首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purified T-antigen origin binding domain binds site specifically to site II, the central region of the simian virus 40 core origin. However, in the context of full-length T antigen, the origin binding domain interacts poorly with DNA molecules containing just site II. Here we investigate the contributions of additional core origin regions, termed the flanking sequences, to origin recognition and the assembly of T-antigen hexamers and double hexamers. Results from these studies indicate that in addition to site-specific binding of the T-antigen origin binding domain to site II, T-antigen assembly requires non-sequence-specific interactions between a basic finger in the helicase domain and particular flanking sequences. Related studies demonstrate that the assembly of individual hexamers is coupled to the distortions in the proximal flanking sequence. In addition, the point in the double-hexamer assembly process that is regulated by phosphorylation of threonine 124, the sole posttranslational modification required for initiation of DNA replication, was further analyzed. Finally, T-antigen structural information is used to model various stages of T-antigen assembly on the core origin and the regulation of this process.  相似文献   

2.
Simian virus 40 large T antigen contains a single sequence element with an arrangement of cysteines and histidines that is characteristic of a zinc finger motif. The finger region maps from amino acids 302 through 320 and has the sequence C-302 L K C-305 I K K E Q P S H Y K Y H-317 E K H-320. Previous genetic analysis has shown that the cysteine and histidine sequences and the contiguous S H Y K Y region in the finger are important for DNA replication in vivo. We show here that representative mutations in either of these elements of the finger prevent the assembly of large T antigen into stable hexamers in vitro. These same mutations have a characteristic effect on the interaction of T antigen with the simian virus 40 core origin of replication. The mutant T antigens bind to the central pentanucleotide domain of the core origin but fail to melt the adjacent inverted repeat domain and to untwist the adenine-thymine domain. These defects would prevent the formation of a replication bubble and the initiation of DNA replication. Finger mutations have lesser effects on the helicase function of T antigen and no observable effect on binding of T antigen to the mouse p53 protein. We propose that the zinc finger region contributes to protein-protein interactions essential for the assembly of stable T-antigen hexamers at the origin of replication and that hexamers are needed for subsequent alterations in the structure of origin DNA. We cannot exclude the possibility that the zinc finger region also makes specific contacts with components of origin DNA.  相似文献   

3.
Wu C  Roy R  Simmons DT 《Journal of virology》2001,75(6):2839-2847
We have previously mapped the single-stranded DNA binding domain of large T antigen to amino acid residues 259 to 627. By using internal deletion mutants, we show that this domain most likely begins after residue 301 and that the region between residues 501 and 550 is not required. To study the function of this binding activity, a series of single-point substitutions were introduced in this domain, and the mutants were tested for their ability to support simian virus 40 (SV40) replication and to bind to single-stranded DNA. Two replication-defective mutants (429DA and 460EA) were grossly impaired in single-stranded DNA binding. These two mutants were further tested for other biochemical activities needed for viral DNA replication. They bound to origin DNA and formed double hexamers in the presence of ATP. Their ability to unwind origin DNA and a helicase substrate was severely reduced, although they still had ATPase activity. These results suggest that the single-stranded DNA binding activity is involved in DNA unwinding. The two mutants were also very defective in structural distortion of origin DNA, making it likely that single-stranded DNA binding is also required for this process. These data show that single-stranded DNA binding is needed for at least two steps during SV40 DNA replication.  相似文献   

4.
An initial step in the replication of simian virus (SV40) DNA is the ATP-dependent formation of a double hexamer of the SV40 large tumor (T) antigen at the SV40 DNA replication origin. In the absence of DNA, T antigen assembled into hexamers in the presence of magnesium and ATP. Hexameric T antigen was stable and could be isolated by glycerol gradient centrifugation. The ATPase activities of hexameric and monomeric T antigen isolated from parallel glycerol gradients were identical. However, while monomeric T antigen was active in the ATP-dependent binding, untwisting, unwinding, and replication of SV40 origin-containing DNA, hexameric T antigen was inactive in these reactions. Isolated hexamers incubated at 37 degrees C in the presence of ATP remained intact, but dissociated into monomers when incubated at 37 degrees C in the absence of ATP. This dissociation restored the activity of these preparations in the DNA replication reaction, indicating that hexameric T antigen is not permanently inactivated but merely assembled into a nonproductive structure. We propose that the two hexamers of T antigen at the SV40 origin assemble around the DNA from monomer T antigen in solution. This complex untwists the DNA at the origin, melting specific DNA sequences. The resulting single-stranded regions may be utilized by the T antigen helicase activity to initiate DNA unwinding bidirectionally from the origin.  相似文献   

5.
The initial step of simian virus 40 (SV40) DNA replication is the binding of the large tumor antigen (T-Ag) to the SV40 core origin. In the presence of Mg(2+) and ATP, T-Ag forms a double-hexamer complex covering the complete core origin. By using electron microscopy and negative staining, we visualized for the first time T-Ag double hexamers bound to the SV40 origin. Image processing of side views of these nucleoprotein complexes revealed bilobed particles 24 nm long and 8 to 12 nm wide, which indicates that the two T-Ag hexamers are oriented head to head. Taking into account all of the biochemical data known on the T-Ag-DNA interactions at the replication origin, we present a model in which the DNA passes through the inner channel of both hexamers. In addition, we describe a previously undetected structural domain of the T-Ag hexamer and thereby amend the previously published dimensions of the T-Ag hexamer. This domain we have determined to be the DNA-binding domain of T-Ag.  相似文献   

6.
Initiation of DNA replication at the Escherichia coli chromosomal origin, oriC, occurs through an ordered series of events that depend first on the binding of DnaA protein, the replication initiator, to DnaA box sequences within oriC followed by unwinding of an AT-rich region near the left border. The prepriming complex then forms, involving the binding of DnaB helicase at oriC so that it is properly positioned at each replication fork. We assembled and isolated the prepriming complexes on an oriC plasmid, then determined the stoichiometries of proteins in these complexes by quantitative immunoblot analysis. DnaA protein alone binds to oriC with a stoichiometry of 4-5 monomers per oriC DNA. In the prepriming complex, the stoichiometries are 10 DnaA monomers and 2 DnaB hexamers per oriC plasmid. That only two DnaB hexamers are bound, one for each replication fork, suggests that the binding of additional molecules of DnaA in forming the prepriming complex restricts the loading of additional DnaB hexamers that can bind at oriC.  相似文献   

7.
The catalytic subunit of protein phosphatase 2A (PP2Ac) stimulates the initiation of replication of simian virus 40 DNA in vitro by dephosphorylating T antigen at specific phosphoserine residues (K. H. Scheidtmann, D. M. Virshup, and T. J. Kelly, J. Virol. 65:2098-2101, 1991). To better define the biochemical mechanism responsible for this stimulation, we investigated the effect of PP2Ac on the interaction of T antigen with wild-type and mutant origins of replication. Analysis of the binding of T antigen to the wild-type origin as a function of protein concentration revealed that binding occurs in two relatively discrete steps: the assembly of a T-antigen hexamer on one half-site of the origin, followed by the assembly of the second hexamer on the other half-site. The major effect of PP2Ac was to stimulate binding of the second hexamer, so that the binding reaction became much more cooperative. This observation suggests that dephosphorylation of T antigen by PP2Ac primarily affects interactions between the two hexamers bound to the origin. Pretreatment with PP2Ac increased the ability of the bound T antigen to unwind the origin of replication but had no effect on the intrinsic helicase activity of the protein. Thus, dephosphorylation of PP2Ac appears to increase the efficiency of the initial opening of the origin by T antigen. An insertion mutation at the dyad axis in the simian virus 40 origin, which altered the structural relationship of the two halves of the origin, abolished the effect of the phosphatase on the cooperativity of binding and completely prevented origin unwinding. These findings suggest that the ability of T antigen to open the viral origin of DNA replication is critically dependent on the appropriate functional interactions between T-antigen hexamers and that these interactions are regulated by the phosphorylation state of the viral initiator protein.  相似文献   

8.
The biochemical activities of a series of transformation-competent, replication-defective large T-antigen point mutants were examined. The assays employed reflect partial reactions required for the in vitro replication of simian virus 40 (SV40) DNA. Mutants which failed to bind specifically to SV40 origin sequences bound efficiently to single-stranded DNA and exhibited nearly wild-type levels of helicase activity. A mutation at proline 522, however, markedly reduced ATPase, helicase, and origin-specific unwinding activities. This mutant bound specifically to the SV40 origin of replication, but under certain conditions it was defective in binding to both single-stranded DNA and the partial duplex helicase substrate. This suggests that additional determinants outside the amino-terminal-specific DNA-binding domain may be involved in nonspecific binding of T antigen to single-stranded DNA and demonstrates that origin-specific DNA binding can be separated from binding to single-stranded DNA. A mutant containing a lesion at residue 224 retained nearly wild-type levels of helicase activity and recognized SV40 origin sequences, yet it failed to function in an origin-specific unwinding assay. This provides evidence that origin recognition and helicase activities are not sufficient for unwinding to occur. The distribution of mutant phenotypes reflects the complex nature of the initiation reaction and the multiplicity of functions provided by large T antigen.  相似文献   

9.
Requirements for species-specific papovavirus DNA replication.   总被引:13,自引:6,他引:7       下载免费PDF全文
Replication of papovavirus DNA requires a functional replication origin, a virus-encoded protein, large T antigen, and species-specific permissive factors. How these components interact to initiate and sustain viral DNA replication is not known. Toward that end, we have attempted to identify the viral target(s) of permissive factors. The functionally defined replication origins of polyomavirus and simian virus 40, two papovaviruses that replicate in different species (mice and monkeys, respectively), are composed of two functionally distinct domains: a core domain and an auxiliary domain. The origin cores of the two viruses are remarkably similar in primary structure and have common binding sites for large T antigen. By contrast, their auxiliary domains share few sequences and serve as binding sites for cellular proteins. It seemed plausible, therefore, that if cellular permissive factors interacted with the replication origin, their targets were likely to be in the auxiliary domain. To test this hypothesis we constructed hybrid origins for DNA replication that were composed of the auxiliary domain of one virus and the origin core of the other and assessed their capacity to replicate in a number of mouse and monkey cell lines, which express the large T antigen of one or the other virus. The results of this analysis showed that the auxiliary domains of the viral replication origins could substitute for one another in DNA replication, provided that the viral origin core and its cognate large T antigen were present in a permissive cellular milieu. Surprisingly, the large T antigens of the viruses could not substitute for one another, regardless of the species of origin of the host cell, even though the two large T antigens bind to the same sequence motif in vitro. These results suggest that species-specific permissive factors do not interact with the origin-auxiliary domains but, rather, with either the origin core or the large T antigen or with both components to effect DNA replication.  相似文献   

10.
To date, methanogens are the only group within the archaea where firing DNA replication origins have not been demonstrated in vivo. In the present study we show that a previously identified cluster of ORB (origin recognition box) sequences do indeed function as an origin of replication in vivo in the archaeon Methanothermobacter thermautotrophicus. Although the consensus sequence of ORBs in M. thermautotrophicus is somewhat conserved when compared with ORB sequences in other archaea, the Cdc6-1 protein from M. thermautotrophicus (termed MthCdc6-1) displays sequence-specific binding that is selective for the MthORB sequence and does not recognize ORBs from other archaeal species. Stabilization of in vitro MthORB DNA binding by MthCdc6-1 requires additional conserved sequences 3' to those originally described for M. thermautotrophicus. By testing synthetic sequences bearing mutations in the MthORB consensus sequence, we show that Cdc6/ORB binding is critically dependent on the presence of an invariant guanine found in all archaeal ORB sequences. Mutation of a universally conserved arginine residue in the recognition helix of the winged helix domain of archaeal Cdc6-1 shows that specific origin sequence recognition is dependent on the interaction of this arginine residue with the invariant guanine. Recognition of a mutated origin sequence can be achieved by mutation of the conserved arginine residue to a lysine or glutamine residue. Thus despite a number of differences in protein and DNA sequences between species, the mechanism of origin recognition and binding appears to be conserved throughout the archaea.  相似文献   

11.
Large T antigen (LTag) from simian virus 40 (SV40) is an ATP-driven DNA helicase that specifically recognizes the core of the viral origin of replication (ori), where it oligomerizes as a double hexamer. During this process, binding of the first hexamer stimulates the assembly of a second one. Using electron microscopy, we show that the N-terminal part of LTag that includes the origin-binding domain does not present a stable quaternary structure in single hexamers. This disordered region, however, is well arranged within the LTag double hexamer after specific ori recognition, where it mediates the interactions between hexamers and constructs a separated structural module at their junction. We conclude that full assembly of LTag hexamers occurs only within the dodecamer, and requires the specific hexamer-hexamer interactions established upon binding to the origin of replication. This mechanism provides the structural basis for the cooperative assembly of LTag double hexamer on the cognate viral ori.  相似文献   

12.
In vitro DNA binding results from a series of E1 proteins containing amino-terminal or carboxy-terminal truncations indicated that sequences between amino acids 121 and 284 were critical for origin binding. Additional binding experiments with E1 proteins containing internal, in-frame insertions or deletions confirmed the importance of the region defined by truncated E1 proteins and also demonstrated that downstream sequences were not required for binding activity in the context of the full-length E1 protein. On the basis of mapping results from the E1 mutants, a clone (pE1(121-311)) was constructed that expressed E1 amino acids within the approximate boundaries of the critical sequences for DNA binding. The E1(121-311) protein retained origin-specific DNA binding, confirming that this region was not only necessary but was also sufficient for origin recognition. In addition to origin binding, E1(121-311) bound E2 protein in a cold-sensitive manner. Therefore, DNA binding and E2 binding activities colocalize to a 191-amino-acid functional domain derived from the amino-terminal half of the E1 protein. Finally, three E1 proteins with mutations in this region all lacked DNA binding activity and were all defective for in vivo replication. Two of these E1 mutants retained E2 binding capability, demonstrating that origin recognition by E1 is critical for replication and cannot necessarily be rescued by an interaction with E2 protein.  相似文献   

13.
We inserted a single base pair into the center of a 27-base-pair palindrome within the replication origin of simian virus 40. The mutation did not directly alter the symmetry of the palindrome or the protein-binding sequences within the palindrome. DNA binding studies showed that subunits of the simian virus 40 A protein (T antigen) bound to each of the four recognition pentanucleotides in the origin palindrome but did so with reduced affinity in comparison with wild-type origins. The mutant origin cloned in a plasmid DNA failed to replicate in COS cells. Thus, precise spatial interactions among subunits of A protein are necessary for stable origin binding and are crucial for subsequent steps in the initiation of DNA replication. Furthermore, any possible functional interactions of the simian virus 40 A protein with cellular DNA would require a great fidelity of protein binding arrangements to initiate cellular DNA replication.  相似文献   

14.
The E1 helicase of papillomaviruses is required for replication of the viral double-stranded DNA genome, in conjunction with cellular factors. DNA replication is initiated at the viral origin by the assembly of E1 monomers into oligomeric complexes that have unwinding activity. In vivo, this process is catalyzed by the viral E2 protein, which recruits E1 specifically at the origin. For bovine papillomavirus (BPV) E1 a minimal DNA-binding domain (DBD) has been identified N-terminal to the enzymatic domain. In this study, we characterized the DBD of human papillomavirus 11 (HPV11), HPV18, and BPV E1 using a quantitative DNA binding assay based on fluorescence anisotropy. We found that the HPV11 DBD binds DNA with an affinity and sequence requirement comparable to those of the analogous domain of BPV but that the HPV18 DBD has a higher affinity for nonspecific DNA. By comparing the DNA-binding properties of a dimerization-defective protein to those of the wild type, we provide evidence that dimerization of the HPV11 DBD occurs only on two appropriately positioned E1 binding-sites and contributes approximately a 10-fold increase in binding affinity. In contrast, the HPV11 E1 helicase purified as preformed hexamers binds DNA with little sequence specificity, similarly to a dimerization-defective DBD. Finally, we show that the amino acid substitution that prevents dimerization reduces the ability of a longer E1 protein to bind to the origin in vitro and to support transient HPV DNA replication in vivo, but has little effect on its ATPase activity or ability to oligomerize into hexamers. These results are discussed in light of a model of the assembly of replication-competent double hexameric E1 complexes at the origin.  相似文献   

15.
Preformed hexamers of simian virus 40 (SV40) large tumor antigen (T antigen) constitute the bulk of T antigen in infected cells and are stable under physiological conditions. In spite of this they could not be assigned a function in virus replication or transformation. We report that preformed hexamers represent the active T antigen RNA helicase. Monomers and smaller oligomeric forms of T antigen were inactive due to the lack of hexamer formation under RNA unwinding conditions. In contrast to the immunologically related cellular DEAD-box protein p68, the T antigen RNA helicase is found to act in a much more processive way and it does not catalyze rearrangements of structured RNAs. Thereby, it rather seems to resemble other virus-encoded RNA helicases, like vaccinia virus NPH-II. Surprisingly, in our hands preformed hexamers also strikingly bound to and unwound the SV40 replication origin, pointing to a possible role of preformed hexamers in the initiation step of viral DNA replication. Furthermore, we have detected an extra hexamer-specific, high-affinity T antigen ATP binding site with a very slow exchange rate constant, the function of which is discussed.  相似文献   

16.
The simian virus 40 (SV40) core origin of replication consists of three functional domains. The sequence 5'-CACTACTTCTGGAATAG-3' with an imperfect inverted repeat (underlined), a palindrome with four 5'-GAGGC-3' pentanucleotide repeats, and a 17-base-pair A + T-rich segment. We have been able to assign primary functions to each domain. Remarkably, SV40 large T antigen melted the inverted repeat domain in the complete absence of other origin sequences. Presumably, this protein-DNA interaction initiates a replication bubble that leads to daughter strand DNA synthesis. The pentanucleotide domain alone docked and arranged T antigen at the origin. The A + T-rich domain had no independent function, but, in the presence of the other two domains, allowed bound T antigen to extend the replication bubble. Thus, three domains of the origin coordinate the binding, melting, and DNA helicase activities of T antigen in an ordered sequence of events to initiate DNA replication.  相似文献   

17.
A monkey cell factor that interacts specifically with double- and single-stranded DNA sequences in the early domain of the simian virus 40 (SV40) core origin of replication was identified using gel-retention assays. The protein was enriched over 1200-fold using ion-exchange and affinity chromatography on single-strand DNA cellulose. Binding of protein to mutant origin DNA restriction fragments was correlated with replication activity of the mutant DNAs. Exonuclease footprint experiments on single-stranded DNA revealed prominent pause sites in the early domain of the core origin. The results suggest that this cellular protein may be involved in SV40 DNA replication.  相似文献   

18.
A monkey cell factor that interacts specifically with double- and single-stranded DNA sequences in the early domain of the simian virus 40 (SV40) core origin of replication was identified using gel-retention assays. The protein was enriched over 1200-fold using ion-exchange and affinity chromatography on single-strand DNA cellulose. Binding of protein to mutant origin DNA restriction fragments was correlated with replication activity of the mutant DNAs. Exonuclease footprint experiments on single-stranded DNA revealed prominent pause sites in the early domain of the core origin. The results suggest that this cellular protein may be involved in SV40 DNA replication.  相似文献   

19.
The specific binding of HeLa cell factors to DNA sequences at the Epstein-Barr virus (EBV) latent origin of DNA replication was detected by gel shift experiments and DNase I footprinting analysis. These cellular proteins protected at least five discrete regions of the DNA replication origin. The viral protein required for EBV plasmid replication, EBV nuclear antigen 1 (EBNA-1), binds to specific sequences within the origin region. The HeLa cell proteins competed with EBNA-1 for binding to EBV origin DNA in vitro, leading to the possibility that these cellular proteins regulate EBV DNA replication by displacing EBNA-1 at the origin sites.  相似文献   

20.
M M Bendig  T Thomas  W R Folk 《Cell》1980,20(2):401-409
In polyoma virus the origin of replication, the 5′ ends of early mRNAs, and the initiation codon for early protein synthesis map within an approximately 200 bp region of the genome. We have previously reported the isolation and partial characterization of viable mutants of polyoma virus with deletions in this important regulatory region of the genome. Three of the mutants with large deletions, one of which had significantly altered growth properties, have been further characterized with respect to their nucleotide sequence alterations and their levels of viral DNA replication and of early protein synthesis. The nearly coincident deletions in mutants 17 and 2–19 reduce the capacity of these viruses to replicate, even in the presence of a coinfecting virus; thus they help define one boundary of the origin of DNA replication. The deletion in mutant 75 appears to remove sequences that are essential for efficient expression of early genes, but has little or no effect upon DNA replication. Its defect is complemented in trans by wild-type virus. All three mutants eliminate sequences which are candidates for RNA polymerase and ribosome binding sites near the initiation codon for early proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号