首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Summary A synthetic peptide library composed of polystyrene beads was prepared employing the split-synthesis approach, using the 20 natural l-amino acids except for cysteine. This library was screened for interaction with glycosomal phosphoglycerate kinase (gPGK) of T. brucei, labelled with fluorescein or with biotin. Affinity beads were individually subjected to Edman microsequence analysis. The corresponding peptide sequences were synthesized as free peptide acids and evaluated for enzyme activity inhibition. The pentapeptide NWMMF was able to selectively inhibit gPGK with an IC50 of 80 M.  相似文献   

2.
Polystyrene beads, impregnated with mineral salts/glutamine medium as inert support, were used to produce Lxxx-glutaminase from Vibrio costicola by solid-state fermentation. Maximum enzyme yield, 88 U/g substrate, was after 36 h. Glucose at 10 g/kg enhanced the enzyme yield by 66%. The support system allowed glutaminase to be recovered with higher specific activity and lower viscosity than when a wheat-bran system was used.The authors are with the Microbial Technology Unit, Centre for Biotechnology, Cochin University of Science and Technology, Cochin-682 022, India  相似文献   

3.
The catabolism of d-galactose in yeast depends on the enzymes of the Leloir pathway. In contrast, Aspergillus nidulans mutants in galactokinase (galE) can still grow on d-galactose in the presence of ammonium—but not nitrate—ions as nitrogen source. A. nidulans galE mutants transiently accumulate high (400 mM) intracellular concentrations of galactitol, indicating that the alternative d-galactose degrading pathway may proceed via this intermediate. The enzyme degrading galactitol was identified as l-arabitol dehydrogenase, because an A. nidulans loss-of-function mutant in this enzyme (araA1) did not show NAD+-dependent galactitol dehydrogenase activity, still accumulated galactitol but was unable to catabolize it thereafter, and a double galE/araA1 mutant was unable to grow on d-galactose or galactitol. The product of galactitol oxidation was identified as l-sorbose, which is a substrate for hexokinase, as evidenced by a loss of l-sorbose phosphorylating activity in an A. nidulans hexokinase (frA1) mutant. l-Sorbose catabolism involves a hexokinase step, indicated by the inability of the frA1 mutant to grow on galactitol or l-sorbose, and by the fact that a galE/frA1 double mutant of A. nidulans was unable to grow on d-galactose. The results therefore provide evidence for an alternative pathway of d-galactose catabolism in A. nidulans that involves reduction of the d-galactose to galactitol and NAD+-dependent oxidation of galactitol by l-arabitol dehydrogenase to l-sorbose.  相似文献   

4.
A bacterium (strain HC1) capable of assimilating rice bran hemicellulose was isolated from a soil and identified as belonging to the genus Paenibacillus through taxonomical and 16S rDNA sequence analysis. Strain HC1 cells grown on rice bran hemicellulose as a sole carbon source inducibly produced extracellular xylanase and intracellular glycosidases such as β-d-glucosidase and β-d-arabinosidase. One of them, β-d-glucosidase was further analyzed. A genomic DNA library of the bacterium was constructed in Escherichia coli and gene coding for β-d-glucosidase was cloned by screening for β-d-glucoside-degrading phenotype in E. coli cells. Nucleotide sequence determination indicated that the gene for the enzyme contained an open reading frame consisting of 1,347 bp coding for a polypeptide with a molecular mass of 51.4 kDa. The polypeptide exhibits significant homology with other bacterial β-d-glucosidases and belongs to glycoside hydrolase family 1. β-d-Glucosidase purified from E. coli cells was a monomeric enzyme with a molecular mass of 50 kDa most active at around pH 7.0 and 37°C. Strain HC1 glycosidases responsible for degradation of rice bran hemicellulose are expected to be useful for structurally determining and molecularly modifying rice bran hemicellulose and its derivatives.  相似文献   

5.
Summary The presence of an enzyme activity which hydrolyzes glycyl-d-aspartate was found in the homogenates of pig kidney cortex. The activity was inhibited by metal chelating agents and cilastatin, suggesting that the enzyme was a cilastatin-sensitive metallo-peptidase. Of the two hydrolysis products,d-aspartate was found to be less accumulated than glycine. The fate ofd-aspartate was, therefore, examined and the amino acid was found to be converted tol-aspartate,l-alanine and pyruvate, in the presence ofl-glutamate. Experiments with enzyme inhibitors suggested that the conversion involvedd-aspartate oxidase, aspartate aminotransferase and alanine aminotransferase as well as decarboxylation of oxaloacetate produced fromd-aspartate. All the results indicate that the enzymes in the pig kidney can liberate thed-aspartyl residue in the peptide and convert it to the compounds readily utilizable. The finding suggests a probable metabolic pathway of thed-aspartate-containing peptide.  相似文献   

6.
Glutaminase from Stenotrophomonas maltophilia NYW-81 was purified to homogeneity with a final specific activity of 325 U/mg. The molecular mass of the native enzyme was estimated to be 41 kDa by gel filtration. A subunit molecular mass of 36 kDa was measured with SDS-PAGE, thus indicating that the native enzyme is a monomer. The N-terminal amino acid sequence of the enzyme was determined to be KEAETQQKLANVVILATGGTIA. Besides l-glutamine, which was hydrolyzed with the highest specific activity (100%), l-asparagine (74%), d-glutamine (75%), and d-asparagine (67%) were also hydrolyzed. The pH and temperature optima were 9.0 and approximately 60°C, respectively. The enzyme was most stable at pH 8.0 and was highly stable (relative activities from 60 to 80%) over a wide pH range (5.0–10.0). About 70 and 50% of enzyme activity was retained even after treatment at 60 and 70°C, respectively, for 10 min. The enzyme showed high activity (86% of the original activity) in the presence of 16% NaCl. These results indicate that this enzyme has a higher salt tolerance and thermal stability than bacterial glutaminases that have been reported so far. In a model reaction of Japanese soy sauce fermentation, glutaminase from S. maltophilia exhibited high ability in the production of glutamic acid compared with glutaminases from Aspergillus oryzae, Escherichia coli, Pseudomonas citronellolis, and Micrococcus luteus, indicating that this enzyme is suitable for application in Japanese soy sauce fermentation.  相似文献   

7.
The anaerobic fungus Piromyces sp. strain E2 metabolizes xylose via xylose isomerase and d-xylulokinase as was shown by enzymatic and molecular analyses. This resembles the situation in bacteria. The clones encoding the two enzymes were obtained from a cDNA library. The xylose isomerase gene sequence is the first gene of this type reported for a fungus. Northern blot analysis revealed a correlation between mRNA and enzyme activity levels on different growth substrates. Furthermore, the molecular mass calculated from the gene sequence was confirmed by gel permeation chromatography of crude extracts followed by activity measurements. Deduced amino acid sequences of both genes were used for phylogenetic analysis. The xylose isomerases can be divided into two distinct clusters. The Piromyces sp. strain E2 enzyme falls into the cluster comprising plant enzymes and enzymes from bacteria with a low G+C content in their DNA. The d-xylulokinase of Piromyces sp. strain E2 clusters with the bacterial d-xylulokinases. The xylose isomerase gene was expressed in the yeast Saccharomyces cerevisiae, resulting in a low activity (25±13 nmol min–1mg protein-1). These two fungal genes may be applicable to metabolic engineering of Saccharomyces cerevisiae for the alcoholic fermentation of hemicellulosic materials.  相似文献   

8.
Escherichia coli cells expressing l-arabinose isomerase from Thermotoga neapolitana (TNAI) were immobilized in calcium alginate beads. The resulting cell reactor (2.4 U, t 1/2 = 43 days at 70°C) in a continuous recycling mode at 70°C produced 49 and 38 g d-tagatose/l from 180 and 90 g d-galactose/l, respectively, within 12 h.  相似文献   

9.
The l-rhamnose isomerase gene (L -rhi) encoding for l-rhamnose isomerase (l-RhI) from Bacillus pallidus Y25, a facultative thermophilic bacterium, was cloned and overexpressed in Escherichia coli with a cooperation of the 6×His sequence at a C-terminal of the protein. The open reading frame of L -rhi consisted of 1,236 nucleotides encoding 412 amino acid residues with a calculated molecular mass of 47,636 Da, showing a good agreement with the native enzyme. Mass-produced l-RhI was achieved in a large quantity (470 mg/l broth) as a soluble protein. The recombinant enzyme was purified to homogeneity by a single step purification using a Ni-NTA affinity column chromatography. The purified recombinant l-RhI exhibited maximum activity at 65°C (pH 7.0) under assay conditions, while 90% of the initial enzyme activity could be retained after incubation at 60°C for 60 min. The apparent affinity (K m) and catalytic efficiency (k cat/K m) for l-rhamnose (at 65°C) were 4.89 mM and 8.36 × 105 M−1 min−1, respectively. The enzyme demonstrated relatively low levels of amino acid sequence similarity (42 and 12%), higher thermostability, and different substrate specificity to those of E. coli and Pseudomonas stutzeri, respectively. The enzyme has a good catalyzing activity at 50°C, for d-allose, l-mannose, d-ribulose, and l-talose from d-psicose, l-fructose, d-ribose and l-tagatose with a conversion yield of 35, 25, 16 and 10%, respectively, without a contamination of by-products. These findings indicated that the recombinant l-RhI from B. pallidus is appropriate for use as a new source of rare sugar producing enzyme on a mass scale production.  相似文献   

10.
Achromobacter xylosoxidans is known to utilize d-glucose via the modified Entner-Doudoroff pathway. Although d-gluconate dehydratase produced from this bacterium was purified and partially characterized previously, a gene that encodes this enzyme has not yet been identified. To obtain protein information on bacterial d-gluconate dehydratase, we partially purified d-gluconate dehydratase in A. xylosoxidans and investigated its biochemical properties. Two degenerate primers were designed based on the N-terminal amino acid sequence of the partially purified d-gluconate dehydratase. Through PCR performed using degenerate primers, a 1,782-bp DNA sequence encoding the A. xylosoxidans d-gluconate dehydratase (gnaD) was obtained. The deduced amino acid sequence of A. xylosoxidans gnaD showed strong similarity with that of proteins belonging to the dihydroxy-acid dehydratase/phosphogluconate dehydratase family (COG0129). This is in contrast to the archaeal d-gluconate dehydratase, which belongs to the enolase superfamily (COG4948). The phylogenetic tree showed that A. xylosoxidans d-gluconate dehydratase is closer to the 6-phosphogluconate dehydratase than the dihydroxy-acid dehydratase. Interestingly, a clade containing A. xylosoxidans enzyme was clustered with proteins annotated as a second and a third dihydroxy-acid dehydratase in the genomes of Clostridium acetobutylicum (Cac_ilvD2) and Streptomyces ceolicolor (Sco_ilvD2, Sco_ilvD3), indicating that the function of these enzymes is the dehydration of d-gluconate.  相似文献   

11.
A non-characterized gene, previously proposed as the d-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with d-fructose and decreased for other substrates in the order: d-tagatose, d-psicose, d-ribulose, d-xylulose and d-sorbose. Its activity was maximal at pH 9 and 40°C while being enhanced by Mn2+. At pH 9 and 40°C, 118 g d-psicose l−1 was produced from 700 g d-fructose l−1 after 3 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
α-Chymotrypsin-catalyzed peptide synthesis was carried out between an N-protected D-amino acid ester and an L-amino acid amide (acyl donor, 10 mM; acyl acceptor, 50 mM; enzyme, 2 mg ml−1; pH 8). By using a highly reactive carbamoylmethyl (Cam) ester as acyl donor, the D-amino acid was incorporated into the N-terminus of the resulting dipeptide amide. N-Protected dipeptide amides bearing D-amino acids such as D-Phe, D-Leu and D-Ala at their N-terminus were synthesized in high yields (up to 80%) in 1–3 h.  相似文献   

13.
l-arabinose isomerase (EC5.3.1.4. AI) mediates the isomerization of d-galactose into d-tagatose as well as the conversion of l-arabinose into l-ribulose. The AI from Lactobacillus plantarum SK-2 was purified to an apparent homogeneity giving a single band on SDS–PAGE with a molecular mass of 59.6 kDa. Optimum activity was observed at 50°C and pH 7.0. The enzyme was stable at 50°C for 2 h and held between pH 4.5 and 8.5 for 1 h. AI activity was stimulated by Mn2+, Fe3+, Fe2+, Ca2+ and inhibited by Cu2+, Ag+, Hg2+, Pb2+. d-galactose and l-arabinose as substrates were isomerized with high activity. l-arabitol was the strongest competitive inhibitor of AI. The apparent Michaelis–Menten constant (K m), for galactose, was 119 mM. The first ten N-terminal amino acids of the enzyme were determined as MLSVPDYEFW, which is identical to L. plantarum (Q88S84). Using the purified AI, 390 mg tagatose could be converted from 1,000 mg galactose in 96 h, and this production corresponds to a 39% equilibrium.  相似文献   

14.
Toxic and nontoxic peptides were isolated from the cyanobacterium Microcystis aeruginosa PCC 7806 by a procedure including extraction of cells with water-saturated 1-butanol, chromatography of the extract on silica gel plates and high performance liquid chromatography (HPLC) on Partisil-5. The toxin was shown to be only a minor constituent, being negatively charged and thus separable by electrophoresis, within the HPLC-purified fraction. It contained erythro-β-methyl-D-Asp, D-Glu, D-Ala, L-Leu, and L-Arg known to be part of the Microcystis peptide-toxin with Mr 994. The major part of the HPLC-purified fraction was assigned, however, to a nontoxic peptide with a Mr of 956. Partial hydrolysis studies of the nontoxic peptide(s) revealed amino acid sequences composed of D-Glu, N-methyl-Phe, and 3,4-dehydro-Pro, aside from the common L-amino acids. Cyclic linkage in the nontoxic peptide(s) appears likely.  相似文献   

15.
Employing a photoaffinity labeling procedure with 8-azido-S-adenosyl-l-[methyl-3H]methionine (8-N3-Ado[methyl-3H]Met), the binding sites for S-adenosyl-l-methionine (AdoMet) of three protein N-methyltransferases [AdoMet:myelin basic protein-arginine N-methyltransferase (EC2.1.1.23); AdoMet:histone-arginin N-methyltransferase (EC2.1.1.23); and AdoMet:cytochromec-lysine N-methyltransferase (EC2.1.1.59)] have been investigated. The incorporation of the photoaffinity label into the enzymes upon UV irradiation was highly specific. In order to define the AdoMet binding sites, the photolabeled enzymes were sequentially digested with trypsin, chymotrypsin, and endoproteinase Glu-C. After each proteolytic digestion, radiolabeled peptide from each enzyme was resolved on HPLC first by gradient elution and further purified by an isocratic elution. Retention times of the purified radiolabeled peptides from the three enzymes from the corresponding proteolysis were significantly different, indicating that their sizes and compositions were different. Amino acid composition analysis of these peptides confirmed further that the AdoMet binding sites of these protein N-methyltransferases are quite different.  相似文献   

16.
Park CS  Yeom SJ  Kim HJ  Lee SH  Lee JK  Kim SW  Oh DK 《Biotechnology letters》2007,29(9):1387-1391
The rpiB gene, encoding ribose-5-phosphate isomerase (RpiB) from Clostridium thermocellum, was cloned and expressed in Escherichia coli. RpiB converted d-psicose into d-allose but it did not convert d-xylose, l-rhamnose, d-altrose or d-galactose. The production of d-allose by RpiB was maximal at pH 7.5 and 65°C for 30 min. The half-lives of the enzyme at 50°C and 65°C were 96 h and 4.7 h, respectively. Under stable conditions of pH 7.5 and 50°C, 165 g d-allose l1 was produced without by-products from 500 g d-psicose l−1 after 6 h.  相似文献   

17.
A recombinant putative glycoside hydrolase from Caldicellulosiruptor saccharolyticus was purified with a specific activity of 12 U mg−1 by heat treatment and His-Trap affinity chromatography, and identified as a single 56 kDa band upon SDS-PAGE. The native enzyme is a dimer with a molecular mass of 112 kDa as determined by gel filtration. The enzyme exhibited its highest activity when debranched arabinan (1,5-α-l-arabinan) was used as the substrate, demonstrating that the enzyme was an endo-1,5-α-l-arabinanase. The K m, k cat, and k cat/K m values were 18 mg ml−1, 50 s−1, and a 2.8 mg ml−1 s−1, respectively. Maximum enzyme activity was at pH 6.5 and 75°C. The half-lives of the enzyme at 65, 70 and 75°C were 2440, 254 and 93 h, respectively, indicating that it is the most thermostable of the known endo-1,5-α-l-arabinanases.  相似文献   

18.
Corynebacterium glutamicum R was metabolically engineered to broaden its sugar utilization range to d-xylose and d-cellobiose contained in lignocellulose hydrolysates. The resultant recombinants expressed Escherichia coli xylA and xylB genes, encoding d-xylose isomerase and xylulokinase, respectively, for d-xylose utilization and expressed C. glutamicum R bglF 317A and bglA genes, encoding phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) β-glucoside-specific enzyme IIBCA component and phospho-β-glucosidase, respectively, for d-cellobiose utilization. The genes were fused to the non-essential genomic regions distributed around the C. glutamicum R chromosome and were under the control of their respective constitutive promoter trc and tac that permitted their expression even in the presence of d-glucose. The enzyme activities of resulting recombinants increased with the increase in the number of respective integrated genes. Maximal sugar utilization was realized with strain X5C1 harboring five xylA–xylB clusters and one bglF 317A bglA cluster. In both d-cellobiose and d-xylose utilization, the sugar consumption rates by genomic DNA-integrated strain were faster than those by plasmid-bearing strain, respectively. In mineral medium containing 40 g l−1 d-glucose, 20 g l−1 d-xylose, and 10 g l−1 d-cellobiose, strain X5C1 simultaneously and completely consumed these sugars within 12 h and produced predominantly lactic and succinic acids under growth-arrested conditions.  相似文献   

19.
Summary Inducible resistance to the glycopeptide antibiotics vancomycin and teicoplanin is mediated by plasmid pIP816 in Enterococcus faecium strain BM4147. Vancomycin induced the synthesis of a ca. 40 kDa membrane-associated protein designated VANA. The resistance protein was partially purified and its N-terminal sequence was determined. A 1761 by DNA restriction fragment of pIP816 was cloned into Escherichia coli and sequenced. When expressed in E. coli, this fragment encoded a ca. 40 kDa protein that comigrated with VANA from enterococcal membrane fractions. The ATG translation initiation codon for VANA specified the methionine present at the N-terminus of the protein indicating the absence of signal peptide processing. The amino acid sequence deduced from the sequence of the vanA gene consisted of 343 amino acids giving a protein with a calculated Mr of 37400. VANA was structurally related to the d-alanyl-d-alanine (d-ala-d-ala) ligases of Salmonella typhimurium (36% amino acid identity) and of E. coli (28%). The vanA gene was able to transcomplement an E. coli mutant with thermosensitive d-ala-d-ala ligase activity. Thus, the inducible resistance protein VANA was structurally and functionally related to cytoplasmic enzymes that synthesize the target of glycopeptide antibiotics. Based on these observations we discuss the possibility that resistance is due to modification of the glycopeptide target.  相似文献   

20.
The purpose of this study was to identify the seleno-l-methionine (l-SeMet) α,γ-elimination enzyme that catalyzes l-SeMet to generate methylselenol (CH3SeH), a notable intermediate for the metabolism of selenium compounds, in mammalian tissues. The enzyme purified from ICR mouse liver was separated by one-dimensional gel electrophoresis, and the specific band was subjected to in-gel trypsin digestion followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometric analysis. In the peptide mass fingerprinting search, the mass numbers of 14 peptides produced by tryptic digestion of the enzyme were consistent with the theoretical mass numbers calculated from the amino acid sequence of murine cystathionine γ-lyase (E.C. 4.4.1.1). The peptide sequence tags search was also performed to obtain the amino acid sequence data of five tryptic peptides. These peptides were significantly identical to the partial amino acid sequences of cystathionine γ-lyase. This enzyme was clearly shown to catalyze the α, γ-elimination reaction of l-cystathionine by the enzymological research. The K m value for the catalysis of l-cystathionine was 0.81 mM and V max was. 0.0013 unit/mg protein. These results suggested that cystathionine γ-lyase catalyzes l-SeMet to generate CH3SeH by its α,γ-elimination reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号