首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared the effects of cytosolic free magnesium (Mg(2+)(i)) on L-type Ca(2+) current (I(Ca,L)) in patch-clamped guinea pig ventricular cardiomyocytes under basal conditions, after inhibition of protein phosphorylation, and after stimulation of cAMP-mediated phosphorylation. Basal I(Ca,L) density displayed a bimodal dependence on the concentration of Mg(2+)(i) ([Mg(2+)](i); 10(-6)-10(-2) M), which changed significantly as cell dialysis progressed due to a pronounced and long-lasting rundown of I(Ca,L) in low-Mg(2+) dialysates. Ten minutes after patch breakthrough, I(Ca,L) density (at +10 mV) in Mg(2+)(i)-depleted cells ([Mg(2+)](i) approximately 1 microM) was elevated, increased to a maximum at approximately 20 microM [Mg(2+)](i), and declined steeply at higher [Mg(2+)](i). Treatment with the broad-spectrum protein kinase inhibitor K252a (10 microM) reduced I(Ca,L) density and abolished these effects of Mg(2+)(i) except for a negative shift of I(Ca,L)-voltage relations with increasing [Mg(2+)](i). Maximal stimulation of cAMP-mediated phosphorylation occluded the Mg(2+)(i)-induced stimulation of I(Ca,L) and prevented inhibitory effects of the ion at [Mg(2+)](i) <1 mM but not at higher concentrations. These results show that the modulation of I(Ca,L) by Mg(2+)(i) requires protein kinase activity and likely originates from interactions of the ion with proteins involved in the regulation of protein phosphorylation/dephosphorylation. Stimulatory effects of Mg(2+)(i) on I(Ca,L) seem to increase the cAMP-mediated phosphorylation of Ca(2+) channels, whereas inhibitory effects of Mg(2+)(i) appear to curtail and/or reverse cAMP-mediated phosphorylation.  相似文献   

2.
Postmyocardial infarction (MI) rat myocytes demonstrated depressed Na(+)/Ca(2+) exchange (NCX1) activity, altered contractility, and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients. We investigated whether NCX1 downregulation in normal myocytes resulted in contractility changes observed in MI myocytes. Myocytes infected with adenovirus expressing antisense (AS) oligonucleotides to NCX1 had 30% less NCX1 at 3 days and 66% less NCX1 at 6 days. The half-time of relaxation from caffeine-induced contracture was twice as long in ASNCX1 myocytes. Sarcoplasmic reticulum (SR) Ca(2+)-ATPase abundance, SR Ca(2+) uptake, resting membrane potential, action potential amplitude and duration, L-type Ca(2+) current density and cell size were not affected by ASNCX1 treatment. At extracellular Ca(2+) concentration ([Ca(2+)](o)) of 5 mM, ASNCX1 myocytes had significantly lower contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents than control myocytes. At 0.6 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents were significantly higher in ASNCX1 myocytes. At 1.8 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes were not different between control and ASNCX1 myocytes. This pattern of contractile and [Ca(2+)](i) transient abnormalities in ASNCX1 myocytes mimics that observed in rat MI myocytes. We conclude that downregulation of NCX1 in adult rat myocytes resulted in decreases in both Ca(2+) influx and efflux during a twitch. We suggest that depressed NCX1 activity may partly account for the contractile abnormalities after MI.  相似文献   

3.
Ca(2+) current (I(Ca)) recovery from inactivation is necessary for normal cardiac excitation-contraction coupling. In normal hearts, increased stimulation frequency increases force, but in heart failure (HF) this force-frequency relationship (FFR) is often flattened or reversed. Although reduced sarcoplasmic reticulum Ca(2+)-ATPase function may be involved, decreased I(Ca) availability may also contribute. Longer action potential duration (APD), slower intracellular Ca(2+) concentration ([Ca(2+)](i)) decline, and higher diastolic [Ca(2+)](i) in HF could all slow I(Ca) recovery from inactivation, thereby decreasing I(Ca) availability. We measured the effect of different diastolic [Ca(2+)](i) on I(Ca) inactivation and recovery from inactivation in rabbit cardiac myocytes. Both I(Ca) and Ba(2+) current (I(Ba)) were measured. I(Ca) decay was accelerated only at high diastolic [Ca(2+)](i) (600 nM). I(Ba) inactivation was slower but insensitive to [Ca(2+)](i). Membrane potential dependence of I(Ca) or I(Ba) availability was not affected by [Ca(2+)](i) <600 nM. Recovery from inactivation was slowed by both depolarization and high [Ca(2+)](i). We also used perforated patch with action potential (AP)-clamp and normal Ca(2+) transients, using various APDs as conditioning pulses for different frequencies (and to simulate HF APD). Recovery of I(Ca) following longer APD was increasingly incomplete, decreasing I(Ca) availability. Trains of long APs caused a larger I(Ca) decrease than short APD at the same frequency. This effect on I(Ca) availability was exacerbated by slowing twitch [Ca(2+)](i) decline by approximately 50%. We conclude that long APD and slower [Ca(2+)](i) decline lead to cumulative inactivation limiting I(Ca) at high heart rates and might contribute to the negative FFR in HF, independent of altered Ca(2+) channel properties.  相似文献   

4.
Among the mechanisms proposed for the increase in discharge of sino-atrial node (SAN) by norepinephrine (NE) are an increase in the hyperpolarization-activated current I(f) and in the slow inward current I(Ca,L). If I(f) is the primary mechanism, cesium (a blocker of I(f)) should eliminate the positive chronotropic effect of NE. If I(Ca,L), is involved, [Ca(2+)](o) should condition NE effects. We studied the electrophysiological changes induced by NE in isolated guinea pig SAN superfused in vitro with Tyrode solution (both SAN dominant and subsidiary pacemaker mechanisms are present) as well as with high [K(+)](o), higher Cs(+) or Ba(2+) (only the dominant pacemaker mechanism is present). In Tyrode solution, NE (0.5-1microM) increased the SAN rate and adding Cs(+) (approximately 12 mM) caused a decaying voltage tail during diastole in subsidiary pacemakers. NE enhanced the Cs(+)-induced tail, and increased the rate but less than in Tyrode solution. In higher [Cs(+)](o) (15- 18 mM), Ba(2+) (1 mM) or Ba(2+) plus Cs(+) (10 mM) dominant action potentials (not followed by a tail) were present and NE accelerated them as in Tyrode solution. In high [K(+)](o), NE increased the rate in the absence and presence of Cs(+), Ba(2+) or Ba(2+) plus Cs(+). In these solutions, NE increased the overshoot and maximum diastolic potential of dominant action potentials (APs) and increased the rate by steepening diastolic depolarization and shifting the threshold for upstroke to more negative values. High [Ca(2+)](o) alone increased the rate and NE enhanced this action, whereas low [Ca(2+)](o) reduced or abolished the increase in rate by NE. In SAN quiescent in high [K(+)](o) plus indapamide, NE induced spontaneous discharge by decreasing the resting potential and initiating progressively larger voltage oscillations. Thus, NE increases the SAN rate by acting primarily on dominant APs in a manner consistent with an increase of I(Ca,L) and I(K) and under conditions where I(f) is either blocked or not activated. NE INITIATES spontaneous discharge by inducing voltage oscillations unrelated to I(f).  相似文献   

5.
Yanagida K  Yaekura K  Arima T  Yada T 《Peptides》2002,23(1):135-142
The present study examined whether a sustained increase in cytosolic Ca(2+) concentration ([Ca(2+)](i)) causes glucose-insensitivity in beta-cells and whether it could be modulated by pituitary adenylate cyclase-activating polypeptide (PACAP), a pancreatic insulinotropin. Rat single beta-cells were cultured for 2 days with sustained increases in [Ca(2+)](i), followed by determination of the [Ca(2+)](i) response to glucose (8.3 mM) as monitored with fura-2. High K(+) (25 mM) produced sustained increases in [Ca(2+)](i) in beta-cells, which were inhibited by nifedipine, a Ca(2+) channel blocker. After culture with high K(+), the incidence and amplitude of [Ca(2+)](i) responses to glucose were markedly reduced. This glucose-insensitivity was prevented by the presence of nifedipine or PACAP-38 (10(-13) M and 10-9) M) in high K(+) culture. PACAP-38 attenuated high K(+)-induced [Ca(2+)](i) increases. In conclusion, sustained increases in [Ca(2+)](i) induce glucose-insensitivity (Ca(2+) toxicity in beta-cells) and it is prevented by PACAP possibly in part due to its Ca(2+)-reducing capacity.  相似文献   

6.
The effect of propranolol on Ca(2+) signalling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Propranolol increased cytosolic free Ca(2+) levels ([Ca(2+)](i)) in a concentration-dependent manner between 0.1 and 1 mM. The response was partly inhibited by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with 0.2 mM propranolol partly inhibited the [Ca(2+)](i) rise induced by 1 microM thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with thapsigargin abolished propranolol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 0.2 mM propranolol in Ca(2+)-free medium. Propranolol (0.2 mM) inhibited 25% of thapsigargin-induced capacitative Ca(2+) entry. Suppression of 1,4,5-trisphosphate (IP(3)) formation by 2 microM U73122, a phospholipase C inhibitor, did not alter 0.2 mM propranolol-induced internal Ca(2+) release. Propranolol (1 mM) also increased [Ca(2+)](i) in human neutrophils. Collectively, we have found that 0.2 mM propranolol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from thapsigargin-sensitive Ca(2+) stores in an IP(3)-independent manner, followed by Ca(2+) influx from external space. Independently, propranolol was able to inhibit thapsigargin-induced capacitative Ca(2+) entry.  相似文献   

7.
Thapsigargin (TG), a blocker of Ca(2+) uptake by the endoplasmic reticulum (ER), was used to evaluate the contribution of the organelle to the oscillations of cytosolic Ca(2+) concentration ([Ca(2+)](c)) induced by repetitive Ca(2+) influx in mouse pancreatic beta-cells. Because TG depolarized the plasma membrane in the presence of glucose alone, extracellular K(+) was alternated between 10 and 30 mM in the presence of diazoxide to impose membrane potential (MP) oscillations. In control islets, pulses of K(+), mimicking regular MP oscillations elicited by 10 mM glucose, induced [Ca(2+)](c) oscillations whose nadir remained higher than basal [Ca(2+)](c). Increasing the depolarization phase of the pulses while keeping their frequency constant (to mimic the effects of a further rise of the glucose concentration on MP) caused an upward shift of the nadir of [Ca(2+)](c) oscillations that was reproduced by raising extracellular Ca(2+) (to increase Ca(2+) influx) without changing the pulse protocol. In TG-pretreated islets, the imposed [Ca(2+)](c) oscillations were of much larger amplitude than in control islets and occurred on basal levels. During intermittent trains of depolarizations, control islets displayed mixed [Ca(2+)](c) oscillations characterized by a summation of fast oscillations on top of slow ones, whereas no progressive summation of the fast oscillations was observed in TG-pretreated islets. In conclusion, the buffering capacity of the ER in pancreatic beta-cells limits the amplitude of [Ca(2+)](c) oscillations and may explain how the nadir between oscillations remains above baseline during regular oscillations or gradually increases during mixed [Ca(2+)](c) oscillations, two types of response observed during glucose stimulation.  相似文献   

8.
Removal of extracellular Ca(2+) concentration ([Ca(2+)](o)) and pretreatment of canine basilar arterial rings with either an antagonist of voltage-gated Ca(2+) channels (verapamil), a selective antagonist of the sarcoplasmic reticulum Ca(2+) pump [thapsigargin (TSG)], caffeine plus a specific antagonist of ryanodine-sensitive Ca(2+) release (ryanodine), or a D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)]- mediated Ca(2+) release antagonist (heparin) markedly attenuates low extracellular Mg(2+) concentration ([Mg(2+)](o))-induced contractions. Low [Mg(2+)](o)-induced contractions are significantly inhibited by pretreatment of the vessels with G?-6976 [a protein kinase C-alpha (PKC-alpha)- and PKC-betaI-selective antagonist], bisindolylmaleimide I (Bis, a specific antagonist of PKC), and wortmannin or LY-294002 [selective antagonists of phosphatidylinositol-3 kinases (PI3Ks)]. These antagonists were also found to relax arterial contractions induced by low [Mg(2+)](o) in a concentration-dependent manner. The absence of [Ca(2+)](o) and preincubation of the cells with verapamil, TSG, heparin, or caffeine plus ryanodine markedly attenuates the transient and sustained elevations in the intracellular Ca(2+) concentration ([Ca(2+)](i)) induced by low-[Mg(2+)](o) medium. Low [Mg(2+)](o)-produced increases in [Ca(2+)](i) are also suppressed markedly in the presence of G?-6976, Bis, wortmannin, or LY-294002. The present study suggests that both Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from intracellular stores [both Ins(1,4,5)P(3) sensitive and ryanodine sensitive] play important roles in low-[Mg(2+)](o) medium-induced contractions of isolated canine basilar arteries. Such contractions are clearly associated with activation of PKC isoforms and PI3Ks.  相似文献   

9.
Human bone marrow-derived mesenchymal stem cells (hMSCs) have the potential to differentiate into several types of cells. We have demonstrated spontaneous [Ca(2+)](i) oscillations in hMSCs without agonist stimulation, which result primarily from release of Ca(2+) from intracellular stores via InsP(3) receptors. In this study, we further investigated functions and contributions of Ca(2+) transporters on plasma membrane to generate [Ca(2+)](i) oscillations. In confocal Ca(2+) imaging experiments, spontaneous [Ca(2+)](i) oscillations were observed in 193 of 280 hMSCs. The oscillations did not sustain in the Ca(2+) free solution and were completely blocked by the application of 0.1mM La(3+). When plasma membrane Ca(2+) pumps (PMCAs) were blocked with blockers, carboxyeosin or caloxin, [Ca(2+)](i) oscillations were inhibited. Application of Ni(2+) or KBR7943 to block Na(+)-Ca(2+) exchanger (NCX) also inhibited [Ca(2+)](i) oscillations. Using RT-PCR, mRNAs were detected for PMCA type IV and NCX, but not PMCA type II. In the patch clamp experiments, Ca(2+) activated outward K(+) currents (I(KCa)) with a conductance of 170+/-21.6pS could be recorded. The amplitudes of I(KCa) and membrane potential (V(m)) periodically fluctuated liked to [Ca(2+)](i) oscillations. These results suggest that in undifferentiated hMSCs both Ca(2+) entry through plasma membrane and Ca(2+) extrusion via PMCAs and NCXs play important roles for [Ca(2+)](i) oscillations, which modulate the activities of I(KCa) to produce the fluctuation of V(m).  相似文献   

10.
The effects of Mg(2+) and nifedipine (Nif) on vasoconstriction and Ca(2+) transients were studied in intact, pressurized rat mesenteric arteries with myogenic tone. Changes in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) were measured with confocal microscopy in fluo 4-AM loaded, individual myocytes. Myogenic tone was abolished by 10 mM Mg(2+) or 0.3 microM Nif. Contractions induced by 75 mM K(+) depolarization were blocked by 0.3 microM Nif, but not by 10 mM Mg(2+). Phenylephrine (PE; 5 microM) evoked sustained [Ca(2+)](cyt) elevation and vasoconstriction with superimposed Ca(2+) oscillations and vasomotion. The subsequent addition of 10 mM Mg(2+) or 0.3 microM Nif reduced [Ca(2+)](cyt) and abolished plateau vasoconstriction. When added before PE, both Mg(2+) and Nif abolished the PE-evoked Ca(2+) oscillations and vasomotion. Mg(2+) dilated the PE-constricted arteries after a brief (< or =180-240 s) vasoconstriction, but Nif did not. Both agents also abolished the vasoconstriction attributed to Ca(2+) entry through store-operated channels (SOCs) during internal Ca(2+) store refilling that followed store depletion. The data suggest that Ca(2+) entry through SOCs helps maintain both myogenic tone and alpha(1)-adrenoceptor-induced tonic vasoconstriction.  相似文献   

11.
The effects of 6-8 wk of high-intensity sprint training (HIST) on rat myocyte contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients were investigated. Compared with sedentary (Sed) myocytes, HIST induced a modest (5%) but significant (P < 0.0005) increase in cell length with no changes in cell width. In addition, the percentage of myosin heavy chain alpha-isoenzyme increased significantly (P < 0.02) from 0.566 +/- 0.077% in Sed rats to 0.871 +/- 0.006% in HIST rats. At all three (0.6, 1.8, and 5 mM) extracellular Ca(2+) concentrations ([Ca(2+)](o)) examined, maximal shortening amplitudes and maximal shortening velocities were significantly (P < 0.0001) lower and half-times of relaxation were significantly (P < 0.005) longer in HIST myocytes. HIST myocytes had significantly (P < 0.0001) higher diastolic [Ca(2+)](i) levels. Compared with Sed myocytes, systolic [Ca(2+)](i) levels in HIST myocytes were higher at 0.6 mM [Ca(2+)](o), similar at 1.8 mM [Ca(2+)](o), and lower at 5 mM [Ca(2+)](o). The amplitudes of [Ca(2+)](i) transients were significantly (P < 0.0001) lower in HIST myocytes. Half-times of [Ca(2+)](i) transient decline, an estimate of sarcoplasmic reticulum (SR) Ca(2+) uptake activity, were not different between Sed and HIST myocytes. Compared with Sed hearts, Western blots demonstrated a significant (P < 0.03) threefold decrease in Na(+)/Ca(2+) exchanger, but SR Ca(2+)-ATPase and calsequestrin protein levels were unchanged in HIST hearts. We conclude that HIST effected diminished myocyte contractile function and [Ca(2+)](i) transient amplitudes under the conditions studied. We speculate that downregulation of Na(+)/Ca(2+) exchanger may partly account for the decreased contractility in HIST myocytes.  相似文献   

12.
K(+) currents through ERG (ether-à-go-go related gene) channels were recorded in whole-cell voltage clamped NG108-15 neuroblastomaxglioma hybrid cells. The channels were fully activated by low holding potential (V(H)=-20 mV) and long depolarizing prepulses. Hyperpolarizing pulses elicited inward currents which deactivated after reaching a peak. Lowering [Ca(2+)](o) from 5 to 1. 5 or 0.5 mM decreased tau(-1), the rate constant of deactivation. The effect can be explained by a shift of the tau(-1)(V) curve to more negative potentials caused by an increase in surface charge density. Plotting tau(-1) against [Ca(2+)](o) for different potentials yielded straight lines; their slope was independent of potential at -140 to -120 mV and decreased at more positive potentials. The time to peak curve and the maximum of the steady-state inward current were also shifted to more negative potentials. In addition, peak ERG inward current increased. Raising [Ca(2+)](o) from 5 to 10 mM accelerated deactivation and decreased the peak current. 5 mM Ba(2+) affected tau(-1) similarly and inhibited peak current more strongly whereas 5 mM Mg(2+) was less potent. As found by Faravelli et al. (J. Physiol. 496 (1996) 13), bath solutions devoid of divalent cations (0 Ca(2+), 0 Mg(2+), 0.1 or 1.1 mM EGTA) abolished deactivation almost completely. The phenomenon was seen with bath containing either 40 or 6.5 mM K(+). Its occurrence was favored by raising the temperature to 34 degrees C. It suggests a particular requirement of channel closing for Ca(2+).  相似文献   

13.
Magnesium levels in cardiac myocytes change in cardiovascular diseases. Intracellular free magnesium (Mg(i)) inhibits L-type Ca(2+) currents through Ca(V)1.2 channels in cardiac myocytes, but the mechanism of this effect is unknown. We hypothesized that Mg(i) acts through the COOH-terminal EF-hand of Ca(V)1.2. EF-hand mutants were engineered to have either decreased (D1546A/N/S/K) or increased (K1543D and K1539D) Mg(2+) affinity. In whole-cell patch clamp experiments, increased Mg(i) reduced both Ba(2+) and Ca(2+) currents conducted by wild type (WT) Ca(V)1.2 channels expressed in tsA-201 cells with similar affinity. Exposure of WT Ca(V)1.2 to lower Mg(i) (0.26 mM) increased the amplitudes of Ba(2+) currents 2.6 +/- 0.4-fold without effects on the voltage dependence of activation and inactivation. In contrast, increasing Mg(i) to 2.4 or 7.2 mM reduced current amplitude to 0.5 +/- 0.1 and 0.26 +/- 0.05 of the control level at 0.8 mM Mg(i). The effects of Mg(i) on peak Ba(2+) currents were approximately fit by a single binding site model with an apparent K(d) of 0.65 mM. The apparent K(d) for this effect of Mg(i) was shifted approximately 3.3- to 16.5-fold to higher concentration in D1546A/N/S mutants, with only small effects on the voltage dependence of activation and inactivation. Moreover, mutant D1546K was insensitive to Mg(i) up to 7.2 mM. In contrast to these results, peak Ba(2+) currents through the K1543D mutant were inhibited by lower concentrations of Mg(i) compared with WT, consistent with approximately fourfold reduction in apparent K(d) for Mg(i), and inhibition of mutant K1539D by Mg(i) was also increased comparably. In addition to these effects, voltage-dependent inactivation of K1543D and K1539D was incomplete at positive membrane potentials when Mg(i) was reduced to 0.26 or 0.1 mM, respectively. These results support a novel mechanism linking the COOH-terminal EF-hand with modulation of Ca(V)1.2 channels by Mg(i). Our findings expand the repertoire of modulatory interactions taking place at the COOH terminus of Ca(V)1.2 channels, and reveal a potentially important role of Mg(i) binding to the COOH-terminal EF-hand in regulating Ca(2+) influx in physiological and pathophysiological states.  相似文献   

14.
Pulmonary veins (PVs) contain cardiomyocytes with spontaneous activity that may be responsible for PV arrhythmia. Abnormal Ca(2+) regulation is known to contribute to PV arrhythmogenesis. The purpose of this study was to investigate whether PV cardiomyocytes with spontaneous activity have different intracellular Ca(2+) ([Ca(2+)](i)) transients, Ca(2+) sparks and responses to isoproterenol and ryanodine receptor modulators (magnesium and FK506) than do PV cardiomyocytes without spontaneous activity and left atrial (LA) cardiomyocytes. Through fluorescence and confocal microscopy, we evaluated the [Ca(2+)](i) transients and Ca(2+) sparks in isolated rabbit PV and LA cardiomyocytes. PV cardiomyocytes with spontaneous activity had larger [Ca(2+)](i) transients and sarcoplasmic reticulum (SR) Ca(2+) stores than PV cardiomyocytes without spontaneous activity or LA cardiomyocytes. PV cardiomyocytes with spontaneous activity also had a higher incidence and frequency of Ca(2+) sparks, and had Ca(2+) sparks with larger amplitudes than other cardiomyocytes. Magnesium (5.4 mM) reduced the [Ca(2+)](i) transient amplitude and beating rate in PV cardiomyocytes with spontaneous activity. However, in contrast with other cardiomyocytes, low doses (1.8 mM) of magnesium did not reduce the [Ca(2+)](i) transients amplitude in PV cardiomyocytes with spontaneous activity. FK506 (1 muM) diminished the SR Ca(2+) stores in PV cardiomyocytes with spontaneous activity to a lesser extent than that in other cardiomyocytes. Isoproterenol (10 nM) increased the [Ca(2+)](i) transient amplitude to a lesser extent in LA cardiomyocytes than in PV cardiomyocytes with or without spontaneous activity. In conclusion, our results suggest that enhanced [Ca(2+)](i) transients, increased Ca(2+) sparks and SR Ca(2+) stores may contribute to the spontaneous activity of PV cardiomyocytes.  相似文献   

15.
Extracellular Ca(2+)/polyvalent cation-sensing receptor (CaSR) is capable of monitoring changes in extracellular polyvalent cation concentrations. In the present study, we investigated whether CaSR agonists reinforce the decrease of intracellular free Mg(2+) concentration ([Mg(2+)](i)) induced by extracellular Mg(2+) plus Na(+) removal. Interestingly, exposure of NRK-52E renal epithelial cells to increasing extracellular Mg(2+) concentrations from 0.8 to 15 mM for 1-2 days resulted in a twofold increase in the levels of CaSR mRNA and protein. By fluorophotometer (with mag-fura 2 fluorescent dye) and atomic absorption spectrophotometer, we confirmed that activation of CaSR by neomycin (0.5 mM) or gadolinium (1 mM) reinforced the decrease of [Mg(2+)](i) induced by Mg(2+) removal in the cells cultured in 10 mM Mg(2+)-containing medium. The neomycin-induced [Mg(2+)](i) decrease was inhibited by nicardipine (50 microM), but not by verapamil (50 microM) or amiloride (0.1 mM). These results indicate that CaSR monitors extracellular Mg(2+) concentration, and probably cause activation of Na(+)-independent Mg(2+)-transport system.  相似文献   

16.
Treatment of Madin-Darby canine kidney (MDCK) cells with the peptide hormone angiotensin II (Ang II) results in an increase in the concentrations of cytosolic free calcium ([Ca(2+)](i)) and sodium ([Na(+)](i)) with a concomitant decrease in cytosolic free Mg(2+) concentration ([Mg(2+)](i)). In the present study we demonstrate that this hormone-induced decrease in [Mg(2+)](i) is independent of [Ca(2+)](i) but dependent on extracellular Na(+). [Mg(2+)](i), [Ca(2+)](i), and [Na(+)](i) were measured in Ang II-stimulated MDCK cells by fluorescence digital imaging using the selective fluoroprobes mag-fura-2AM, fura-2AM, and sodium-binding benzofuran isophthalate (acetoxymethyl ester), respectively. Ang II decreased [Mg(2+)](i) and increased [Na(+)](i) in a dose-dependent manner. These effects were inhibited by irbesartan (selective AT(1) receptor blocker) but not by PD123319 (selective AT(2) receptor blocker). Imipramine and quinidine (putative inhibitors of the Na(+)/Mg(2+) exchanger) and removal of extracellular Na(+) abrogated Ang II-mediated [Mg(2+)](i) effects. In cells pretreated with thapsigargin (reticular Ca(2+)-ATPase inhibitor), Ang II-stimulated [Ca(2+)](i) transients were attenuated (p < 0.01), whereas agonist-induced [Mg(2+)](i) responses were unchanged. Clamping the [Ca(2+)](i) near 50 nmol/liter with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) inhibited Ang II-induced [Ca(2+)](i) increases but failed to alter Ang II-induced [Mg(2+)](i) responses. Benzamil, a selective blocker of the Na(+)/Ca(2+) exchanger, inhibited [Na(+)](i) but not [Mg(2+)](i) responses. Our data demonstrate that in MDCK cells, AT(1) receptors modulate [Mg(2+)](i) via a Na(+)-dependent Mg(2+) transporter that is not directly related to [Ca(2+)](i). These data support the notion that rapid modulation of [Mg(2+)](i) is not simply a result of Mg(2+) redistribution from intracellular buffering sites by Ca(2+) and provide evidence for the existence of a Na(+)-dependent, hormonally regulated transporter for Mg(2+) in renally derived cells.  相似文献   

17.
18.
The fluorescent Mg(2+) indicator furaptra (mag-fura-2) was introduced into single ventricular myocytes by incubation with its acetoxy-methyl ester form. The ratio of furaptra's fluorescence intensity at 382 and 350 nm was used to estimate the apparent cytoplasmic [Mg(2+)] ([Mg(2+)](i)). In Ca(2+)-free extracellular conditions (0.1 mM EGTA) at 25 degrees C, [Mg(2+)](i) averaged 0.842 +/- 0.019 mM. After the cells were loaded with Mg(2+) by exposure to high extracellular [Mg(2+)] ([Mg(2+)](o)), reduction of [Mg(2+)](o) to 1 mM (in the presence of extracellular Na(+)) induced a decrease in [Mg(2+)](i). The rate of decrease in [Mg(2+)](i) was higher at higher [Mg(2+)](i), whereas raising [Mg(2+)](o) slowed the decrease in [Mg(2+)](i) with 50% reduction of the rate at approximately 10 mM [Mg(2+)](o). Because a part of the furaptra molecules were likely trapped inside intracellular organelles, we assessed possible contribution of the indicator fluorescence emitted from the organelles. When the cell membranes of furaptra-loaded myocytes were permeabilized with saponin (25 microg/ml for 5 min), furaptra fluorescence intensity at 350-nm excitation decreased to 22%; thus approximately 78% of furaptra fluorescence appeared to represent cytoplasmic [Mg(2+)] ([Mg(2+)](c)), whereas the residual 22% likely represented [Mg(2+)] in organelles (primarily mitochondria as revealed by fluorescence imaging). [Mg(2+)] calibrated from the residual furaptra fluorescence ([Mg(2+)](r)) was 0.6-0.7 mM in bathing solution [Mg(2+)] (i.e., [Mg(2+)](c) of the skinned myocytes) of either 0.8 mM or 4.0 mM, suggesting that [Mg(2+)](r) was lower than and virtually insensitive to [Mg(2+)](c). We therefore corrected furaptra fluorescence signals measured in intact myocytes for this insensitive fraction of fluorescence to estimate [Mg(2+)](c). In addition, by utilizing concentration and dissociation constant values of known cytoplasmic Mg(2+) buffers, we calculated changes in total Mg concentration to obtain quantitative information on Mg(2+) flux across the cell membrane. The calculations indicate that, in the presence of extracellular Na(+), Mg(2+) efflux is markedly activated by [Mg(2+)](c) above the normal basal level (approximately 0.9 mM), with a half-maximal activation of approximately 1.9 mM [Mg(2+)](c). We conclude that [Mg(2+)](c) is tightly regulated by an Mg(2+) efflux that is dependent on extracellular [Na(+)].  相似文献   

19.
In this study, we examined the acute effects of thyroid hormones (TH) T(3) and T(4), leading to improvement of myocardial function through activation of Ca(2+) extrusion mechanisms and, consequently, prevention of intracellular calcium overload. Extracellular calcium elevation from 1.8 to 3.8 mM caused immediate increase in intracellular calcium level ([Ca(2+)](i)) in newborn cardiomyocyte cultures. Administration of 10 or 100 nM T(3) or T(4) rapidly (within 10 sec) decreased [Ca(2+)](i) to its control level. Similar results were obtained when [Ca(2+)](i) was elevated by decreasing extracellular Na(+) concentration, causing backward influx of Ca(2+) through Na(+)/Ca(2+) exchanger, or by administration of caffeine, releasing Ca(2+) from the sarcoplasmic reticulum (SR). Under these conditions, T(3) or T(4) decreased [Ca(2+)](i). T(3) and T(4) also exhibited protective effects during ischemia. T(3) or T(4) presence during hypoxia for 120 min in culture medium restricted the increase of [Ca(2+)](i) and prevented the pathological effects of its overload. An inhibitor of SR Ca(2+)-ATPase (SERCA2a), thapsigargin, increases [Ca(2+)](i) and in its presence neither T(3) nor T(4) had any effect on the [Ca(2+)](i) level. The reduction of [Ca(2+)](i) level by T(3) and T(4) was also blocked in the presence of H-89 (a PKA inhibitor), and by calmodulin inhibitors. The effect of TH on the reduction of [Ca(2+)](i) was prevented by propranolol, indicating that the hormones exert their effect through interaction with adrenergic receptors. These results support our hypothesis that TH prevent calcium overload in newborn rat cardiomyocytes, most likely by a direct, acute, and nongenomic effect on Ca(2+) transport into the SR.  相似文献   

20.
Immunological stimulation of rat mucosal-type mast cells (RBL-2H3 line) by clustering of their Fcepsilon receptors (FcepsilonRI) causes a rapid and transient increase in free cytoplasmic Ca(2+) ion concentration ([Ca(2+)](i)) because of its release from intracellular stores. This is followed by a sustained elevated [Ca(2+)](i), which is attained by Ca(2+) influx. Because an FcepsilonRI-induced increase in the membrane permeability for Na(+) ions has also been observed, and secretion is at least partially inhibited by lowering of extracellular sodium ion concentrations ([Na(+)](o)), the operation of a Na(+)/Ca(2+) exchanger has been considered. We found significant coupling between the Ca(2+) and Na(+) ion gradients across plasma membranes of RBL-2H3 cells, which we investigated employing (23)Na-NMR, (45)Ca(2+), (85)Sr(2+), and the Ca(2+)-sensitive fluorescent probe indo-1. The reduction in extracellular Ca(2+) concentrations ([Ca(2+)](o)) provoked a [Na(+)](i) increase, and a decrease in [Na(+)](o) results in a Ca(2+) influx as well as an increase in [Ca(2+)](i). Mediator secretion assays, monitoring the released beta-hexosaminidase activity, showed in the presence of extracellular sodium a sigmoidal dependence on [Ca(2+)](o). However, the secretion was not affected by varying [Ca(2+)](o) as [Na(+)](o) was lowered to 0.4 mM, while it was almost completely inhibited at [Na(+)](o) = 136 mM and [Ca(2+)](o) < 0.05 mM. Increasing [Na(+)](o) caused the secretion to reach a minimum at [Na(+)](o) = 20 mM, followed by a steady increase to its maximum value at 136 mM. A parallel [Na(+)](o) dependence of the Ca(2+) fluxes was observed: Antigen stimulation at [Na(+)](o) = 136 mM caused a pronounced Ca(2+) influx. At [Na(+)](o) = 17 mM only a slight Ca(2+) efflux was detected, whereas at [Na(+)](o) = 0.4 mM no Ca(2+) transport across the cell membrane could be observed. Our results clearly indicate that the [Na(+)](o) dependence of the secretory response to FcepsilonRI stimulation is due to its influence on the [Ca(2+)](i), which is mediated by a Na(+)-dependent Ca(2+) transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号