首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The fine structure of the striated adductor muscle of the bay scallop, Aequipecten irridians has been investigated with particular emphasis on the sarcoplasmic reticulum. Each cell of the muscle contains a single myofibril. There is no transverse tubular system in this muscle. The cisternae of the sarcoplasmic reticulum are all interconnected by means of tubular elements. This extensive, interconnected system of flattened cisternae and tubular vesicles is distributed randomly with respect to the sarcomere and is in close association with the sarcolemma.  相似文献   

2.
Summary The three-dimensional structure of the sarcoplasmic reticulum (SR) in the red, white and intermediate striated muscle fibers of the extensor digitorum longus muscle of the rat was examined under a field-emission type scanning electron microscope after removal of cytoplasmic matrices by the osmium-DMSO-osmium procedure.In all three types of fibers, the terminal cisternae and transverse tubules form triads at the level of the A-I junction. Numerous slender sarcotubules, originating from the A-band side terminal cisternae, extend obliquely or longitudinally and form oval or irregular shaped networks of various sizes in front of the A-band, then become continuous with the tiny mesh (fenestrated collar) in front of the H-band. The A-and H-band SR appears as a single sheet of anastomotic tubules. Numerous sarcotubules, originating from the I-band side terminal cisternae, extend in threedimensional directions and form a multilayered network over the I-band and Z-line regions. At the I-band level, paired transversely oriented mitochondria partly embrace the myofibril. The I-band SR network is poorly developed in the narrow space between the paired mitochondria, but is well developed in places devoid of these mitochondria.The three-dimensional structure of the SR is basically the same in all three muscle fiber-types. However, the SR is sparse on the surface of mitochondria, so the mitochondria-rich red fiber has a much smaller total volume of SR than the mitochondria-poor white fiber. Moreover, the volume of SR of the intermediate fiber is intermediate between the two.  相似文献   

3.
The present paper examines the ultrastructure of the sarcoplasmic recitulum (SR) and the T system in the striated muscle of the lamprey. The pyroantimonate method was used to visualise the sites of intracellular calcium localisation. Characteristic for the muscle studied are the presence of numerous intricately shaped invaginations on the surface membrane of muscle fibres and peripheral contacts between SR cisternae and the sarcolemma. In addition to calcium localised in the terminal cisternae of SR and N-bands of the I-disk, as typical of vertebrate muscles, a great amount of calcium is present in the subsarcolemmal region, corresponding to the area of invaginations, and in longitudinal elements of SR.  相似文献   

4.
The sarcoplasmic reticulum: an organized patchwork of specialized domains   总被引:1,自引:0,他引:1  
The sarcoplasmic reticulum (SR) of skeletal muscle cells is a convoluted structure composed of a variety of tubules and cisternae, which share a continuous lumen delimited by a single continuous membrane, branching to form a network that surrounds each myofibril. In this network, some specific domains basically represented by the longitudinal SR and the junctional SR can be distinguished. These domains are mainly dedicated to Ca2+ homeostasis in relation to regulation of muscle contraction, with the longitudinal SR representing the sites of Ca2+ uptake and storage and the junctional SR representing the sites of Ca2+ release. To perform its functions, the SR takes contact with other cellular elements, the sarcolemma, the contractile apparatus and the mitochondria, giving rise to a number of interactions, most of which are still to be defined at the molecular level. This review will describe some of the most recent advancements in understanding the organization of this complex network and its specific domains. Furthermore, we shall address initial evidence on how SR proteins are retained at distinct SR domains.  相似文献   

5.
The structure of the caudal muscle in the tadpole larva of the compound ascidian Distaplia occidentalis has been investigated with light and electron microscopy. The two muscle bands are composed of about 1500 flattened cells arranged in longitudinal rows between the epidermis and the notochord. The muscle cells are mononucleate and contain numerous mitochondria, a small Golgi apparatus, lysosomes, proteid-yolk inclusions, and large amounts of glycogen. The myofibrils and sarcoplasmic reticulum are confined to the peripheral sarcoplasm. Myofibrils are discrete along most of their length but branch near the tapered ends of the muscle cell, producing a Felderstruktur. The myofibrils originate and terminate at specialized intercellular junctional complexes. These myomuscular junctions are normal to the primary axes of the myofibrils and resemble the intercalated disks of vertebrate cardiac muscle. The myofibrils insert at the myomuscular junction near the level of a Z-line. Thin filaments (presumably actin) extend from the terminal Z-line and make contact with the sarcolemma. These thin filaments frequently appear to be continuous with filaments in the extracellular junctional space, but other evidence suggests that the extracellular filaments are not myofilaments. A T-system is absent, but numerous peripheral couplings between the sarcolemma and cisternae of the sarcoplasmic reticulum (SR) are present on all cell surfaces. Cisternae coupled to the sarcolemma are continuous with transverse components of SR which encircle the myofibrils at each I-band and H-band. The transverse component over the I-band consists of anastomosing tubules applied as a single layer to the surface of the myofibril. The transverse component over the H-band is also composed of anastomosing tubules, but the myofibrils are invested by a double or triple layer. Two or three tubules of sarcoplasmic reticulum interconnect consecutive transverse components. Each muscle band is surrounded by a thin external lamina. The external lamina does not parallel the irregular cell contours nor does it penetrate the extracellular space between cells. In contracted muscle, the sarcolemmata at the epidermal and notochordal boundaries indent to the level of each Z-line, and peripheral couplings are located at the base of the indentations. The external lamina and basal lamina of the epidermis are displaced toward the indentations. The location, function, and neuromuscular junctions of larval ascidian caudal muscle are similar to vertebrate somatic striated muscle. Other attributes, including the mononucleate condition, transverse myomuscular junctions, prolific gap junctions, active Golgi apparatus, and incomplete nervous innervation are characteristic of vertebrate cardiac muscle cells.  相似文献   

6.
Summary The distribution of the sarcoplasmic reticulum and sarcolemmic tubules in the radula protractor muscle of the whelk, Busycon canaliculatum, has been investigated. The sarcoplasmic reticulum consists of an interconnected system of cisternae and tubular channels. The cisternae are closely associated with the sarcolemma. The tubular channels project from the cisternae into the interior of the cell and run parallel to the long axis of the myofilaments. Parallel tubular channels are interconnected with one another by short branches. This finding of an elaborate sarcoplasmic reticulum supports previous physiological work on this smooth muscle which indicated the presence of an intracellular compartmentalization of calcium ions. There is also an extensive system of tubular invaginations of the sarcolemma which we have termed sarcolemmic tubules. These tubules are 600 Å in diameter and about 0.5 microns in length. There is a substructure associated with the leaflet of the tubular membrane bordering the extracellular space. The sarcolemmic tubules penetrate only half a micron from the surface of the cell and interdigitate with the sarcoplasmic reticulum associated with the sarcolemma. Calculations have shown that the surface area of this smooth muscle cell is more than doubled by the presence of sarcolemmic tubules.  相似文献   

7.
The electron microscope was used to investigate the first 10 days of differentiation of the SR and the T system in skeletal muscle cultured from the breast muscle of 11-day chick embryos. The T-system tubules could be clearly distinguished from the SR in developing muscle cells fixed with glutaraldehyde and osmium tetroxide. Ferritin diffusion confirmed this finding: the ferritin particles were found only in the tubules identified as T system. The proliferation of both membranous systems seemed to start almost simultaneously at the earliest myotube stage. Observations suggested that the new SR membranes developed from the rough-surfaced ER as tubular projections. The SR tubules connected with one another to form a network around the myofibril. The T-system tubules were formed by invagination of the sarcolemma. The early extension of the T system by branching and budding was seen only in subsarcolemmal regions. Subsequently the T-system tubules could be seen deep within the muscle cells. Immediately after invaginating, the T-system tubule formed, along its course, specialized connections with the SR or ER: triadic structures showing various degrees of differentiation. The simultaneous occurrence of myofibril formation and membrane proliferation is considered to be important in understanding the coordinated events resulting in the differentiated myotube.  相似文献   

8.
Sarcoglycans are transmembrane proteins that are members of the dystrophin complex. Sarcoglycans cluster together to form a complex, which is localized in the cell membrane of skeletal, cardiac, and smooth muscle fibers. However, it is still unclear whether or not sarcoglycans are restricted to the sarcolemma. To address this issue, we examined alpha-, beta-, delta-, and gamma-sarcoglycan expression in femoral skeletal muscle from control and dystrophin-deficient mice and rats using confocal microscopy and immunoelectron microscopy. Confocal microscopy of the tissues in cross-section showed that all sarcoglycans were detected under the sarcolemma in rats and control mice. delta- and gamma-sarcoglycan labeling demonstrated striations in the longitudinal section, suggesting that the proteins were expressed in the sarcoplasmic reticulum (SR) or transverse tubules (T-tubules). Moreover, such striations of both sarcoglycans were recognized in the dystrophin-deficient mouse skeletal muscle. Double labeling with phalloidin or alpha-actinin and delta- or gamma-sarcoglycan showed different labeling patterns, indicating that delta-sarcoglycan localization was distinct from that of gamma-sarcoglycan. Immunoelectron microscopy clarified that delta-sarcoglycan was localized in the terminal cisternae of the SR, while gamma-sarcoglycan was found in the terminal cisternae and longitudinal SR over I-bands but not over A-bands. These data demonstrate that delta- and gamma-sarcoglycans are components of the SR in skeletal muscle, suggesting that both sarcoglycans function independent of the dystrophin complex in the SR.  相似文献   

9.
The accessory muscle of the walking leg of the horseshoe crab, Tachypleus gigas, was examined electron microscopically. The muscle fibers vary in size but are small in diameter, when compared with other arthropod skeletal muscles. They are striated with A, I, Z and poorly defined H bands. The sarcomere length ranges from 3-10 μm with most sarcomeres in the range of about 6 μm. The myofilaments are arranged in lamellae in larger fibers and less well organized in the smaller ones. Each thick filament is surrounded by 9-12 thin filaments which overlap. The SR is sparse but well organized to form a fenestrated collar around the fibrils. Individual SR tubules are also seen among the myofibrils. Long transverse tubules extend inward from the sarcolemma to form dyads or triads with the SR at the A-I junction. Both dyads and triads coexist in a single muscle fiber, a feature believed to have evolutionary significance. The neuromuscular relationship is unique. In the region of synaptic contact, the sarcolemma is usually elevated to form a large club-shaped structure containing no myofilaments and few other organelles. The axons or axon terminals and glial elements penetrate deep into the club-shaped sarcoplasm and form synapses with the fiber. As many as 13 terminals have been observed within a single section. Synaptic vesicles of two types are found in the axon terminals.  相似文献   

10.
Summary The larval caudal musculature of the compound ascidian Diplosoma macdonaldi consists of two longitudinal bands of somatic striated muscle. Approximately 800 mononucleate cells, lying in rows between the epidermis and the notochord, constitute each muscle band. Unlike the caudal muscle cells of most other ascidian larvae, the myofibrils and apposed sarcoplasmic reticulum occupy both the cortical and the medullary sarcoplasm.The cross-striated myofibrils converge near the tapered ends of the caudal muscle cell and integrate into a field of myofilaments. The field originates and terminates at intermediate junctions at the transverse cellular boundaries. Close junctions and longitudinal and transverse segments of nonjunctional sarcolemmata flank the intermediate junctions, creating a transverse myomuscular (TMM) complex which superficially resembles the intercalated disk of the vertebrate heart.A perforated sheet of sarcoplasmic reticulum (SR) invests each myofibril. The sheet of SR spans between sarcomeres and is locally undifferentiated in relation to the cross-striations. Two to four saccular cisternae of SR near each sarcomeric Z-line establish interior (dyadic) couplings with an axial analogue of the vertebrate transverse tubular system. The axial tubules are invaginations of the sarcolemma within and adjacent to the intermediate junctions of the TMM complex.The caudal muscle cells of larval ascidians and the somatic striated muscle fibers of lower vertebrates bear similar relationships to the skeletal organs and share similar locomotor functions. At the cellular level, however, the larval ascidian caudal musculature more closely resembles the vertebrate myocardium.This investigation was supported by Developmental Biology Training Grant No. 5-T01-HD00266 from the National Institute of Child Health and Human Development, National Institutes of Health, by National Research Service Award No. 1-F32-GM05259 (M.J.C.) from the National Institute of General Medical Sciences, National Institutes of Health, and by Research Grant No. BMS 7507689 (R.A.C.) from the National Science Foundation. A portion of this study was carried out at the Friday Harbor Laboratories of the University of Washington, and the authors gratefully acknowledge the cooperation and advice extended by the former Director, Dr. Robert L. FernaldResearch facilities were provided in part by Douglas E. Kelly, Professor and Chairman, Department of Anatomy, University of Southern California School of Medicine, Los Angeles, California 90033, USA. The provisions and counsel are warmly acknowledged  相似文献   

11.
The locomotor function of the caudal muscle cells of ascidian larvae is identical with that of lower vertebrate somatic striated (skeletal) muscle fibers, but other features, including the presence of transverse myomuscular junctions, an active Golgi apparatus, a single nucleus, and partial innervation, are characteristic of vertebrate myocardial cells. Seven stages in the development of the compound ascidian Distaplia occidentalis were selected for an ultrastructural study of caudal myogenesis. A timetable of development and differentiation was obtained from cultures of isolated embryos in vitro. The myoblasts of the neurulating embryo are yolky, undifferentiated cells. They are arranged in two bands between the epidermis and the notochord in the caudal rudiment and are actively engaged in mitosis. Myoblasts of the caudate embryo continue to divide and rearrange themselves into longitudinal rows so that each cell simultaneously adjoins the epidermis and the notochord. The formation of secretory granules by the Golgi apparatus coincides with the onset of proteid-yolk degradation and the accumulation of glycogen in the ground cytoplasm. Randomly oriented networks of thick and thin myofilaments appear in the peripheral sarcoplasm of the muscle cells of the comma embryo. Bridges interconnect the thick and thin myofilaments (actomyosin bridges) and the thick myofilaments (H-bridges), but no banding patterns are evident. The sarcoplasmic reticulum (SR), derived from evaginations of the nuclear envelope, forms intimate associations (peripheral couplings) with the sarcolemma. Precursory Z-lines are interposed between the networks of myofilaments in the vesiculate embryo, and the nascent myofibrils become predominantly oriented parallel to the long axis of the muscle cell. Muscle cells of the papillate embryo contain a single row of cortical myofibrils. Myofibrils, already spanning the length of the cell, grow only in diameter by the apposition of myofilaments. The formation of transverse myomuscular junctions begins at this stage, but the differentiating junctions are frequently oriented obliquely rather than orthogonally to the primary axes of the myofibrils. With the appearance of H-bands and M-lines, a single perforated sheet of sarcoplasmic reticulum is found centered on the Z-line and embracing the I-band. The sheet of SR establishes peripheral couplings with the sarcolemma. In the prehatching tadpole, a second collar of SR, centered on the M-line and extending laterally to the boundaries with the A-bands, is formed. A single perforated sheet surrounds the myofibril but is discontinuous at the side of the myofibril most distant from the sarcolemma. To produce the intricate architecture of the fully differentiated collar in the swimming tadpole (J. Morph., 138: 349, 1972). the free ends of the sheet must elevate from the surface of the myofibril, recurve, and extend peripherally toward the sarcolemma to establish peripheral couplings. Morphological changes in the nucleus, nucleolus, mitochondria, and Golgi bodies are described, as well as changes in the ground cytoplasmic content of yolk, glycogen, and ribosomes. The volume of the differentiating cells, calculated from the mean cellular dimensions, and analyses of cellular shape are presented, along with schematic diagrams of cells in each stage of caudal myogenesis. In an attempt to quantify the differences observed ultrastructurally, calculations of the cytoplasmic volume occupied by the mqjor classes of organelles are included. Comparison is made with published accounts on differentiating vertebrate somatic striated and cardiac muscles.  相似文献   

12.
Sarcoplasmic reticulum (SR) serves a central role in calcium uptake and release, thereby regulating muscle relaxation and contraction, respectively. Recently, we have isolated fractions referable to longitudinal tubules (R2) and terminal cisternae (R4), the two major types of sarcoplasmic reticulum (A. Saito et al. (1984) J. Cell Biol. 99, 875-885). The terminal cisternae contain two types of membranes, the calcium pump membrane and the junctional face membrane. The terminal cisternae are filled with electron-opaque contents which serve as a Ca2+ reservoir. The longitudinal tubules consist mainly of the calcium pump membrane. In this study, we describe a new longitudinal tubule fraction (F2) and characterize it together with the R2 and R4 SR fractions. The calcium pump membrane of the longitudinal tubules is a highly specialized membrane consisting of about 90% calcium pump protein as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Extensive changes in morphology can be observed in the SR fractions referable to osmotic differences during the fixation conditions using either glutaraldehyde-tannic acid or osmium tetroxide fixatives. The changes include swelling or shrinkage and aggregation of the compartmental contents when the fixative contains calcium ions. The two types of SR have different osmotic permeability to the same medium, as indicated by differential swelling or shrinkage. Both longitudinal tubule and terminal cisternae vesicles of SR appear larger and are spherical vesicles when the glutaraldehyde-tannic acid fixative is isotonic as compared with the "standard" fixation method. We have previously reported that the ruthenium red-sensitive calcium release channels are localized to the terminal cisternae. The terminal cisternae as isolated are leaky to Ca2+ since these channels are in the "open state" (S. Fleischer et al. (1985) Proc. Natl. Acad. Sci USA 82, 7256-7259). Thus, the Ca2+, Mg2+-dependent ATPase (Ca2+ ATPase) rate is only slightly enhanced in the presence of a Ca2+ ionophore, which dissipates the Ca2+ gradient across the SR membrane. We now find that preincubation with ruthenium red restores the tight coupling of the Ca2+ ATPase activity to Ca2+ transport. That is to say, ATPase activity is reduced and the addition of ionophore stimulates the Ca2+ ATPase activity 4- to 7-fold. The Ca2+ ATPase activity in longitudinal tubules is already tightly coupled. It is minimal after a Ca2+ gradient has been generated, but can be stimulated 9- to 20-fold when the Ca2+ gradient is dissipated with ionophore. This finding suggests that the Ca2+ ATPase activity in SR is tightly coupled to Ca2+ transport in situ.  相似文献   

13.
A method of rapid freezing in supercooled Freon 22 (monochlorodifluoromethane) followed by cryoultramicrotomy is described and shown to yield ultrathin sections in which both the cellular ultrastructure and the distribution of diffusible ions across the cell membrane are preserved and intracellular compartmentalization of diffusabler ions can be quantitated. Quantitative electron probe analysis (Shuman, H., A.V. Somlyo, and A.P. Somlyo. 1976. Ultramicros. 1:317-339.) of freeze-dried ultrathin cryto sections was found to provide a valid measure of the composition of cells and cellular organelles and was used to determine the ionic composition of the in situ terminal cisternae of the sarcoplasmic reticulum (SR), the distribution of CI in skeletal muscle, and the effects of hypertonic solutions on the subcellular composition if striated muscle. There was no evidence of sequestered CI in the terminal cisternae of resting muscles, although calcium (66mmol/kg dry wt +/- 4.6 SE) was detected. The values of [C1](i) determined with small (50-100 nm) diameter probes over cytoplasm excluding organelles over nuclei or terminal cisternae were not significantly different. Mitochondria partially excluded C1, with a cytoplasmic/ mitochondrial Ci ratio of 2.4 +/- 0.88 SD. The elemental concentrations (mmol/kg dry wt +/- SD) of muscle fibers measured with 0.5-9-μm diameter electron probes in normal frog striated muscle were: P, 302 +/- 4.3; S, 189 +/- 2.9;C1, 24 +/- 1.1;K, 404 +/- 4.3, and Mg, 39 +/- 2.1. It is concluded that: (a) in normal muscle the "excess CI" measured with previous bulk chemical analyses and flux studies is not compartmentalized in the SR or in other cellular organelles, and (b) the cytoplasmic C1 in low [K](0) solutions exceeds that predicted by a passive electrochemical distribution. Hypertonic 2.2 X NaCl, 2.5 X sucrose, or 2.2 X Na isethionate produced: (a) swollen vacuoles, frequently paired, adjacent to the Z lines and containing significantly higher than cytoplasmic concentrations of Na and Cl or S (isethionate), but no detectable Ca, and (b) granules of Ca, Mg, and P = approximately (6 Ca + 1 Mg)/6P in the longitudinal SR. It is concluded that hypertonicity produces compartmentalized domains of extracellular solutes within the muscle fibers and translocates Ca into the longitudinal tubules.  相似文献   

14.
Summary The membrane systems of cardiac muscle cells of the euphausiacean Meganychtiphanes norvegica are described. Transverse tubules are found both at the Z-band level (Tz-tubules) and at the H-band level (Th-tubules). Within the sarcomere narrow longitudinal tubules branch off from the Tz-tubules. At the H-band level these tubules expand forming flattened cisternae in dyadic and triadic couplings with the sarcoplasmic reticulum (SR). Adjacent myofibrils are separated by a well developed SR. Modifications of the SR are seen at the H-band level where junctional cisternae are formed.  相似文献   

15.
The subsarcolemmal cisternae of the sarcoplasmic reticulum form peripheral couplings with the sarcolemma. The junctional gap is crossed by periodic densities called junctional processes. Desmosomes provide mechanical coupling between the myofibres. Hemidesmosomes connect the myofibre with a well developed connective tissue sheath.  相似文献   

16.
We have developed a procedure to isolate, from skeletal muscle, enriched terminal cisternae of sarcoplasmic reticulum (SR), which retain morphologically intact junctional "feet" structures similar to those observed in situ. The fraction is largely devoid of transverse tubule, plasma membrane, mitochondria, triads (transverse tubules junctionally associated with terminal cisternae), and longitudinal cisternae, as shown by thin-section electron microscopy of representative samples. The terminal cisternae vesicles have distinctive morphological characteristics that differ from the isolated longitudinal cisternae (light SR) obtained from the same gradient. The terminal cisternae consist of two distinct types of membranes, i.e., the junctional face membrane and the Ca2+ pump protein-containing membrane, whereas the longitudinal cisternae contain only the Ca2+ pump protein-containing membrane. The junctional face membrane of the terminal cisternae contains feet structures that extend approximately 12 nm from the membrane surface and can be clearly visualized in thin section through using tannic acid enhancement, by negative staining and by freeze-fracture electron microscopy. Sections of the terminal cisternae, cut tangential to and intersecting the plane of the junctional face, reveal a checkerboardlike lattice of alternating, square-shaped feet structures and spaces each 20 nm square. Structures characteristic of the Ca2+ pump protein are not observed between the feet at the junctional face membrane, either in thin section or by negative staining, even though the Ca2+ pump protein is observed in the nonjunctional membrane on the remainder of the same vesicle. Likewise, freeze-fracture replicas reveal regions of the P face containing ropelike strands instead of the high density of the 7-8-nm particles referable to the Ca2+ pump protein. The intravesicular content of the terminal cisternae, mostly Ca2+-binding protein (calsequestrin), is organized in the form of strands, sometimes appearing paracrystalline, and attached to the inner face of the membrane in the vicinity of the junctional feet. The terminal cisternae preparation is distinct from previously described heavy SR fractions in that it contains the highest percentage of junctional face membrane with morphologically well-preserved junctional feet structures.  相似文献   

17.
Summary The three-dimensional structure of the mitochondria and sarcoplasmic reticulum (SR) in the three types of twitch fibers, i.e., the red, white and intermediate skeletal muscle fibers, of the vastus lateralis muscle of the Japanese meadow frog (Rana nigromaculata nigromaculata Hallowell) was examined by high resolution scanning electron microscopy, after removal of the cytoplasmic matrices.The small red fibers have numerous mitochondrial columns of large diameter, while the large white fibers have a small number of mitochondrial columns of small diameter. In the medium-size intermediate fibers, the number and diameter of the mitochondrial columns are intermediate between those of the red and white fibers.In all three types of fibers, the terminal cisternae and transverse tubules form triads at the level of each Z-line. The thick terminal cisternae continue into much thinner flat intermediate cisternae, through a transitional part where a row of tiny indentations can be observed. Numerous slender longitudinal tubules originating from the intermediate cisternae, extend longitudinally or obliquely and form elongated oval networks of various sizes in front of the A-band, then fuse to form the H-band collar (fenestrated collar) around the myofibrils. On the surface of the H-band collar, small fenestrations as well as tiny hollows are seen. The three-dimensional structure of SR is basically the same in all three muscle fiber-types. However, the SR is sparse on the surface of mitochondria, so the mitochondria-rich red fiber has a smaller total volume of SR than the mitochondria-poor white fiber. The volume of SR of the intermediate fiber is intermediate between other the two.  相似文献   

18.
Odhiambo TR 《Tissue & cell》1970,2(2):233-248
An electron microscopic study of the sheath enclosing the accessory reproductive glands of the male desert locust has shown that it consists, for the most part, of a single myofibril, and that other tissues (nerve fibres, tracheal elements, and the fat body) are also associated with it to a greater or lesser extent. The myofibril has special features associated with the Z-bands, including the regular infolding and the attachment of the sarcolemma at the Z-bands, and the synapsing of nerve axons at these infoldings, which perhaps facilitate the rapid transmission of nerve impulses into the myofibril. The distribution of the T-systems and sarcoplasmic reticulum (SR) is described, and their relationship to the speed of action of the myofibril is discussed. The myofibril exhibits three distinct bands: the A-, I-, and Z-bands. In the A-band, each thick myofilament is surrounded by 10 to 12 thin filaments. This finding is related to similar findings in other arthropod visceral and slow-acting skeletal muscles. The basement membrane surrounding the glandular epithelium comprises two parts: the inner part, which is structureless and contains neutral mucopolysaccharide; and the outer part which contains numerous collagen-like fibrils and stains for acid mucopolysaccharide. This characteristic is considered in relation to the insertion and function of the myofibril.  相似文献   

19.
Ruthenium-red staining of skeletal and cardiac muscles   总被引:1,自引:0,他引:1  
Summary The effects of ruthenium red (RR) on amphibian and mammalian skeletal muscles and mammalian myocardium were examined. In skeletal muscle cells, a discrete pattern of staining can be brought about within the lumina of the terminal cisternae (junctional sarcoplasmic reticulum [SR]) by sequential exposure to RR and OsO4. After prolonged immersion in RR solution, formation of pentalaminar segments (zippering) occurs at various points along the longitudinal (network) SR tubules. Zippering can be elicited in skeletal SR at any stage of preparation prior to postfixation with OsO4. By means of dispersive X-ray analysis, both ruthenium and osmium were seen to be deposited in skeletal muscle junctional SR, and ruthenium was detected in the myoplasm as well. In skeletal muscles whose T tubules were ruptured by exposure to glycerol, the pattern of SR staining and zippering resulting from ruthenium-osmium treatment was not affected. These findings indicate that RR is capable of passage across the sarcolemma of skeletal muscle and that this passage does not occur solely under conditions in which the plasma membrane is damaged. In contrast, RR does not opacify or modify any region of the SR of cardiac muscle. However, after this treatment, randomly distributed opaque bodies, composed of parallel lamellar structures, appear throughout the myocardial cells. A few of these bodies are associated with lipid droplets, but the rest are of unknown origin. The failure of the SR of cardiac muscle to stain after exposure to ruthenium dye (even though this material enters these cells) suggests that the chemical composition of cardiac SR is significantly different from that of skeletal muscle SR.Supported in part by PHS grant HL-11155 (to N.S.) and American Heart Grant-in-Aid 78-753 (to M.S.F.). The authors are grateful to Drs. David Harder and Lawrence Sellin for their assistance with the preparation of frog skeletal muscle, to Dr. S.K. Jirge for his helpful suggestions and discussions, and particularly to Dr. Kenneth R. Lawless and Ms. Ann Marshall of the Department of Materials Sciences, University of Virginia School of Engineering, and Col. John M. Brady of the United States Army Institute of Dental Research, Walter Reed Army Medical Center, for their help with, and for the use of, the X-ray analysis equipment  相似文献   

20.
The ultrastructure of normal and glycerol treated fibers of the closer muscle of the ghost crab, Ocypode cursor, was studiedmthe muscle is composed of presumably phasic (short sarcomeres) and tonic (long sarcomeres) fibers, the latter greatly predominating. Horseradish peroxidase (HRP) was used as an extracellular tracer to delineate the tubular system (TS), and to determine to what extent this system becomes detached from the extracellular space as a result of glycerol treatment. Sarcolemmal clefts invade deeply into the muscle at Z-lines and I-bands; tubules invaginate into the muscle from the clefts and from the surface sarcolemma at the Z-lines, A-I overlaps and A-bands. A tubules are in frequent diadic or tetradic contact with the sarcoplasmic reticulum (SR), whereas Z tubules appear to be randomly associated with SR, terminal cisterns (TC) and Z-line fibrils. When HRP was administered to normal muscle, black reaction product was found adjacent to the outer surface of the sarcolemma, within the clefts and within profiles of the TS throughout the tissue. In glycerol treated muscle peripheral vacuolation frequently occurred; black reaction product penetrated only as far as the vacuoles and into dilated Z-line tubules, but was virtually absent from the rest of the TS. This lack of continuity between the extracellular space and the A tubules indicated disruption or constriction of the A tubules as a result of glycerol treatment, although Z tubule contact with the extracellular space appeared unimpaired. These findings provide ultrastructural correlates of the electrophysiological changes produced by glycerol treatment of the closer muscle of the ghost crab (Papir, 1973), namely, interference with excitation-contraction (e-c) coupling. The random association of the Z tubules with SR and TC, and their resistance to disruption by glycerol treatment, tend to endorse the claims that the Z tubules in crustacean muscle are not directly involved in e-c coupling (Brandt et al., 1965; Peachey, 1967; Selverston, 1967).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号