首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The toxicity of paraquat is due to the oxygen-derived radicals formed by the reaction of oxygen with bipyridylium radical cations. Although paraquat is known to cause lung toxicity, the related bipyridylium compounds such as diquat and morfamquat do not affect the lung as seriously, but rather cause liver toxicity. Paraquat, diquat, morfamquat, and benzyl viologen are reduced by rat hepatocytes to their respective radical cations. An intracellular component of the signal was detected from diquat and benzyl viologen radical cations. These radical cations generated inside the cell can cross the plasma membrane. Generation of the diquat radical cation by hepatocytes is not affected by the inhibition of cytochrome P-450 by carbon monoxide or metyrapone, suggesting that this enzyme is probably not involved in the reduction of diquat as had been proposed previously. The reduction of paraquat is generally attributed to NADPH-cytochrome P-450 reductase, and presumably diquat is also reduced by this flavoprotein. Some transition metal chelates such as ferric diethylenetriaminepentaacetic acid delay the detection of the diquat radical cation. This may be due to the reduction of the ferric chelate by the diquat radical cation resulting in the formation of the ferrous chelate and the parent bipyridylium dication. When all the ferric chelate has been reduced to the ferrous chelate, then the bipyridylium radical can be detected. Alternatively, if the ferric chelate enters the cell, it can compete with the parent bipyridylium dication for the reductase, which would also lead to delayed detection.  相似文献   

2.
Oxidative stress within chloroplasts is originated due to light‐dependent O2 reduction. This may be exacerbated by bipyridinium herbicides, which act at photosystem I as artificial electron acceptors. Their oxidation produces a superoxide anion that further dismutates to H2O2 and then, by the Fenton reaction, H2O2 may be reduced to the hydroxyl radical (OH?). Reactive oxygen species (ROS), when produced in high amounts, provoke severe damage to the plant cell. Herein it is reported that two nitric oxide (NO) donors, sodium nitroprusside (100 µm ) and S‐nitroso‐N‐acetylpenicillamine (200 µm ), greatly reduced lipid peroxidation and the protein loss caused by the application of a high dose of the bipyridinium herbicide diquat to potato leaf pieces or isolated chloroplasts. Nitric oxide donors also protected the RNA against oxidative damage. Photo‐oxidative toxicity was correlated with an increase in photosynthetic electron transport and ROS production, but the rate of electron transport was restored and the ROS free amount was markedly reduced in the presence of NO. The specific activity of superoxide dismutase was not affected by diquat or NO donors, whereas just a small increase in catalase activity was observed after 24 h of treatment. These results provide strong evidence that NO is a potent antioxidant in plants and that its action may, at least in part, be explained by its ability to directly scavenge ROS.  相似文献   

3.
NADPH-cytochrome P-450 reductase-catalyzed reduction of paraquat promoted the release of iron from ferritin. Aerobically, iron release was inhibited approximately 60% by superoxide dismutase, whereas xanthine oxidase-dependent iron release was inhibited nearly 100%. This suggests that both superoxide and the paraquat cation radical can catalyze the release of iron from ferritin. Accordingly, under anaerobic conditions, the paraquat radical mediated a very rapid, complete release of iron from ferritin. Similarly, the cation free radicals of the closely related chemicals, diquat and benzyl viologen, also promoted iron release. ESR studies demonstrated that electron transfer from the paraquat cation radical to ferritin accounts for the reductive release of iron. The ferritin structure was not altered by exposure to the paraquat radical and also retained its ability to re-incorporate iron. These studies indicate that release of iron from ferritin may be a common feature contributing to free radical-mediated toxicities.  相似文献   

4.
The tomato bZIP2-encoding gene was inserted into the Nicotiana benthamiana genome using Agrobacterium-mediated transformation to characterize resistance to oxidative stress and two herbicides, glyphosate and paraquat. We produced transgenic tobacco plants using the LebZIP2 gene, which were then utilized to examine salt stress and herbicide resistance through oxidative mechanisms. Transgenic LebZIP2-overexpressing plants were examined using specific primers for selection marker genes (PCR using genomic DNA) and target genes (RT-PCR). Based on microscopic examination, we observed an increase in leaf thickness and cell number in transgenic plants. The electrolyte leakage of leaves suggested that LebZIP2-overexpressing lines were weak tolerant to NaCl stress and resistant to methyl viologen. During our analysis, transgenic lines were exposed to different herbicides. Transgenic plants showed an increased tolerance based on visual injury, as well as an increased biomass. Based on these results, the LebZIP2 gene may be involved in oxidative stress tolerance and cell development in plants.  相似文献   

5.
Parkinson’s disease (PD) is one of the most common age related neurodegenerative disease and affects millions of people worldwide. Strong evidence suggests a role for oxidative stress and mitochondrial dysfunctions in the pathogenesis of PD. Recent epidemiologic and toxicological studies have shown that environmental factors, especially herbicides such as paraquat and diquat represent one of the primary classes of neurotoxic agents associated with PD. The objective of our study was to investigate the neuroprotective effects of the standardized extract of Bacopa monniera (BM) against paraquat/diquat-induced toxicity and to elucidate the mechanisms underlying this protection. Our results showed that a pre-treatment with the BM extract, from 20.0 μg/ml, protected the rat dopaminergic PC12 cell line against paraquat/diquat-induced toxicity in various cell survival assays. We demonstrated that BM pre-treatment, from 5.0 μg/ml, could prevent the generation of intracellular reactive oxygen species (ROS), decreased mitochondrial superoxide levels and depolarized the mitochondria. BM pre-treatment also increased tyrosine hydroxylase (TH) levels and antioxidant defense systems such as γ-glutamylcysteine synthetase (γ-GCS) and thioredoxin1 (Trx1) levels. Furthermore, BM pre-treatment prevented the activation of Akt and heat shock protein90 (HSP90) proteins. Thus, our findings demonstrated that BM can protect PC12 cells through modulating cellular redox pathways which are altered in PD and could have a therapeutic application in the prevention of PD.  相似文献   

6.
A Bacillus subtilis sigM null mutant, lacking the extracytoplasmic function sigma(M) protein, was sensitive to paraquat (PQ), a superoxide-generating reagent, but not to the redox stress-inducing compounds hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, or diamide. Surprisingly, a sigM mutant was only sensitive to superoxide-generating compounds with a dipyridyl ring such as PQ, ethyl viologen, benzyl viologen, and diquat but not to menadione, plumbagin, pyrogallol, or nitrofurantoin. Mutational analysis of candidate sigma(M)-regulated genes revealed that both YqjL, a putative hydrolase, and BcrC, a bacitracin resistance protein, were involved in PQ resistance. Expression of yqjL, but not bcrC, from a xylose-inducible promoter restored PQ resistance to the sigM mutant.  相似文献   

7.
Paraquat resistance in conyza   总被引:6,自引:2,他引:4       下载免费PDF全文
A biotype of Conyza bonariensis (L.) Cronq. (identical to Conyza linefolia in other publications) originating in Egypt is resistant to the herbicide 1,1′-dimethyl-4,4′-bipyridinium ion (paraquat). Penetration of the cuticle by [14C]paraquat was greater in the resistant biotype than the susceptible (wild) biotype; therefore, resistance was not due to differences in uptake. The resistant and susceptible biotypes were indistinguishable by measuring in vitro photosystem I partial reactions using paraquat, 6,7-dihydrodipyrido [1,2-α:2′,1′-c] pyrazinediium ion (diquat), or 7,8-dihydro-6H-dipyrido [1,2-α:2′,1′-c] [1,4] diazepinediium ion (triquat) as electron acceptors. Therefore, alteration at the electron acceptor level of photosystem I is not the basis for resistance. Chlorophyll fluorescence measured in vivo was quenched in the susceptible biotype by leaf treatment with the bipyridinium herbicides. Resistance to quenching of in vivo chlorophyll fluorescence was observed in the resistant biotype, indicating that the herbicide was excluded from the chloroplasts. Movement of [14C] paraquat was restricted in the resistant biotype when excised leaves were supplied [14C]paraquat through the petiole. We propose that the mechanism of resistance to paraquat is exclusion of paraquat from its site of action in the chloroplast by a rapid sequestration mechanism. No differential binding of paraquat to cell walls isolated from susceptible and resistant biotypes could be detected. The exact site and mechanism of paraquat binding to sequester the herbicide remains to be determined.  相似文献   

8.
[目的] 白花鬼针草是一种恶性外来入侵杂草,近年来已侵入农田,对农业生产及生态系统带来严重危害。为筛选防治白花鬼针草的有效除草剂,分析评价了13种常见茎叶处理除草剂对幼苗期和成株期白花鬼针草的防治效果。[方法] 采用整株盆栽法,在白花鬼针草幼苗期(2~3对叶期)和成株期(6~7对叶期)分别进行茎叶喷雾处理,每种除草剂设置3个剂量。[结果] 供试的13种除草剂中,灭生性除草剂草甘膦、草铵膦和敌草快对幼苗期和成株期的白花鬼针草防效达到100%。选择性除草剂中,麦草畏和辛酰溴苯腈对幼苗期和成株期的白花鬼针草均有较好的防效,三氯吡氧乙酸、乙羧氟草醚和氯吡嘧磺隆在高剂量下对幼苗期的白花鬼针草有较好的防除效果,但对成株期的白花鬼针草防效较差,氯氟吡氧乙酸、乳氟禾草灵、灭草松、二氯吡啶酸、乙氧氟草醚对幼苗期和成株期白花鬼针草防效均较差。[结论] 白花鬼针草对多种化学除草剂具有较强的耐药性,生育期对除草剂防除白花鬼针草的效果有较大影响。灭生性除草剂草甘膦、草铵膦、敌草快及选择性除草剂辛酰溴苯腈和麦草畏适用于防除白花鬼针草。  相似文献   

9.
The mechanism of resistance to diquat and paraquat was investigated in a bipyridyl-herbicide-resistant biotype of Arctotheca calendula (L.) Levyns. No differences were observed in the interactions of these herbicides with Photo-system I, the active site, in thylakoids isolated from resistant and susceptible biotypes. Likewise, absorption of herbicide through the cuticle and gross translocation were identical in plants of the two biotypes. Foliar application of either 25 g ha−1 diquat or 200 g ha−1 paraquat rapidly inhibited CO2-dependent O2 evolution of leaf segments of the susceptible biotype. O2 evolution of leaf segments of the resistant biotype was less affected by these treatments. Fluorescence imaging was used to observe visually, as fluorescence quenching, the penetration of herbicide to the active site. These experiments demonstrated that diquat appears at the active site more slowly in the resistant biotype compared to the susceptible biotype. HCO3-dependent O2 evolution of thin leaf slices was less inhibited by diquat in the resistant biotype than in the susceptible biotype. The mechanism of resistance to the bipyridyl herbicides in this biotype of A. calendula is not a result of changes at the active site, decreased herbicide absorption or decreased translocation, but appears to be due to reduced herbicide penetration to the active site.  相似文献   

10.
Environmental agents may enter the lung via the tracheobronchial tree or via the bloodstream. They can interact with lung cell metabolism and set in motion a sequence of events that leads to damage, adaptation, and repair. Biochemical signs of lung damage described include lipid peroxidation, decreased biosynthesis of macromolecules, depressed enzyme activities, and the binding of metabolites of the offending agent to tissue macromolecules. As a response to acute damage, lung can activate several biochemical pathways. The selenium-glutathione peroxidase system affords protection against lipid peroxidation and increased activity of superoxide dismutase provides oxygen tolerance. Biochemical adaptation occasionally occurs very quickly: the herbicides paraquat and diquat produce an acute loss of cellular NADPH in lung. This is accompanied by a sudden increase in pentose phosphate pathway activity. Biochemical events accompanying tissue repair following lung injury are increased synthesis of nucleic acids and of protein and enhanced enzymatic activity. The repair following lung damage caused by drugs may be inhibited by oxygen.  相似文献   

11.
Paraquat and diquat are two popular, non-selective; bipyridylium herbicides commonly used in citrus orchards and horticultural row crops as the main chemical weed control method. However, since diquat lacks of an effective spectrum against grass weeds, and paraquat mammal toxicity raises strong environmental concerns, both an increase in diquat toxicity against grasses and a reduction in paraquat rates may be desired. Using grass-weed Lolium rigidum and broad leave weed Portulaca oleracea as experimental systems, the effects of six commercial adjuvants (poly-1-p-menthene, mixture of methyl oleate and palmitate, alkylglycol ester, dodecylbenzene ammonium sulphonate, and two paraffinic oils) on paraquat and diquat effectiveness have been studied under laboratory controlled conditions. Dose-response assays showed that adjuvants failed in increasing paraquat efficacy in both broad and grass weeds, yet antagonistic effects being observed in some mixtures such as paraquat + polymentene. However, all adjuvants tested did succeed in increasing significantly diquat effectiveness in P. oleracea and (most important) L. rigidum grass weed. Formulated-diquat ED50 rates were reduced down to 15% (diquat + DBSA) and 30% (diquat + fatty acid ester, diquat + polimentene) of those obtained on non-formulated-diquat trials for P. oleracea and L. rigidum, respectively. Results showed that formulated diquat proved to be a valid alternative to paraquat, and could be used as a more environmentally friendly substitute with comparable effectiveness and herbicide rate.  相似文献   

12.
The herbicides 2,4-D, amitrole, atrazine, diclofop-methyl, diquat, paraquat and trifiluralin were applied at rates of 0, 2, 5 and 10 μg ai. g−1 to a sandy loam soil and allowed to degrade for 120 days. After this period, subterranean clover seedlings were transplanted into treated soil and the effect of herbicide residues on plant growth, number of nodules formed and nitrogenase activity was investigated. At all rates of atrazine and chlorsulfuron, and at all rates of amitrole in excess of 2 mg ai g−1 of soil, sufficient herbicide remained to be lethal to the seedlings. When amitrole was applied at the rate of 2 mg ai g−1 of soil, plant growth, nodulation and nitrogenase activity of plants were reduced. Residues of diquat reduced all plant parameters studied while, residues of 2,4-D reduced plant growth and nodule formation, but plant nitrogenase activity was unaffected. Residues of trifluralin had no effect on plant growth parameters but the number of nodules formed per plant was reduced. Residues of paraquat and diclofop-methyl had no effect on any of the plant parameters studied.  相似文献   

13.
A study was made of the effect of the herbicides 2,4-D, amitrole, atrazine, chlorsulfuron, diclofop-methyl, diquat, glyphosate, paraquat and trifluralin on the nodulation of sub-clover (Trifolium subterraneum L. ‘Clare’), the growth ofR. trifolii TA1 in liquid nutrient medium and the ability of herbicide-treated inoculum to successfully nodulate sub-clover plants. As concentrations of amitrole, diclofop-methyl and glyphosate in the rooting environment increased from 0 to 20 mg ai L−1, nodulation decreased linearly. The other herbicides at these concentrations caused more severe decreases in nodulation. Growth ofR. trifolii TA1 in nutrient broth was significantly retarded by all concentrations of diquat, 2 mg ai L−1 of paraquat, 10 mg ai L−1 of glyphosate and 2 mg ai L−1 of chlorsulfuron. Other herbicides did not suppress rhizobial growth. Inoculation with TA1 that had been grown in the presence of amitrole, atrazine or glyphosate and then washed free of the herbicide decreased nodulation of sub-clover, indicating that these herbicides may physiologically influence the nodulating potential of certain strains of Rhizobium. The remaining herbicides showed no indications of this effect.  相似文献   

14.
Smith IK 《Plant physiology》1985,79(4):1044-1047
The effect of various herbicides on glutathione levels in barley (Hordeum vulgare L.), tobacco (Nicotiana tabacum L.), soybean (Glycine max [L.] Merr.), and corn (Zea mays L.) was examined. Illumination of excised barley, tobacco, and soybean plants for 8 hours in solution containing 2 millimolar aminotriazole (a catalase inhibitor) resulted in an increase in leaf glutathione from 250 to 400 nanomoles per gram fresh weight to 600 to 1800 nanomoles per gram fresh weight, depending on the species tested. All of this increase could be accounted for as oxidized glutathione. Between 25 and 50% of this oxidized glutathione was reduced when plants were darkened for 16 hours, but there was no significant decline in total glutathione. Another catalase inhibitor, thiosemicarbazide, was as effective as aminotriazole in elevating glutathione in soybean but was less effective in barley and tobacco. Glyphosate, an inhibitor of aromatic amino acid biosynthesis, had no significant effect on glutathione levels in any of the plants examined. Whereas methyl viologen (paraquat), which is a sink for photosystem I electrons, caused oxidation of leaf glutathione in all of the plants but did not increase the total amount of glutathione present.  相似文献   

15.
The mode of inheritance of resistance to bipyridyl herbicides in bipyridyl-resistant biotypes of Arctotheca calendula and of Hordeum leporinum was investigated. F1 plants from reciprocal crosses between diquat-resistant and -susceptible plants of A. calendula showed an intermediate response to diquat application that was nuclearly inherited. Treatment of F2 plants with 100 g ai ha-1 of diquat or 800 g ai ha-1 of paraquat killed all homozygous-susceptible plants, caused severe injury to heterozygous plants but only slight or no injury to homozygous-resistant plants. Back crosses of F1 to susceptible plants exhibited intermediate and susceptible phenotypes. The observed segregation ratios in F2 and test-cross populations fitted predicted segregation ratios, 1:2:1 (R:I:S) and 1:1 (I:S) respectively, showing that bipyridyl resistance is conferred by a single incompletely-dominant gene. Biotypes of paraquat-resistant and -susceptible H. leporinum were crossed reciprocally. F1 plants from reciprocal crosses showed an intermediate response to paraquat application. The F2 progeny showed segregation ratios that fitted the predicted segregation ratio of 1:2:1 (R:I:S) forinheritance of resistance being governed by a single partially-dominant gene.  相似文献   

16.
Reduction of nitrate to nitrite by particulate preparationsof Anabaena cylindrica was investigated. Preparations whichshowed high activity of nitrate reductase were obtained by sonication(preparation A) or acetone treatment (preparation B). The preparationA also showed a high activity of DPIP-ascorbate photooxidation.The nitrate reductase system accepted electrons from eitherreduced ferredoxin (preparation A & B) or NADH (preparationB), but not directly from NADPH. Ferredoxin was active whenreduced either by action of photochemical system I or by NADPHand NADP-reductase, but dithionite-reduced ferredoxin was completelyinactive. Ferredoxin could be replaced with methyl viologen,benzyl viologen and diquat. Reduced FMN and FAD could serveas electron donors, but the affinity of the reductase towardthese flavin compounds was very low. 1 This work was supported by grants from the Ministry of Education(4093 and 95612) and from the National Institutes of Health,U.S. (GM-11300).  相似文献   

17.
Intravenous injection of rats with 156 mumol/kg of paraquat or 140 mumol/kg of diquat produced, within 60 min, a sharp drop in the ratios of NADPH to NADP in lung. The effect persisted for a time period of at least 24 h. Exposure to 100% oxygen enhanced the toxicity of both compounds without substantially amplifying changes in the NADPH/NADP ratio. Lungs retained the capability to synthesize adenine nucleotides de novo. Electron microscopic studies showed that both paraquat and diquat damage type I alveolar cells, but only paraquat produces type II cell lesions. Although bipyridylium herbicides produce acute oxidation of NADPH in vivo, there seems not to exist a straightforward relationship between this event and cell damage.  相似文献   

18.
Lethal hydroxyl radical production in paraquat-treated plants   总被引:28,自引:5,他引:23       下载免费PDF全文
Bipyridinium herbicides, including paraquat and diquat, are believed to act by generating highly reactive, oxygen-centered free radicals within chloroplasts when treated plants are exposed to sunlight. This hypothesis has not yet been confirmed by direct chemical measurements of specific free radicals. We studied paraquat-treated plants using a new method able to detect and quantify formation of highly reactive and deleterious hydroxyl radicals (HO*), in which dimethyl sulfoxide (DMSO) is used as a molecular probe. DMSO is oxidized by HO* to form the stable, nonradical compound, methane sulfinic acid, which can be easily extracted from plant tissue and measured spectrophotometrically. Initial experiments revealed formation of extraordinary numbers of hydroxyl radicals in light-exposed, paraquat + DMSO-treated plants, equivalent at least to the cumulative number of HO* radicals per gram of fresh tissue that would be produced by 10,000 rads of gamma irradiation. This appears to be the greatest production of hydroxyl radicals yet observed in a biological system and is quite sufficient to explain the rapid death of top growth in paraquat-treated plants.  相似文献   

19.
Paraquat inhibited the acetylcholinesterase activity of human erythrocytes and electric organs of Electrophorus electricus. The inhibition of acetylcholinesterase activity was reversible, as shown from the following two experimental results: [I] The degree of inhibition was not affected by changing the preincubation time of the enzyme and paraquat before the addition of the substrate. [II] The enzyme, preincubated with paraquat and subsequently freed from inhibitor by gel filtration on Sephadex G-25, showed the same activity as the untreated enzyme. Paraquat gave effective protection against the inhibition by an irreversible anionic site inhibitor, dibenamine, but not by irreversible esteratic site inhibitors, dichlorvos and methanesulfonyl chloride. These results indicate that paraquat functions as a reversible inhibitor for the anionic site. The inhibitory powers and Hill coefficients of paraquat and diquat were compared with the other quaternary ammonium compounds. Although secondary to edrophonium, paraquat strongly inhibited acetylcholinesterases of human erythrocytes and electric eel, and showed higher inhibition selectivity for both acetylcholinesterases than for human plasma butyrylcholinesterase. The Hill coefficients concerning the interaction of paraquat with acetylcholinesterases of human erythrocytes and electric eel were given as 0.83 and 0.73, respectively. This indicates negative cooperativity between these enzymes and paraquat, which is similar to the case with d-tubocurarine. On the other hand, diquat showed weak inhibitory power and low inhibition selectivity, and its Hill coefficients were almost 1.0, indicating a competitive inhibition mode.  相似文献   

20.
Hydrogenase activity and the H2-fumarate electron transport system in a carbohydrate-fermenting obligate anaerobe, Bacteroides fragilis, were investigated. In both whole cells and cell extracts, hydrogenase activity was demonstrated with methylene blue, benzyl viologen, flavin mononucleotide, or flavin adenine dinucleotide as the electron acceptor. A catalytic quantity of benzyl viologen or ferredoxin from Clostridium pasteurianum was required to reduce nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate with H2. Much of the hydrogenase activity appeared to be associated with the soluble fraction of the cell. Fumarate reduction to succinate by H2 was demonstrable in cell extracts only in the presence of a catalytic quantity of benzyl viologen, flavin mononucleotide, flavin adenine dinucleotide, or ferredoxin from C. pasteurianum. Sulfhydryl compounds were not required for fumarate reduction by H2, but mercaptoethanol and dithiothreitol appeared to stimulate this activity by 59 and 61%, respectively. Inhibition of fumarate reduction by acriflavin, rotenone, 2-heptyl-4-hydroxyquinoline-N-oxide, and antimycin A suggest the involvement of a flavoprotein, a quinone, and cytochrome b in the reduction of fumarate to succinate. The involvement of a quinone in fumarate reduction is also apparent from the inhibition of fumarate reduction by H2 when cell extracts were irradiated with ultraviolet light. Based on the evidence obtained, a possible scheme for the flow of electrons from H2 to fumarate in B. fragilis is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号