首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Clp P represents a unique family of serine proteases   总被引:19,自引:0,他引:19  
The amino acid sequence of Clp P, the proteolytic subunit of the ATP-dependent Clp protease of Escherichia coli, closely resembles a protein encoded by chloroplast DNA, which is well conserved between chloroplasts of different plant species. The homology extends over almost the full length of the sequences of both proteins and consists of approximately 46% identical and approximately 70% similar amino acids. Antibodies against E. coli Clp P cross-reacted with proteins with Mr of 20,000-30,000 in bacteria, lower eukaryotes, plants, and animal cells. Since the regulatory subunit of Clp protease, Clp A, also has a homolog in plants, as well as in other bacteria and in lower eukaryotes, it is likely that ATP-dependent proteolysis in chloroplasts is catalyzed in part by a Clp-like protease and that both components of Clp-like proteases are widespread in living cells. We have identified Ser-111 as the active site serine in E. coli Clp P modified by diisopropyl fluorophosphate. Mutational alteration of Ser-111 or His-136 eliminates proteolytic activity of Clp P. Both residues are found in highly conserved regions of the protein. The sequences around the active site residues suggest that Clp P represents a unique class of serine protease. Amino-terminal processing of cloned Clp P mutated at either Ser-111 or His-136 occurs efficiently when wild-type clpP is present in the chromosome but is blocked in clpP- hosts. Processing of Clp P appears, therefore, to involve an intermolecular autocatalytic cleavage reaction. Since processing of Clp P occurs in clpA- cells, the autoprocessing activity of Clp P is independent of Clp A.  相似文献   

3.
The genes that encode the subunits of the Clp protease of Escherichia coli, clpA and clpP, appear to be regulated differently from each other. The clpA gene does not seem to be under heat shock control (Y. S. Katayama, S. Gottesman, J. Pumphrey, S. Rudikoff, W. P. Clark, and M. R. Maurizi, J. Biol. Chem. 263:15226-15236, 1988). In contrast, the level of ClpP protein was increased in rpoH+ cells but not in null rpoH cells after an upshift in temperature from 17 to 43 degrees C. The level of ClpP protein in a null dnaK strain was also elevated relative to the level of ClpP protein in an otherwise isogenic dnaK+ strain. In two-dimensional gels, the ClpP protein was located in the position of the previously unidentified heat shock protein F21.5. No protein spot corresponding to F21.5 was present in two-dimensional gels of a null clpP strain. The clpP gene, therefore, appears to be a heat shock gene, expressed in a sigma 32-dependent manner and negatively regulated by DnaK; the product of clpP is the previously unidentified heat shock protein F21.5.  相似文献   

4.
The ATP-binding component (Component II, hereafter referred to as ClpA) of a two-component, ATP-dependent protease from Escherichia coli has been purified to homogeneity. ClpA is a protein with subunit Mr 81,000. It has an intrinsic ATPase activity and activates degradation of protein substrates only in the presence of a second component (Component I, hereafter referred to as ClpP), Mg2+, and ATP. The amount of ClpA varies by less than a factor of 2 in cells grown in different media and at temperatures from 30 to 42 degrees C. ClpA does not appear to be a heat-shock protein since its synthesis is not dependent on htpR. Antibodies against purified ClpA were used to identify lambda transducing phage bearing the clpA gene. The cloned gene contains a DNA sequence expected to code for the first 28 amino acids of ClpA, which were determined by protein sequencing of purified ClpA. The clpA gene in the phage was mutated by insertion of delta kan defective transposons and the mutations were transferred to E. coli by homologous recombination. The clpA gene was mapped to 19 min on the E. coli chromosome. Mutant cells with insertions early in the gene produce no ClpA protein detectable in Western blots, and extracts of such mutant cells have no detectable ClpA activity. clpA- mutants grow well under all conditions tested and are not defective in turnover of proteins during nitrogen starvation nor in the turnover of such highly unstable proteins as the lambda proteins O, N, and cII, or the E. coli proteins SulA, RcsA, and glutamate dehydrogenase. The degradation of abnormal canavanine-containing proteins is defective in clpA mutants especially in cells that also have a lon- mutation. Extracts of clpA- lon- cells have ATP-dependent casein degrading activity.  相似文献   

5.
When deprived of a carbon source, Escherichia coli induces the synthesis of a group of carbon starvation proteins. The degradation of proteins labeled during starvation was found to be an energy-dependent process which was inhibited by the addition of KCN and accelerated when cells were resupplied with a carbon source. The degradation of the starvation proteins did not require the ATP-dependent Lon protease or the energy-independent proteases protease I, protease IV, OmpT, and DegP. During starvation, mutants lacking either the ClpA or ClpP subunit of the ATP-dependent Clp protease showed a partial reduction in the degradation of starvation proteins. Strains lacking ClpP failed to increase degradation of starvation proteins when glucose was added to starving cells. The clpP mutants showed a competitive disadvantage compared with wild-type cells when exposed to repeated cycles of carbon starvation and growth. Surprisingly, the glucose-stimulated, ClpP-dependent degradation of starvation proteins did not require either the ClpA or ClpB protein. The patterns of synthesis of starvation proteins were similar in clpP+ and clpP cells. The clpP mutants had reduced rates of degradation of certain starvation proteins in the membrane fraction when a carbon source was resupplied to the starved cells.  相似文献   

6.
Clp protease is a high relative molecular mass, ATP-dependent protease found in the cytoplasm of Escherichia coli. Clp protease is composed of two protein components, Clp A, which has ATPase activity, and Clp P, which has the proteolytic active site and is activated by Clp A in the presence of ATP. Clp P subunits (Mr = 21,500) are arranged in two hexagonal rings directly superimposed on each other, and under low salt conditions two dodecamers associate to form a particle with Mr approximately 440,000. Clp A (subunit Mr = 83,000) and Clp P do not associate in the absence of nucleotide, but Clp A with ATP bound associates with Clp P to form an active proteolytic complex with Mr approximately 700,000. Although adenosine 5'-[beta gamma-imido]triphosphate (AMPPNP) weakly promotes association between Clp A and Clp P, non-hydrolysable analogues of ATP do not activate proteolysis, indicating that association between the components is not sufficient to allow proteolysis. Association between Clp A and Clp P does not alter the basal ATPase activity of Clp A, but addition of protein substrates is accompanied by an increase in ATP hydrolysis by Clp A. Chemically-inactivated Clp P or inactive mutants of Clp P also associate with Clp A, but no increase in the ATPase activity of Clp A is observed, either in the presence or absence of protein substrates, when Clp P is inactive. Thus the increased ATP hydrolysis is dependent on active proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In contrast with the model Escherichia coli Clp protease, the ATP-dependent Clp protease in higher plants has a remarkably diverse proteolytic core consisting of multiple ClpP and ClpR paralogs, presumably arranged within a dual heptameric ring structure. Using antisense lines for the nucleus-encoded ClpP subunit, ClpP6, we show that the Arabidopsis thaliana Clp protease is vital for chloroplast development and function. Repression of ClpP6 produced a proportional decrease in the Clp proteolytic core, causing a chlorotic phenotype in young leaves that lessened upon maturity. Structural analysis of the proteolytic core revealed two distinct subcomplexes that likely correspond to single heptameric rings, one containing the ClpP1 and ClpR1-4 proteins, the other containing ClpP3-6. Proteomic analysis revealed several stromal proteins more abundant in clpP6 antisense lines, suggesting that some are substrates for the Clp protease. A proteolytic assay developed for intact chloroplasts identified potential substrates for the stromal Clp protease in higher plants, most of which were more abundant in young Arabidopsis leaves, consistent with the severity of the chlorotic phenotype observed in the clpP6 antisense lines. The identified substrates all function in more general housekeeping roles such as plastid protein synthesis, folding, and quality control, rather than in metabolic activities such as photosynthesis.  相似文献   

8.
The genes of Streptomyces coelicolor A3(2) encoding catalytic subunits (ClpP) and regulatory subunits (ClpX and ClpC) of the ATP-dependent protease family Clp were cloned, mapped and characterized. S. coelicolor contains at least two clpP genes, clpP1 and clpP2, located in tandem upstream from the clpX gene, and at least two unlinked clpC genes. Disruption of the clpP1 gene in S. lividans and S. coelicolor blocks differentiation at the substrate mycelium step. Overexpression of clpP1 and clpP2 accelerates aerial mycelium formation in S. lividans, S. albus and S. coelicolor. Overproduction of ClpX accelerates actinorhodin production in S. coelicolor and activates its production in S. lividans.  相似文献   

9.
Bacteriophage Mu repressor, which is stable in its wildtype form, can mutate to become sensitive to its Escherichia coli host ATP-dependent ClpXP protease. We further investigated the determinants of the mutant repressor's sensitivity to Clp. We show the crucial importance of a C-terminal, seven amino acid long sequence in which a single change is sufficient to decrease the rate of degradation of the protein. The sequence was fused at the C-terminal end of the CcdB and CcdA proteins encoded by plasmid F. CcdB, which is naturally stable, was unaffected, while CcdA, which is normally degraded by the Lon protease, became a substrate for ClpXP while remaining a substrate for Lon. In agreement with the current hypothesis on the mechanism of recognition of their substrates by energy- dependent proteases, these results support the existence, on the substrate polypeptides, of separate motifs responsible for recognition and cleavage by the protease.  相似文献   

10.
11.
12.
Eukaryotic cells represent an intricate collaboration between multiple genomes, even down to the level of multi‐subunit complexes in mitochondria and plastids. One such complex in plants is the caseinolytic protease (Clp), which plays an essential role in plastid protein turnover. The proteolytic core of Clp comprises subunits from one plastid‐encoded gene ( clpP1 ) and multiple nuclear genes. The clpP1 gene is highly conserved across most green plants, but it is by far the fastest evolving plastid‐encoded gene in some angiosperms. To better understand these extreme and mysterious patterns of divergence, we investigated the history of clpP1 molecular evolution across green plants by extracting sequences from 988 published plastid genomes. We find that clpP1 has undergone remarkably frequent bouts of accelerated sequence evolution and architectural changes (e.g. a loss of introns and RNA ‐editing sites) within seed plants. Although clpP1 is often assumed to be a pseudogene in such cases, multiple lines of evidence suggest that this is rarely true. We applied comparative native gel electrophoresis of chloroplast protein complexes followed by protein mass spectrometry in two species within the angiosperm genus Silene , which has highly elevated and heterogeneous rates of clpP1 evolution. We confirmed that clpP1 is expressed as a stable protein and forms oligomeric complexes with the nuclear‐encoded Clp subunits, even in one of the most divergent Silene species. Additionally, there is a tight correlation between amino acid substitution rates in clpP1 and the nuclear‐encoded Clp subunits across a broad sampling of angiosperms, suggesting continuing selection on interactions within this complex.  相似文献   

13.
14.
Distinctive types of ATP-dependent Clp proteases in cyanobacteria   总被引:2,自引:0,他引:2  
Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis and are thought to be ancestors to plant chloroplasts. Like chloroplasts, cyanobacteria possess a diverse array of proteolytic enzymes, with one of the most prominent being the ATP-dependent Ser-type Clp protease. The model Clp protease in Escherichia coli consists of a single ClpP proteolytic core flanked on one or both ends by a HSP100 chaperone partner. In comparison, cyanobacteria have multiple ClpP paralogs plus a ClpP variant (ClpR), which lacks the catalytic triad typical of Ser-type proteases. In this study, we reveal that two distinct soluble Clp proteases exist in the unicellular cyanobacterium Synechococcus elongatus. Each protease consists of a unique proteolytic core comprised of two separate Clp subunits, one with ClpP1 and ClpP2, the other with ClpP3 and ClpR. Each core also associates with a particular HSP100 chaperone partner, ClpC in the case of the ClpP3/R core, and ClpX for the ClpP1/P2 core. The two adaptor proteins, ClpS1 and ClpS2 also interact with the ClpC chaperone protein, likely increasing the range of protein substrates targeted by the Clp protease in cyanobacteria. We also reveal the possible existence of a third Clp protease in Synechococcus, one which associates with the internal membrane network. Altogether, we show that presence of several distinctive Clp proteases in cyanobacteria, a feature which contrasts from that in most other organisms.  相似文献   

15.
16.
17.
In Escherichia coli, Lon is an ATP-dependent protease which degrades misfolded proteins and certain rapidly-degraded regulatory proteins. Given that oxidatively damaged proteins are generally degraded rather than repaired, we anticipated that Lon deficient cells would exhibit decreased viability during aerobic, but not anaerobic, carbon starvation. We found that the opposite actually occurs. Wild-type and Lon deficient cells survived equally well under aerobic conditions, but Lon deficient cells died more rapidly than the wild-type under anaerobiosis. Aerobic induction of the Clp family of ATP-dependent proteases could explain these results, but direct quantitation of Clp protein established that its level was not affected by Lon deficiency and overexpression of Clp did not rescue the cells under anaerobic conditions. We conclude that the Lon protease supports survival during anaerobic carbon starvation by a mechanism which does not depend on Clp. Shen Luo and Megan McNeill contributed equally to this research.  相似文献   

18.
19.
We report here the first crystal structure of the N-terminal domain of an A-type Lon protease. Lon proteases are ubiquitous, multidomain, ATP-dependent enzymes with both highly specific and non-specific protein binding, unfolding, and degrading activities. We expressed and purified a stable, monomeric 119-amino acid N-terminal subdomain of the Escherichia coli A-type Lon protease and determined its crystal structure at 2.03 A (Protein Data Bank [PDB] code 2ANE). The structure was solved in two crystal forms, yielding 14 independent views. The domain exhibits a unique fold consisting primarily of three twisted beta-sheets and a single long alpha-helix. Analysis of recent PDB depositions identified a similar fold in BPP1347 (PDB code 1ZBO), a 203-amino acid protein of unknown function from Bordetella parapertussis, crystallized as part of a structural genomics effort. BPP1347 shares sequence homology with Lon N-domains and with a family of other independently expressed proteins of unknown functions. We postulate that, as is the case in Lon proteases, this structural domain represents a general protein and polypeptide interaction domain.  相似文献   

20.
The activity of an ATP-dependent protease, Clp, was examined in Escherichia coli SG1110 (lon-) in various growth phases. The ATP-dependent proteolytic activity (Clp activity) in a crude extract of the cells changed with the growth phase. Cells in the early exponential growth phase showed the lowest activity, but then the activity increased dramatically with cell growth. The highest Clp activity was found in the cells in the late exponential and early stationary phases, however, the activity returned to the original level on prolonged culturing. These changes in Clp activity were closely correlated to the amount of one of the components of Clp, Clp A, which was quantitated immunochemically with antibodies against the Clp A protein. However, the amount of the other component of Clp, Clp P, did not change with the growth phase. These results suggest that the activity of Clp in the cells is regulated by the amount of Clp A in various growth phases. We next examined the effect of the cellular ATP level on Clp activity, because ATP is a cofactor for Clp protease in vitro. The addition of dinitrophenol (DNP) and sodium azide reduced the intracellular concentration of ATP, but had no effect on the Clp activity or the level of the Clp A protein when these drugs were added to the culture at the stationary phase. On the other hand, these drugs elevated both the Clp activity and the Clp A amount in exponentially growing cells, whose cellular ATP level was also reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号