首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the growth cycle of normal fibroblasts and of fibroblasts deficient in glucose-6-phosphate dehydrogenase activity, the concentration of 5-phosphoribosyl-1-pyrophosphate and of Pi, as well as the activity of 5-phosphoribosyl-1-pyrophosphate synthetase, decreased to stable values in confluent cultures. A high degree of correlation (0.89 and 0.91 for two normal and 0.69 for one glucose-6-phosphate dehydrogenase-deficient cell strain, respectively) was shown between intracellular Pi and 5-phosphoribosyl-1-pyrophosphate concentrations under varying culture and incubation conditions. 5-phosphoribosyl-1-pyrophosphate concentrations were elevated in normal fibroblasts incubated with methylene blue only if intracellular Pi levels were high. Neither methylene blue nor 6-aminonicotinamide, singly, affected intracellular Pi concentrations. However, when normal cells were pretreated with 6-aminonicotinamide and then with methylene blue, intracellular Pi decreased, 5-phosphoribosyl-1-pyrophosphate was depleted, and its rate of generation decreased. Under similar conditions, glucose-6-phosphate dehydrogenase-deficient fibroblasts maintained unaltered Pi levels, and 5-phosphoribosyl-1-pyrophosphate concentration and generation were slightly increased. The decrease in intracellular Pi in normal cells after the combined treatment was commensurate with an accumulation of 6-phosphogluconate, which did not take place in mutant cells. The changes in 5-phosphoribosyl-1-pyrophosphate synthesis, whether due to the stage of growth or various experimental manipulations, were always concordant with changes in intracellular Pi level. The regulatory role of Pi is consistent with the known enzymic properties of 5-phosphoribosyl-1-pyrophosphate synthetase.  相似文献   

2.
The object of this work stems from our previous studies on the mechanisms responsible of ribose-1-phosphate- and 5-phosphoribosyl-1-pyrophosphate-mediated nucleobase salvage and 5-fluorouracil activation in rat brain (Mascia, L., Cappiello M., Cherri, S., and Ipata, P. L. (2000) Biochim. Biophys. Acta 1474, 70-74; Mascia, L., Cotrufo, T., Cappiello, M., and Ipata, P. L. (1999) Biochim. Biophys. Acta 1472, 93-98). Here we show that when ATP at "physiological concentration" is added to dialyzed extracts of rat brain in the presence of natural nucleobases or 5-fluorouracil, adenine-, hypoxanthine-, guanine-, uracil-, and 5-fluorouracil-ribonucleotides are synthesized. The molecular mechanism of this peculiar nucleotide synthesis relies on the capacity of rat brain to salvage purine and pyrimidine bases by deriving ribose-1-phosphate and 5-phosphoribosyl-1-pyrophosphate from ATP even in the absence of added pentose or pentose phosphates. The levels of the two sugar phosphates formed are compatible with those of synthesized nucleotides. We propose that the ATP-mediated 5-phosphoribosyl-1-pyrophosphate synthesis occurs through the action of purine nucleoside phosphorylase, phosphopentomutase, and 5-phosphoribosyl-1-pyrophosphate synthetase. Furthering our previous observations on the effect of ATP in the 5-phosphoribosyl-1-pyrophosphate-mediated 5-fluorouracil activation in rat liver (Mascia, L., and Ipata, P. L. (2001) Biochem. Pharmacol. 62, 213-218), we now show that the ratio [5-phosphoribosyl-1-pyrophosphate]/[ATP] plays a major role in modulating adenine salvage in rat brain. On the basis of our in vitro results, we suggest that massive ATP degradation, as it occurs in brain during ischemia, might lead to an increase of the intracellular 5-phosphoribosyl-1-pyrophosphate and ribose-1-phosphate pools, to be utilized for nucleotide resynthesis during reperfusion.  相似文献   

3.
The pH profiles of crystalline quinolinate phosphoribosyltransferase (EC 2.4.2.19) activities from hog kidney and hog liver were found to vary according to 5-phosphoribosyl-1-pyrophosphate concentration. Both the kidney and liver enzyme activities were inhibited by 5-phosphoribosyl-1-pyrophosphate at an alkaline pH and physiological pH (pH 7.4) but not at an acidic pH. The inhibition by 5-phosphoribosyl-1-pyrophosphate was competitive for quinolinic acid. In the presence of 30% glycerol, both the kidney and liver enzyme activities were inhibited by 5-phosphoribosyl-1-pyrophosphate, even at an acidic pH.  相似文献   

4.
The pathway for de novo biosynthesis of purine nucleotides contains two one-carbon transfer reactions catalyzed by glycinamide ribotide (GAR) and 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylases in which N10-formyltetrahydrofolate is the one-carbon donor. We have found that the antifolates methotrexate (MTX) and piritrexim (PTX) completely block the de novo purine pathway in mouse L1210 leukemia cells growing in culture but with only minor accumulations of GAR and AICAR to less than 5% of the polyphosphate derivatives of N-formylglycinamide ribotide (FGAR) which accumulate when the pathway is blocked completely by azaserine. This azaserine-induced accumulation of FGAR polyphosphates is completely abolished by MTX, indicating that inhibition of the pathway is at or before GAR transformylase (reaction 3; Lyons, S. D., and Christopherson, R. I. (1991) Biochem. Int. 24, 187-197). Three h after the addition of MTX (0.1 microM), cellular 5-phosphoribosyl-1-pyrophosphate has accumulated 3.4-fold while 6-methyl-mercaptopurine riboside (25 microM) induces a 6.3-fold accumulation. These data suggest that amido phosphoribosyltransferase catalyzing reaction 1 of the pathway is the primary site of inhibition. In support of this conclusion, we have found that dihydrofolate-Glu5, which accumulates in MTX-treated cells, is a noncompetitive inhibitor of amido phosphoribosyltransferase with a dissociation constant of 3.41 +/- 0.08 microM for interaction with the enzyme-glutamine complex in vitro. Folate-Glu5, MTX-Glu5, PTX, dihydrotriazine benzenesulfonyl fluoride, and AICAR also inhibit amido phosphoribosyltransferase.  相似文献   

5.
The antimetabolite prodrug 3-deazauridine (3DUrd) inhibits CTP synthetase upon intracellular conversion to its triphosphate, which selectively depletes the intracellular CTP pools. Introduction of a fluorine atom at C3 of 3DUrd shifts its antimetabolic action to inhibition of the orotidylate decarboxylase (ODC) activity of the UMP synthase enzyme complex that catalyzes an early event in pyrimidine nucleotide biosynthesis. This results in concomitant depletion of the intracellular UTP and CTP pools. The new prodrug (designated 3F-3DUrd) exerts its inhibitory activity because its monophosphate is not further converted intracellularly to its triphosphate derivative to a detectable extent. Combinations with hypoxanthine and adenine markedly potentiate the cytostatic activity of 3F-3DUrd. This is likely because of depletion of 5-phosphoribosyl-1-pyrophosphate (consumed in the hypoxanthine phosphoribosyl transferase/adenine phosphoribosyl transferase reaction) and subsequent slowing of the 5-phosphoribosyl-1-pyrophosphate-dependent orotate phosphoribosyl transferase reaction, which depletes orotidylate, the substrate for ODC. Further efficient anabolism by nucleotide kinases is compromised apparently because of the decrease in pK(a) brought about by the fluorine atom, which affects the ionization state of the new prodrug. The 3F-3DUrd monophosphate exhibits new inhibitory properties against a different enzyme of the pyrimidine nucleotide metabolism, namely the ODC activity of UMP synthase.  相似文献   

6.
This report details the effects of methotrexate on the intracellular folate pools of the MCF-7 human breast cancer cell line. To achieve this goal, we designed a high-pressure liquid chromatography system capable of separating the physiologic folates. The folate pools were quantitated following growth and equilibration in 2.25 microM radiolabeled folic acid. Each of the intracellular folates was identified by coelution with standard folates and by chemical/biochemical tests unique to each of the various folates. The 10-formyl-H4PteGlu (where H4PteGlu represents dl-tetrahydrofolic acid) pool accounted for 20.5% of the total intracellular folate pool in untreated cells, whereas 5-formyl-H4PteGlu and H4PteGlu accounted for 6.5 and 10.6%, respectively. The levels of these three folates remained stable throughout cell growth. The 5-methyl-H4PteGlu pool accounted for less than 10% in early growth phase cells but assumed greater than 60% of the total pool by the mid- and late-log phases of cell growth. When the MCF-7 cells were exposed to 1 microM methotrexate, de novo purine synthesis and de novo thymidylate synthesis were rapidly inhibited to less than 20% of control within 3 h. During this time period, rapid alterations in the folate pools also occurred such that dihydrofolic acid levels rose from less than 1% in untreated cells to greater than 30% of the total pool. This rise was accompanied by a parallel fall in 5-methyl-H4PteGlu. H4PteGlu and 5-formyl-H4PteGlu were undetectable following 2 h of methotrexate exposure, but 10-formyl-H4PteGlu, the required cosubstrate for de novo purine synthesis, was preserved at greater than 80% of pretreatment values following a 1 microM methotrexate exposure of up to 21 h. The rapid inhibition of de novo purine synthesis in these cells following methotrexate exposure coupled with a relatively preserved 10-formyl-H4PteGlu pool suggests direct inhibition of this synthetic pathway by the temporally coincident accumulation of dihydrofolic acid and/or methotrexate polyglutamates. This inhibition cannot be ascribed to depletion of the folate cofactor 10-formyl-H4PteGlu.  相似文献   

7.
Adenine uptake and hypoxanthine release by IMP-enriched human erythrocytes has been studied. The presence of IMP within the erythrocytes leads to an increase in the rate of adenine incorporation. Adenine is taken up by IMP-enriched erythrocytes as AMP, even when intracellular 5-phoshorobosyl-1-pyrophosphate concentration is undetectable and too low to allow IMP synthesis from hypoxanthine. During adenine uptake and AMP synthesis, hypoxanthine is released by the cells. The possibility that 5-phosphoribosyl-1-pyrophosphate, necessary for AMP synthesis, is formed through the hypoxanthine guanine phosphoribosyltransferese-catalyzed IMP pyrophosphorolysis is considered.  相似文献   

8.
Interferon effects upon fluorouracil metabolism by HL-60 cells   总被引:4,自引:0,他引:4  
In order to better understand the synergistic antiproliferative effects of interferon in combination with fluorouracil (FUra), we studied effects of alpha 2-interferon upon FUra induced inhibition of thymidylate synthase of HL-60 cells. The 50% inhibitory dose for FUra decreased from approximately 75 microM to 10 microM following interferon treatment, as measured by whole cell activity assays. Enhanced FUra inhibition of cytosolic [3H] - FdUMP binding of interferon treated cells was also noted. FdUMP accumulation following FUra treatment increased over 10 fold in interferon treated cells, but dUMP did not increase. These results suggest that interferon can sensitize cells to FUra inhibition of thymidylate synthase by enhancing accumulation of FdUMP.  相似文献   

9.
A male child, who presented at the age of 3.5 years with acute renal failure, was diagnosed as having partial deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT; EC 2.4.2.8). The underlying HPRT mutation was unique in that the specific activity of HPRT in erythrocyte and in fibroblast lysates was normal, but the rate of uptake of hypoxanthine into nucleotides of intact cultured fibroblasts was markedly reduced (23% of normal). The low functioning of HPRT in the intact fibroblasts was associated with decreased utilization of endogenously generated hypoxanthine and with decreased utilization of the cosubstrate 5-phosphoribosyl-1-pyrophosphate (PRPP). The non-utilized hypoxanthine was excreted into the incubation medium. The accumulation of PRPP was indicated by the 2.3-fold increase in the rate of uptake of adenine into intact cell nucleotides and by the 7. 5-fold enhancement of the rate of de novo purine synthesis. Kinetic studies of HPRT activity in fibroblast lysates revealed reduced affinity of the enzyme for PRPP (apparent K(m) 500 microM in comparison to 25 microM in control lysates), manifested in low activity at low (physiological), but not at high PRPP concentrations. The apparent K(m) for hypoxanthine was normal (23 microM in comparison to 14.2 microM in control lysates). With allopurinol treatment, our patient has had no problems since presentation, and is developing normally at 5 years of age.  相似文献   

10.
The importance of methyl-thioIMP (Me-tIMP) formation for methylmercaptopurine ribonucleoside (Me-MPR) cytotoxicity was studied in Molt F4 cells. Cytotoxicity of Me-MPR is caused by Me-tIMP formation with concomitant inhibition of purine de novo synthesis. Inhibition of purine de novo synthesis resulted in decreased purine nucleotide levels and enhanced 5-phosphoribosyl-1-pyrophosphate (PRPP) levels, with concurrent increased pyrimidine nucleotide levels. The Me-tIMP concentration increased proportionally with the concentration of Me-MPR. High Me-tIMP concentration also caused inhibition of PRPP synthesis. Maximal accumulation of PRPP thus occurred at low Me-MPR concentrations. As little as 0.2 μM Me-MPR resulted already after 2 h in maximal inhibition of formation of adenine and guanine nucleotides, caused by inhibition of purine de novo synthesis by Me-tIMP. Under these circumstances increased intracellular PRPP concentrations could be demonstrated, resulting in increased levels of pyrimidine nucleotides. So, in Molt F4 cells, formation of Me-tIMP form Me-MPR results in cytotoxicity by inhibition of purine de novo synthesis.  相似文献   

11.
We have studied the roles of 5,10-methylenetetrahydrofolate (5,10-methylene-H4PteGlu) depletion and dihydrofolate (H2PteGlu) accumulation in the inhibition of de novo thymidylate synthesis by methotrexate (MTX) in human MCF-7 breast cancer cells. Using both a high pressure liquid chromatography system and a modification of the 5-fluoro-2'-deoxyuridine-5'-monophosphate radioenzymatic binding assay, we determined that the 5,10-methylene-H4PteGlu pool is 50-60% depleted in human MCF-7 breast cancer cells following exposure to 1 micron MTX for up to 21 h. Similar alterations in the 5,10-methylene-H4PteGlu pools were obtained when human promyelocytic HL-60 leukemia cells and normal human myeloid precursor cells were incubated with 1 micron MTX. The H2PteGlu pools within the MCF-7 cells increased significantly after 15 min of 1 micron MTX exposure, reaching maximal levels by 60 min. Thymidylate synthesis, as measured by labeled deoxyuridine incorporation into DNA, decreased to less than 20% of control activity within 30 min of 1 micron MTX exposure. The inhibition of thymidylate synthesis coincided temporally with the rapid intracellular accumulation of H2PteGlu, a known inhibitor of thymidylate synthase. Furthermore, inhibition of this pathway was associated in a log-linear fashion with the intracellular level of dihydrofolate. These studies provide further evidence that depletion of the thymidylate synthase substrate 5,10-methylene-H4PteGlu is inadequate to account completely for diminished thymidylate synthesis resulting from MTX treatment. Our findings suggest that acute inhibition of de novo thymidylate synthesis is a multifactorial process consisting of partial substrate depletion and direct enzymatic inhibition by H2PteGlu polyglutamates.  相似文献   

12.
Amido phosphoribosyltransferase (APRT) catalyzes the first step of the de novo biosynthesis of purine nucleotides, the conversion of 5-phosphoribosyl-1-pyrophosphate (PRPP) into 5-phosphoribosylamine (PRA). APRT is a valid target for development of inhibitors as anticancer drugs. We have developed a thin layer chromatographic assay for PRPP extracted from cells. Using coupling enzymes, PRPP with excess [2-14C]orotate (OA) is quantitatively converted to [2-14C]OMP and then [2-14C]UMP with hydrolysis of the PPi. The reaction products are isolated on poly(ethyleneimine)-cellulose (PEI-C) chromatograms. Human CCRF-CEM leukaemia cells growing in culture have been exposed to a number of antifolates and their effects upon cellular levels of PRPP determined. The steady-state level of PRPP measured in CCRF-CEM cells was 102+/-11 microM. Following addition of an antifolate to a culture, accumulation of PRPP in cells indicates the degree of inhibition of APRT. In human CCRF-CEM leukaemia cells, lometrexol (LTX), 2,4-diamino-6-(3,4,5-trimethoxybenzyl)-5,6,7,8-tetrahydro-quinazoline (PY899), methotrexate (MTX), N(alpha)(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithine (PT523), piritrexim (PTX), metoprine, 2,4-diamino-6-(3,4,5-trimethoxyanilino)-methylpyrido[3,2-d]pyrimidine (PY873) and multitargeted antifolate, N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid (MTA) directly or indirectly induce inhibition of APRT indicated by time-courses for accumulation of PRPP to maximum values of 3-12-fold. These data indicate that LTX induces the most potent inhibition of APRT.  相似文献   

13.
Adenine phosphoribosyltransferase has been purified to apparent homogeneity from mouse mammary tumor FM3A cells. The purified enzyme, with a specific activity of 20.6 X 10(6) units/g protein at 30 degrees C, was homogeneous as judged by polyacrylamide gel electrophoresis and Ouchterlony double immunodiffusion analysis. The native enzyme had a molecular weight of 44,000 and a subunit composition of 23,000. Apparent Km values for adenine and 5-phosphoribosyl-1-pyrophosphate (PRib-PP) were 6.6 microM and 1.2 microM, respectively. Free Mg2+ was an essential activator with a half-maximal effect at 0.4 mM. AMP was an inhibitor, competitive with PRib-PP, and the Ki value was estimated to be 24 microM. The enzyme activity was not significantly affected by 2,6-diaminopurine, 4-carbamoylimidazolium 5-olate, 8-azaadenine, and 2-fluoro-6-aminopurine. An antibody against the purified mouse adenine phosphoribosyltransferase was raised in a rabbit. The enzyme derived from either mouse, Chinese hamster, or human cells was completely neutralized and precipitated by this antibody, indicating that these enzymes share a common antigenic determinant.  相似文献   

14.
6-Thioguanine resistant strains of rat glioma cells were selected spontaneously and after mutagen treatment. Both mutant lines exhibited a severe deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase, increased intracellular concentrations of 5-phosphoribosyl-1-pyrophosphate and rate of the early steps of purine biosynthesis, and an inability to incorporate guanine, but not adenine, into soluble purine nucleotides.  相似文献   

15.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is allosterically regulated. With the substrate inosine the enzyme displayed complex kinetics: positive cooperativity vs inosine when this substrate was close to physiological concentrations, negative cooperativity at inosine concentrations greater than 60 microM, and substrate inhibition at inosine greater than 1 mM. No cooperativity was observed with the alternative substrate, guanosine. The activity of purine nucleoside phosphorylase toward the substrate inosine was sensitive to the presence of reducing thiols; oxidation caused a loss of cooperativity toward inosine, as well as a 10-fold decreased affinity for inosine. The enzyme also displayed negative cooperativity toward phosphate at physiological concentrations of Pi, but oxidation had no effect on either the affinity or cooperativity toward phosphate. The importance of reduced cysteines on the enzyme is thus specific for binding of the nucleoside substrate. The enzyme was modestly inhibited by the pyrimidine nucleotides CTP (Ki = 118 microM) and UTP (Ki = 164 microM), but showed greater sensitivity to 5-phosphoribosyl-1-pyrophosphate (Ki = 5.2 microM).  相似文献   

16.
The effect of 5-amino-4-imidazole-carboximide (AI-CA)-riboside on different pathways of purine metabolism (biosynthesis de novo, salvage pathways, adenosine metabolism, ATP catabolism) was studied in human B lymphoblasts (WI-L2). AICA-Riboside markedly decreased intracellular levels of 5-phosphoribosyl-1-pyrophosphate and in consequence affected purine biosynthesis de novo and purine salvage pathways. AICA-riboside inhibited incorporation of glycine into purine nucleotides, but when formate was used as the precursor of purine biosynthesis de novo, a biphasic effect was observed. The incorporation of formate into purine nucleotides was increased by AICA-riboside at concentrations up to 2 mM but decreased at higher concentrations. Salvage of the purine bases adenine, hypoxanthine, and guanine was markedly inhibited and utilization of extracellular adenosine in B lymphoblasts was reduced by AICA-riboside. AICA-riboside increased ribose 1-phosphate concentrations and increased degradation of prelabeled ATP. No effect on the intracellular levels of orthophosphate was found. Proliferation of WI-L2 lymphoblasts was only slightly affected at concentrations of AICA-riboside below 500 microM but markedly inhibited by higher concentrations.  相似文献   

17.
Tiazofurin, a C-nucleoside, was cytotoxic in hepatoma 3924A cells grown in culture with an LC50 = 7.5 microM. In the culture, a closely linked dose-related response of tumor cell-kill and depletion of GTP pools was observed after tiazofurin treatment. In rats carrying subcutaneously transplanted hepatoma 3924A solid tumors, a single intraperitoneal injection of tiazofurin (200 mg/kg) caused a rapid inhibition of IMP dehydrogenase (EC 1.2.1.14) activity and depleted GDP, GTP, and dGTP pools in the tumor; concurrently, the 5-phosphoribosyl 1-pyrophosphate (PRPP) and IMP pools expanded 8- and 15-fold, respectively. Tiazofurin decreased tumoral IMP dehydrogenase activity and dGTP pools in a dose-dependent manner over a range of 50-200 mg/kg; by contrast, the depletion of GTP and the accumulation of IMP and PRPP pools were near maximum at 50 mg/kg. The increase in PRPP pools may be attributed to an inhibition by IMP of the activity of hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8). The IMP dehydrogenase activity and the pools of ribonucleotides returned to the normal range by 24-48 h after the single injection of tiazofurin. However, the markedly depleted dGTP pools remained low for 72 h. Tiazofurin treatment resulted in significant anti-tumor activity in rats inoculated with hepatoma 3924A. The decrease in GTP levels and particularly the sustained depletion in the dGTP pools may explain, in part at least, the chemo-therapeutic action of tiazofurin on hepatoma 3924A. This is the first report showing that a marked therapeutic response was achieved against rapidly growing hepatoma 3924A by treatment with a single anti-metabolite.  相似文献   

18.
19.
Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates   总被引:15,自引:0,他引:15  
We have studied the effects of methotrexate (MTX-Glu1) and the polyglutamate derivatives of methotrexate (MTXPGs) with 2, 3, 4, and 5 glutamyl residues on the catalytic activity of thymidylate synthase purified from MCF-7 human breast cancer cells and on the kinetics of the ternary complex formation by 5-fluoro-2'-deoxyuridine 5'-monophosphate, folate cofactor, and thymidylate synthase. MTX-Glu1 exhibited uncompetitive inhibition of thymidylate synthase when reaction kinetics were analyzed by either double reciprocal plots or a computerized mathematical model based on nonlinear least-squares curve fitting. The Ki for MTX-Glu1 inhibition was 13 microM and the I50 was 22 microM, irrespective of the degree of polyglutamation of the folate. In contrast, the polyglutamated derivatives of MTX all acted as noncompetitive inhibitors. The MTXPGs had 75-300-fold greater potency than MTX-Glu1 as inhibitors of thymidylate synthase catalytic activity, with Ki values from 0.17 to 0.047 microM for MTX-Glu2 to MTX-Glu5, respectively. Neither MTX-Glu1 nor MTXPGs promoted the formation of a charcoal-stable ternary complex with thymidylate synthase and 5-fluoro-2'-deoxyuridine 5'-monophosphate. CH2-H4PteGlu5 (where PteGlu represents pteroylglutamic acid) was found to be 40-fold more potent than CH2-H4PteGlu1 in participating in the formation of a ternary complex, and 10 microM MTX-Glu5 significantly inhibited the formation of a ternary complex containing this folate as cofactor. The inhibition was determined to be due to a reduction in the kon. The potency of this inhibition was markedly greater in the presence of CH2-H4PteGlu1 as compared to CH2-H4PteGlu5. This finding suggests that the degree of interference with complex formation in intact cells would depend on the state of polyglutamation of available folate cofactor. Ternary complex formation with H2PteGlu5 as the folate cofactor was also investigated, and a 50% reduction in complex formation was found in the presence of a 2 microM concentration of MTX-Glu5. These findings have significant implications regarding the mechanism of action of MTX-Glu1 and contribute to an understanding of the complex interactions of MTX-Glu1 and 5-fluorouracil.  相似文献   

20.
Methotrexate exits L1210 mouse leukemia cells via multiple routes that include a unidirectional efflux component which is sensitive to bromosulfophthalein. This efflux component has been characterized in the present study after eliminating the contribution from the other efflux routes by treatment of the cells with an active ester of methotrexate and by reducing the assay pH to 6.2. The remaining efflux at pH 6.2 was greater than 90% sensitive to bromosulfophthalein. This route was also inhibited by probenecid, prostaglandin A1, diamide, 1-methyl-3-isobutylxanthine, various metabolic inhibitors, and by transfer of the cells to a buffer containing high concentrations of KCl. The inhibition by prostaglandin A1 was exceptionally potent and reached 50% at a concentration of 0.5 microM. An enhancement in efflux occurred upon the addition of glucose or by transfer of the cells to a non-saline buffer. When parameters relating to cellular energetics were measured, a reduction in ATP level was associated with the inhibition of efflux by probenecid, carbonylcyanide m-chlorophenylhydrazone, valinomycin, and antimycin A, whereas the increase in efflux by glucose was accompanied by an increase in intracellular ATP. Changes in ATP, however, were not associated with the inhibition by various other compounds or additions or with the enhancement in efflux by the non-anionic buffer. When the relative sensitivity of methotrexate efflux to bromosulfophthalein, 4,4'-diisothiocyanostilbene-2,2'-disulfonate, and lactic anhydride was compared with other anion transport systems, differences in specificity indicated that methotrexate was not exiting the cells via the bicarbonate/chloride exchange carrier, the lactate/H+ co-transport system, or a system which mediates the efflux of phthalate. However, a correlation was apparent between the sensitivity of methotrexate efflux to inhibition by prostaglandin A1, probenecid, and certain metabolic inhibitors and the ability of these same compounds to inhibit the unidirectional efflux of 3',5'-cyclic AMP in other cell lines, suggesting that methotrexate may share a common efflux route with cyclic nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号