首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Structural studies of the capsular polysaccharide of Klebsiella type 52   总被引:1,自引:0,他引:1  
The structure of the capsular polysaccharide from Klebsiella Type 52 has been investigated. Methylation analysis, characterization by gas-liquid chromatography-mass spectrometry of oligosaccharide derivatives obtained on partial hydrolysis of the methylated polysaccharide with acid, and specific degradation of the methylated polysaccharide by successive treatments with base and acid followed by characterization of the product, were the principal methods used. The polysaccharide is composed of hexasaccharide repeating-units containing D-glucuronic acid, D-galactose, and L-rhamnose, in the ratios 1:3:2. A structure for these units, disregarding the anomeric natures of the sugar residues, is proposed.  相似文献   

2.
O-Specific polysaccharide, obtained by mild acid degradation of the Proteus mirabilis 03 lipopolysaccharide, was dephosphorylated with 48% HF to give a linear polysaccharide and an amino acid, N-(2-hydroxyethyl)-D-alanine. The structure of the polysaccharide was determined by methylation, the Smith degradation and computer-assisted analysis of the 13C NMR spectra of original and dephosphorylated polymers and oligomers. The structure of the amino acid was elucidated by using 1H and 13C NMR spectroscopy and mass spectrometry (applied to the acetylated methyl ester derivative), optical rotation and CD spectrum data and comparison with the synthetic sample. The repeating unit of P. mirabilis 03 O-specific polysaccharide is shown to have the following structure: (formula; see text)  相似文献   

3.
The capsular polysaccharide from klebsiella type 61 was found to contain d-galactose, d-glucose, d-mannose, and d-glucuronic acid in the ratios 1:2:1:1. Acid hydrolysis of the polysaccharide gave one aldobiouronic acid, whose structure was established. Methylation analysis of the polysaccharide provided information about the linkages in the polysaccharide. The polysaccharide is composed of a pentasaccharide repeating unit for which structures are proposed.  相似文献   

4.
The structure of an acidic polysaccharide from Pseudoalteromonas atlantica strain 14165 containing 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid (di-N-acetylpseudaminic acid, Pse5Ac7Ac) has been elucidated. The polysaccharide was studied by 1H and 13C NMR spectroscopy, including 2D experiments, along with sugar and methylation analyses. After a selective hydrolysis a modified polysaccharide devoid of its side chain could be isolated. It was found that the polysaccharide has pentasaccharide repeating units with following structure: [structure: see text].  相似文献   

5.
The chemical structure of the K4-specific capsular polysaccharide (K4 antigen) of Escherichia coli O5:K4:H4 was elucidated by composition, carboxyl reduction periodate oxidation methylation nuclear-magnetic-resonance spectroscopy and enzymatic cleavage. The polysaccharide consists of a backbone with the structure----3)-beta-D-glucuronyl-(1,4)-beta-D-N-acetylgalactosaminyl(1- to which beta-fructofuranose is linked at C-3 of glucuronic acid. Mild acid hydrolysis liberated fructose and converted the K4 antigen into a polysaccharide which has the same structure as chondroitin. The defructosylated polysaccharide was a substrate for hyaluronidase and chondroitinase. The serological reactivity of the K4 polysaccharide was markedly reduced after defructosylation.  相似文献   

6.
The endotoxin of Bordetella pertussis was cleaved by mild acidic hydrolysis to yield a polysaccharide (polysaccharide I, 15%), a glycolipid (63%) and lipid X (2%). Further treatment of the glycolipid with stronger acid released a second polysaccharide (polysaccharide II, 9%) and material similar to lipid A present in enterobacterial endotoxins. Both polysaccharides possess a single molecule of 3-deoxy-2-octulosonic acid as the reducing, terminal sugar. In polysaccharide II the octulosonic acid is phosphorylated in position 5 and presumably substituted in position 4; in polysaccharide I the octulosonic acid is not phosphorylated, but is substituted in position 5. Following treatment of the endotoxin with strong base, a fragment was isolated that contained bound, non-phosphorylated 3-deoxy-2-octulosonic acid, glucosamine phosphate and fatty acids. This indicated that polysaccharide I, like polysaccharide II, was bound to the lipid region of the endotoxin. The endotoxin structure thus defined is different from that proposed for the lipopolysaccharides of enterobacteria.  相似文献   

7.
O-Specific polysaccharide was obtained by mild acid degradation of Proteus mirabilis O3 lipopolysaccharide. The polysaccharide was dephosphorylated with 48% HF to give a linear polysaccharide and an amino acid, N-(2-hydroxyethyl)-D-alanine. The structure of the polysaccharide was determined by methylation, Smith degradation and computer-assisted analysis of the 13C-NMR spectra of original and dephosphorylated polymers and oligomers. The structure of the amino acid was investigated by using 1H and 13C-NMR spectroscopy and mass spectrometry (applied to the acetylated methyl ester derivative). Its absolute configuration was established by comparison of the optical rotation value and CD spectrum of the natural and synthetic product. On the basis of the data obtained, it was concluded that the repeating unit of P. mirabilis O3 O-specific polysaccharide has the following structure: (formula; see text) Removal of the amino acid phosphate substituent significantly decreased serological activity of the O-specific polysaccharide, thus showing the immunodominant role of this group. Serological cross-reactions between P. mirabilis O3 and O27 were demonstrated and tentatively substantiated.  相似文献   

8.
The structure of an acidic O-specific polysaccharide from the marine bacterium Cellulophaga baltica was established by chemical methods of analysis and NMR spectroscopy. The polysaccharide was shown to consist of repeating tetrasaccharide units containing two mannose residues, one N-acetyl-D-glucosamine residue, and one D-glucuronic acid residue. An O-acetyl group was also found in the polysaccharide in nonstoichiometric amount. Thus, this polysaccharide had the following structure: [carbohydrate structure: in text].  相似文献   

9.
The structure of the capsular polysaccharide from Klebsiella Type 47 has been investigated. Methylation analysis and characterization of oligosaccharides obtained on acid hydrolysis were the principal methods used. The polysaccharide is composed of tetrasaccharide repeating-units, and a structure for these units is proposed.  相似文献   

10.
The anomeric proton magnetic resonances of Mycobacterium smegmatis 3-O-methylmannose polysaccharide have chemical shifts intermediate betwen those of nonaglucoamylose and alpha-cyclodextrin, and on addition of palmitic acid most of these resonances are shifted upfield toward that of the cyclodextrin. This suggests that the methylated polysaccharide could have a conformation with some secondary structure intermediate between those of the two reference compounds, and that it forms a tightened coil upon addition of the lipid which yields an inclusion complex with the polysaccharide. The change in chemical shift is linear with lipid concentration, which indicates that the complex undergoes rapid exchange with free polysaccharide. The changes in proton chemical shifts of the polysaccharide and of the palmitic acid are consistent with the fatty acid being inserted in the coiled polysaccharide with its carboxyl group near the methyl aglycon.  相似文献   

11.
M Moreau  R Chaby    L Szabo 《Journal of bacteriology》1984,159(2):611-617
The tetrasaccharide beta-D-glucopyranosyl-(1,3)-beta-D-glucopyranuronyl-(1, 2)-L-glycero-alpha-D-manno-heptopyranosyl-(1,5)-3-deoxy-D-manno-2- octulosonic acid was isolated after treatment of polysaccharide 1 of Bordetella pertussis endotoxin with nitrous acid. Taking into account previously identified di- and trisaccharide fragments and analytical data obtained for the intact polysaccharide 1, we present the structure of a heptasaccharide that is thought to represent the region immediately adjacent to the hydrophobic (lipid A) moiety of lipopolysaccharide 1 of the B. pertussis endotoxin. This heptasaccharide represents 50 to 60% of the complete polysaccharide structure.  相似文献   

12.
A specific acidic polysaccharide was isolated from Sh. boydii type 8 antigenic lipopolysaccharide after mild hydrolysis followed by chromatography on Sephadex G-50. The polysaccharide consists of D-glucuronic acid, D-galacturonic acid, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose and 2-amino-1,3-propanediol residues in 1:1:1:1:1 ratio. From the results of methylation analysis, partial acid hydrolysis and Smith degradation, the structure of the repeating unit of the specific polysaccharide was deduced as: (Formula: see text). The 13C NMR spectra of native, O-deacetylated and carboxyl-reduced polysaccharides, as well as the spectrum of oligosaccharide produced by Smith degradation were interpreted. The 13C NMR data fully confirmed the structure of the polysaccharide repeating unit.  相似文献   

13.
The application of 13-C nuclear magnetic resonance to the analysis of some sialic acid-containing meningococcal polysaccharide antigens is described. Complete assignments of the spectra of both the native serogroup B and the de-O-acetylated serogroup C polysaccharides have been made. These assignments were based on the corresponding data for some related monomers (sialic acid and its alpha-and beta-methylglycosides) and on supportive chemical evidence. The data indicate that the serogroup B polysaccharide is a 2 yields 8-alpha-linked homopolymer of sialic acid, identical in structure with colominic acid from Escherichia coli, whereas the de-O-acetylated serogroup C polysaccharide is a 2 yield 9-alpha-linked homopolymer. The native serogroup C polysaccharide is O-acetylated (1.16 mol of O-acetyl per sialic acid residue), all the O-acetyl substituents being located only at C-7 and C-8 of the sialic acid residues, and in addition contains unacetylated residues (24%). The polysaccharide contains di-O-acetylated residues (O-acetyl on C-7 and C-8), and at least one of the possible monoacetylated residues at C-7 or C-8.  相似文献   

14.
The exopolysaccharide slime colanic acid has been isolated from representative strains of Escherichia coli, Salmonella typhimurium and Aerobacter cloacae. Analysis showed that each polymer contained glucose, galactose, fucose and glucuronic acid, together with acetate and pyruvate. The molar proportions of these components were 1:1.8:1.9:1:1:1 approximately. On the basis of periodate oxidation of the natural and deacetylated polysaccharide, glucose is proposed as the site of the acetyl groups. The pyruvate is attached to galactose. Three neutral oligosaccharides and ten electrophoretically mobile oligosaccharides were isolated and partially characterized. Four of the fragments were esters of pyruvic acid. Most oligosaccharides were isolated from all three polysaccharide preparations. Three further oligosaccharides were isolated from carboxyl-reduced colanic acid and sodium borotritide was used to label the glucose derived from glucuronic acid in these fragments. One trisaccharide was obtained from periodate-oxidized polysaccharide. On the basis of these oligosaccharides a repeating hexasaccharide unit of the following structure is proposed: [Formula: see text] The significance of this structure in colanic acid biosynthesis is discussed.  相似文献   

15.
The O-specific polysaccharide of Proteus vulgaris O39 was found to contain a new acidic component of Proteus lipopolysaccharides, 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid (di-N-acetylpseudaminic acid, Pse5Ac7Ac). The following structure of the polysaccharide was determined by NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, ROESY, and 1H,(13)C HMQC experiments, along with selective cleavage of the polysaccharide by solvolysis with anhydrous trifluoromethanesulfonic (triflic) acid: -->8)-beta-Psep5Ac7Ac-(2-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D-GlcpNAc-(1--> The structure established is unique among the O-specific polysaccharides, which is in accordance with classification of the strain studied into a separate Proteus serogroup.  相似文献   

16.
The acidic capsular polysaccharide isolated from Escherichia coli O9:K9:H12 was investigated by using n.m.r. spectroscopy, methylation analysis, periodate oxidation, and bacteriophage-borne enzyme degradation. The polysaccharide, the structure of which is shown below, is the third E. coli capsular polysaccharide reported to contain neuraminic acid, the others being the K1 and K92 polysaccharides, and it is the first in the E. coli series shown to contain a 4-linked neuraminic acid unit.  相似文献   

17.
The exocellular polysaccharide S-7, a heteropolysaccharide from Azotobacter indicus var. myxogenes has been studied using methylation analysis, Smith degradation, partial acid hydrolysis, NMR spectroscopy and mass spectrometry as the principal methods. It is concluded that the repeating unit has the following structure: [structure: see text] The absolute configuration of the deoxyhexuronic acid was deduced from 1H NMR chemical shifts and is most likely D. Approximately two O-acetyl groups per repeating unit are present, one of which is presumably on the Rha residue. The structure bears great resemblance to another polysaccharide, recently studied, produced by Sphingomonas paucimobilis I-886.  相似文献   

18.
The structure of a neutral polysaccharide isolated by degradation with dilute acetic acid of the lipopolysaccharide (LPS) of P. mirabilis O24 has been determined recently [E. Literacka et al., FEBS Lett., 456 (1999) 227-231]. Further studies of this LPS using alkaline degradation and hydrolysis at pH 4.5 showed that the polysaccharide chain includes an acetal-linked pyruvic acid residue, which is removed completely during delipidation with acetic acid. A revision using 1H and 13C NMR spectroscopy and methylation analysis resulted in determination of the following full structure of the repeating unit of the O-specific polysaccharide: carbohydrate sequence [see text] where D-Gal3,4(S-Pyr) is 3,4-O-[(S)-1-carboxyethylidene]-D-galactose.  相似文献   

19.
On mild acid degradation of the lipopolysaccharide of the marine microorganism Pseudoalteromonas nigrifaciens KMM 161 an O-specific polysaccharide containing D-galactose, 2-acetamido-2-deoxy-D-glucose, 3,6-dideoxy-3-(4-hydroxybutyramido)-D-galactose, and 2-acetamido-2-deoxy-L-guluronic acid residues was obtained. From the results of Smith degradation, O-deacetylation of the polysaccharide, and NMR spectroscopy the following structure of the tetrasaccharide repeating unit of the O-specific polysaccharide was established [see reaction]. It should be noted that the same structure occurs in the antigenic polysaccharide of Pseudoalteromonas nigrifaciens KMM 158 described earlier as Alteromonas macleodii 2MM6.  相似文献   

20.
A new non-sulphated acidic polysaccharide with an average molecular mass of 55 kDa was isolated from squid pen case after papain digestion and beta-elimination. This polysaccharide contains mainly L-iduronic acid, D-glucuronic acid, D-galactosamine, D-glucosamine and significant amounts of neutral sugars as glucose, galactose and fucose. The polysaccharide was not degraded to the relative disaccharides by chondroitinases ABC, AC and B, hyaluronidase and keratanase or by treatment with heparinases, suggesting a structure different from those of known glycosaminoglycans. The polysaccharide cannot form self aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号