bands, which exhibited extensive polymorphism. With the use of five RT1 recombinants, about 20% of the DNA fragments could be mapped to the RT1.A region, which codes for the ubiquitously expressed class I antigens, and about 80% to the RT1.C region-determining class I-like antigens, which are different from RT1.A antigens with respect to tissue distribution, restriction function in immune responses, and allograft rejection. The number of class I genes present in the rat genome and the possible relationship of RT1.C to H-2Qa, Tla of the mouse are discussed.  相似文献   

19.
The human and mouse genes for the neuropeptide Y4receptor have been isolated, sequenced, and shown to contain no introns within the coding region of the gene. Nonisotopicin situhybridization and interspecific mouse backcross mapping have localized the genes to human chromosome 10q11.2 and mouse chromosome 14. Five nucleotide variants, which do not alter the protein sequence, have been identified within the coding region of the human receptor gene. The human Y4subtype is most closely related to the Y1-receptor subtype (42%), suggesting that it evolved from an ancestral Y1-like receptor via an RNA-mediated transpositional event.  相似文献   

20.
The major histocompatibility complex of the rat (RTI) encodes the class II molecules involved with antigen presentation and cell to cell communication. The organization of these class II genes has been studied by Southern blot hybridization using genomic DNA from inbred and recombinant rat strains digested with various restriction endonuclease and hybridized under stringent conditions with probes for mouse class II and human class II genes. Analysis of the restriction fragment length polymorphisms has mapped the class II genes relative to each other. We have confirmed the order of the - and -chain genes in the RT1.B region, mapped the RT1.D region relative to RT1.B and showed that it has - and -chain loci, and identified a new HLA-DP-like locus, RT1.H, to the RT1.A side of RT1. B. The RT1. H and RT1.H genes map to the region around the recombination point in R22, and there appears to be a hot spot of recombination in RT1.H. The H and D genes have high levels of polymorphism; B , B ,and H have intermediate levels of polymorphism, and D has a low level of polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号