首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
3.
4.
5.
Cys-loop receptor ligand binding sites are located at subunit interfaces where they are lined by loops A-C from one subunit and loops D-F from the adjacent subunit. Agonist binding induces large conformational changes in loops C and F. However, it is controversial as to whether these conformational changes are essential for gating. Here we used voltage clamp fluorometry to investigate the roles of loops C and F in gating the α1 β2 γ2 GABA(A) receptor. Voltage clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. Previous attempts to define the roles of loops C and F using this technique have focused on homomeric Cys-loop receptors. However, the problem with studying homomeric receptors is that it is difficult to eliminate the possibility of bound ligands interacting directly with attached fluorophores at the same site. Here we show that ligands binding to the β2-α1 interface GABA binding site produce conformational changes at the adjacent subunit interface. This is most likely due to agonist-induced loop C closure directly altering loop F conformation at the adjacent α1-β2 subunit interface. However, as antagonists and agonists produce identical α1 subunit loop F conformational changes, these conformational changes appear unimportant for gating. Finally, we demonstrate that TM2-TM3 loops from adjacent β2 subunits in α1 β2 receptors can dimerize via K24'C disulfides in the closed state. This result implies unexpected conformational mobility in this crucial part of the gating machinery. Together, this information provides new insights into the activation mechanisms of Cys-loop receptors.  相似文献   

6.
Cross-talk between Gα(i)- and Gα(q)-linked G-protein-coupled receptors yields synergistic Ca(2+) responses in a variety of cell types. Prior studies have shown that synergistic Ca(2+) responses from macrophage G-protein-coupled receptors are primarily dependent on phospholipase Cβ3 (PLCβ3), with a possible contribution of PLCβ2, whereas signaling through PLCβ4 interferes with synergy. We here show that synergy can be induced by the combination of Gβγ and Gα(q) activation of a single PLCβ isoform. Synergy was absent in macrophages lacking both PLCβ2 and PLCβ3, but it was fully reconstituted following transduction with PLCβ3 alone. Mechanisms of PLCβ-mediated synergy were further explored in NIH-3T3 cells, which express little if any PLCβ2. RNAi-mediated knockdown of endogenous PLCβs demonstrated that synergy in these cells was dependent on PLCβ3, but PLCβ1 and PLCβ4 did not contribute, and overexpression of either isoform inhibited Ca(2+) synergy. When synergy was blocked by RNAi of endogenous PLCβ3, it could be reconstituted by expression of either human PLCβ3 or mouse PLCβ2. In contrast, it could not be reconstituted by human PLCβ3 with a mutation of the Y box, which disrupted activation by Gβγ, and it was only partially restored by human PLCβ3 with a mutation of the C terminus, which partly disrupted activation by Gα(q). Thus, both Gβγ and Gα(q) contribute to activation of PLCβ3 in cells for Ca(2+) synergy. We conclude that Ca(2+) synergy between Gα(i)-coupled and Gα(q)-coupled receptors requires the direct action of both Gβγ and Gα(q) on PLCβ and is mediated primarily by PLCβ3, although PLCβ2 is also competent.  相似文献   

7.
The early suggestion by Lozier and Butler (Photochem. Photobiol. 17, 133–137 (1973)) that EPR Signal II arises from radicals associated with the water-splitting process in PSII has been confirmed and extended over the intervening years. Recent work has identified the Signal II radicals, \(\begin{array}{*{20}c} {\mathop D\nolimits^{\begin{array}{*{20}c} + \\ . \\ \end{array} } } \\ \end{array}\) and \(\begin{array}{*{20}c} {\mathop Z\nolimits^{\begin{array}{*{20}c} + \\ . \\ \end{array} } } \\ \end{array}\) , with plastosemiquinone cation species. In the experiments presented here we have used ENDOR spectroscopy and D2O/H2O exchange to characterize these paramagnets in more detail. The ENDOR matrix region, which arises from protons which interact weakly with the unpaired electron spin, is well-resolved at 4 K and at least seven resonances are apparent. A number of hyperfine couplings in the 3–8 MHz range are observed and are suggested to arise from methyl or hydroxyl protons which occur as substituents on the plastosemiquinone cation ring or from amino acid protons hydrogen-bonded to the 1,4-hydroxyl groups. Orientation selection experiments are consistent with these possibilities. D2O/H2O exchange shows that the D+/Z+ site is accessible to solvent. However, the exchange occurs slowly and is not complete even after 72 hours which suggests that the free radicals are functionally isolated from solvent water.  相似文献   

8.
The theta subunit (holE gene product) of Escherichia coli DNA polymerase (Pol) III holoenzyme is a tightly bound component of the polymerase core. Within the core (alpha-epsilon-theta), the alpha and epsilon subunits carry the DNA polymerase and 3' proofreading functions, respectively, while the precise function of theta is unclear. holE homologs are present in genomes of other enterobacteriae, suggestive of a conserved function. Putative homologs have also been found in the genomes of bacteriophage P1 and of certain conjugative plasmids. The presence of these homologs is of interest, because these genomes are fully dependent on the host replication machinery and contribute few, if any, replication factors themselves. To study the role of these theta homologs, we have constructed an E. coli strain in which holE is replaced by the P1 homolog, hot. We show that hot is capable of substituting for holE when it is assayed for its antimutagenic action on the proofreading-impaired dnaQ49 mutator, which carries a temperature-sensitive epsilon subunit. The ability of hot to substitute for holE was also observed with other, although not all, dnaQ mutator alleles tested. The data suggest that the P1 hot gene product can substitute for the theta subunit and is likely incorporated in the Pol III complex. We also show that overexpression of either theta or Hot further suppresses the dnaQ49 mutator phenotype. This suggests that the complexing of dnaQ49-epsilon with theta is rate limiting for its ability to proofread DNA replication errors. The possible role of hot for bacteriophage P1 is discussed.  相似文献   

9.
Thymus cells from the BALB/c and AKR mouse strains can be distinguishedby the 8 and TL surface antigens. When a BALB/c-nunu (athymic)mouse is grafted with a neonatal AKR thymus, the great majorityof the cells of the grafted thymus retain AKR characteristicsfor about 12 days. Between day 12 and day 26 both host- anddonor-type cells can be found, but after day 26 there are onlyhost-type cells. The differentiation of host-type T cell precursorsrequires the presence of thymus epithelium and perhaps actualthymus structure.  相似文献   

10.
11.
Vitamin C is one of the most abundant exogenous antioxidants in the cell, and it is of the utmost importance to elucidate its mechanism of action against radicals. In this study, the reactivity of vitamin C toward OH and \( {HO}_2/{O}_2^{-} \) radicals in aqueous medium was analyzed by ab initio molecular dynamics using CPMD code. The simulations led to results similar to those of static studies or experiments for the pair of \( {HO}_2/{O}_2^{-} \) radicals but bring new insights for the reactivity with hydroxyl radical: the reaction takes place before the formation of an adduct and consists of two steps: first an electron is transferred to hydroxyl radical and then the ascorbyl radical loses a proton.
Graphical Abstract Reactivity of vitamin C toward hydroxyl and \( {HO}_2/{O}_2^{-} \) radicals
  相似文献   

12.
13.
FOWDEN  L. 《Annals of botany》1954,18(4):417-440
The changes occurring in the nitrogenous compounds during thegrowth of groundnut seedlings in the dark and light were compared,particular attention being centred on the levels of -methyleneglutamine,the principal amide of these plants, and -methyleneglutamicacid. The distribution of amino acids and amides in the mainorgans of normal young and mature plants was also examined.Suggestions are made concerning the possible pathways of synthesisand the functions of -methyleneglutamic acid and -methyleneglutaminein groundnut plants.  相似文献   

14.
The mammalian circadian clock proteins undergo a daily cycle of accumulation followed by phosphorylation and degradation. The mechanism by which clock proteins undergo degradation has not been fully understood. Circadian clock protein PERIOD2 (PER2) is shown to be the potential target of F-box protein beta-TrCP1, a component of ubiquitin E3 ligase. Here, we show that beta-TrCP2 as well as beta-TrCP1 target PER2 protein in vitro. We also identified beta-TrCP binding site (m2) of PER2 being recognized by both beta-TrCP1 and beta-TrCP2. Luciferase-PER2 fusion system revealed that m2 site was responsible for the stability of PER2. The role of beta-TrCP1 and beta-TrCP2 in circadian rhythm generation was analysed by real-time reporter assay revealing that siRNA-mediated suppressions of beta-TrCP1 and/or beta-TrCP2 attenuate circadian oscillations in NIH3T3 cell. beta-TrCP1-deficient mice, however, showed normal period length, light-induced phase-shift response in behaviour and normal expression of PER2, suggesting that beta-TrCP1 is dispensable for the central clock in the suprachiasmatic nucleus. Our study indicates that beta-TrCP1 and beta-TrCP2 were involved in the cell autonomous circadian rhythm generation in culture cells, although the role of beta-TrCP2 in the central clock in the suprachiasmatic nucleus remains to be elucidated.  相似文献   

15.
For several integrins, the existence of multiple conformational states has been studied intensively. For the integrin alpha2beta1, a major collagen receptor on platelets and other cell types, however, no such experimental data were available thus far. Recently, our group has developed a monoclonal antibody IAC-1 sensitive to the molecular conformation of alpha2beta1 because it only binds to the activated state of alpha2beta1 on platelets, induced upon inside-out signaling. By investigating IAC-1 binding in combination with collagen binding after inside-out stimulation and outside manipulation, we demonstrated the existence of three different conformations of alpha2beta1 on platelets and Chinese hamster ovary cells as follows: (i) a nonactivated, resting state with no collagen nor IAC-1 binding; (ii) an intermediate state, induced by outside manipulation, with collagen but no IAC-1 binding; and (iii) a fully activated state, induced after inside-out stimulation, with both collagen and IAC-1 binding. Moreover, these different conformational states of alpha2beta1 are dependent on the cell type where alpha2beta1 is expressed, as IAC-1 binding to peripheral blood mononuclear cells and Jurkat cells could also be induced by outside manipulation, in contrast to platelets and alpha2beta1-expressing Chinese hamster ovary cells. Finally, we revealed a functional relevance for these different conformational states because the conformation of alpha2beta1, induced after outside manipulation, resulted in significantly more cell spreading on coated collagen compared with nonactivated or inside-out stimulated cells.  相似文献   

16.
17.
18.
Integrin α9β1 mediates accelerated cell adhesion and migration through interactions with a number of diverse extracellular ligands. We have shown previously that it directly binds the vascular endothelial growth factors (VEGF) A, C, and D and contributes to VEGF-induced angiogenesis and lymphangiogenesis. Until now, the α9β1 binding site in VEGF has not been identified. Here, we report that the three-amino acid sequence, EYP, encoded by exon 3 of VEGF-A is essential for binding of VEGF to integrin α9β1 and induces adhesion and migration of endothelial and cancer cells. EYP is specific for α9β1 binding and neither requires nor activates VEGFR-2, the cognate receptor for VEGF-A. Following binding to EYP, integrin α9β1 transduces cell migration through direct activation of the integrin signaling intermediates Src and focal adhesion kinase. This interaction is biologically important because it mediates in vitro endothelial cell tube formation, wound healing, and cancer cell invasion. These novel findings identify EYP as a potential site for directed pharmacotherapy.  相似文献   

19.
20.
Two examples of novel, as yet unsynthesized ternary lanthanide hydrides--Yb(II)BeH4 and Cs3Yb(III)H6--are investigated computationally. Their unprecedented electronic structure is discussed and the potential superconductivity of Cs3Yb(III)H6 explored. Methods of synthesis are postulated for both compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号