首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Many experimental studies have shown that arterial smooth muscle cells respond with cytosolic calcium rises to vasoconstrictor stimulation. A low vasoconstrictor concentration gives rise to asynchronous spikes in the calcium concentration in a few cells (asynchronous flashing). With a greater vasoconstrictor concentration, the number of smooth muscle cells responding in this way increases (recruitment) and calcium oscillations may appear. These oscillations may eventually synchronize and generate arterial contraction and vasomotion. We show that these phenomena of recruitment and synchronization naturally emerge from a model of a population of smooth muscle cells coupled through their gap junctions. The effects of electrical, calcium, and inositol 1,4,5-trisphosphate coupling are studied. A weak calcium coupling is crucial to obtain a synchronization of calcium oscillations and the minimal required calcium permeability is deduced. Moreover, we note that an electrical coupling can generate oscillations, but also has a desynchronizing effect. Inositol 1,4,5-trisphosphate diffusion does not play an important role to achieve synchronization. Our model is validated by published in vitro experiments obtained on rat mesenteric arterial segments.  相似文献   

2.
In vitro, alpha-adrenoreceptor stimulation of rat mesenteric small arteries often leads to a rhythmic change in wall tension, i.e., vasomotion. Within the individual smooth muscle cells of the vascular wall, vasomotion is often preceded by a period of asynchronous calcium waves. Abruptly, these low-frequency waves may transform into high-frequency whole cell calcium oscillations. Simultaneously, multiple cells synchronize, leading to rhythmic generation of tension. We present a mathematical model of vascular smooth muscle cells that aims at characterizing this sudden transition. Simulations show calcium waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium channels on the cell surface, stimulating a synchronized release of SR calcium and inducing the shift from waves to whole cell oscillations. The effect of the channel is therefore to couple the processes of the SR with those of the membrane. We hypothesize that the shift in oscillatory mode and the associated onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion.  相似文献   

3.
The intercellular synchronization of spontaneous calcium (Ca(2+)) oscillations in individual smooth muscle cells is a prerequisite for vasomotion. A detailed mathematical model of Ca(2+) dynamics in rat mesenteric arteries shows that a number of synchronizing and desynchronizing pathways may be involved. In particular, Ca(2+)-dependent phospholipase C, the intercellular diffusion of inositol trisphosphate (IP(3), and to a lesser extent Ca(2+)), IP(3) receptors, diacylglycerol-activated nonselective cation channels, and Ca(2+)-activated chloride channels can contribute to synchronization, whereas large-conductance Ca(2+)-activated potassium channels have a desynchronizing effect. Depending on the contractile state and agonist concentrations, different pathways become predominant, and can be revealed by carefully inhibiting the oscillatory component of their total activity. The phase shift between the Ca(2+) and membrane potential oscillations can change, and thus electrical coupling through gap junctions can mediate either synchronization or desynchronization. The effect of the endothelium is highly variable because it can simultaneously enhance the intercellular coupling and affect multiple smooth muscle cell components. Here, we outline a system of increased complexity and propose potential synchronization mechanisms that need to be experimentally tested.  相似文献   

4.
Smooth muscle and endothelial cells in the arterial wall are exposed to mechanical stress. Indeed blood flow induces intraluminal pressure variations and shear stress. An increase in pressure may induce a vessel contraction, a phenomenon known as the myogenic response. Many muscular vessels present vasomotion, i.e., rhythmic diameter oscillations caused by synchronous cytosolic calcium oscillations of the smooth muscle cells. Vasomotion has been shown to be modulated by pressure changes. To get a better understanding of the effect of stress and in particular pressure on vasomotion, we propose a model of a blood vessel describing the calcium dynamics in a coupled population of smooth muscle cells and endothelial cells and the consequent vessel diameter variations. We show that a rise in pressure increases the calcium concentration. This may either induce or abolish vasomotion, or increase its frequency depending on the initial conditions. In our model the myogenic response is less pronounced for large arteries than for small arteries and occurs at higher values of pressure if the wall thickness is increased. Our results are in agreement with experimental observations concerning a broad range of vessels.  相似文献   

5.
Emergent properties of electrically coupled smooth muscle cells   总被引:1,自引:0,他引:1  
Asynchronous and synchronous calcium oscillations occur in a variety of cells. A well-established pathway for intercellular communication is provided by gap junctions which connect adjacent cells and can mediate electrical and chemical coupling. Several experimental studies report that cells presenting only a transient increase when freshly dispersed may oscillate when they are coupled. Such observations suggest that the role of gap junctions is not only to coordinate calcium oscillations of adjacent cells. Gap junctions may also be important to generate oscillations. Here we illustrate the emergent properties of electrically coupled smooth muscle cells using a model that we recently proposed. A bifurcation analysis in the case of two cells reveals that synchronous and asynchronous calcium oscillations can be induced by electrical coupling. In a larger population of smooth muscle cells, electrical coupling may result in the creation of groups of cells presenting synchronous calcium oscillations. The elements of one group may be distant from each other. Moreover, our results highlight a general mechanism by which gap junctional electrical coupling can give rise to out of phase calcium oscillations in smooth muscle cells that are non-oscillating when uncoupled. All these observations remain true in the case of non-identical cells, except that the solution corresponding to synchronous calcium oscillations disappears and that the formation of groups is sensitive to the degree of heterogeneity. The first two authors contributed equally to this work.  相似文献   

6.
Investigating the recruitment and synchronization of smooth muscle cells (SMCs) is the key to understanding the physical mechanisms leading to contraction and spontaneous diameter oscillations of arteries, called vasomotion. We improved a method that allows the correlation of calcium oscillations (flashing) of individual SMCs with mean calcium variations and arterial contraction using confocal microscopy. Endothelium-stripped rat mesenteric arteries were cut open, loaded with dual calcium fluorescence probes, and stimulated by increasing concentrations of the vasoconstrictors phenylephrine (PE) and KCl. We found that the number and synchronization of flashing cells depends on vasoconstrictor concentration. At low vasoconstrictor concentration, few cells flash asynchronously and no local contraction is detected. At medium concentration, recruitment of cells is complete and synchronous, leading to strip contraction after KCl stimulation and to vasomotion after PE stimulation. High concentration of PE leads to synchronous calcium oscillations and fully contracted vessels, whereas high concentration of KCl leads to a sustained nonoscillating increase of calcium and to fully contracted vessels. We conclude that the number of simultaneously recruited cells is an important factor in controlling rat mesenteric artery contraction and vasomotion.  相似文献   

7.
It is well-known that cyclic variations of the vascular diameter, a phenomenon called vasomotion, are induced by synchronous calcium oscillations of smooth muscle cells (SMCs). However, the role of the endothelium on vasomotion is unclear. Some experimental studies claim that the endothelium is necessary for synchronization and vasomotion, whereas others report rhythmic contractions in the absence of an intact endothelium. Moreover, endothelium-derived factors have been shown to abolish vasomotion by desynchronizing the calcium signals in SMCs. By modeling the calcium dynamics of a population of SMCs coupled to a population of endothelial cells, we analyze the effects of an SMC vasoconstrictor stimulation on endothelial cells and the feedback of endothelium-derived factors. Our results show that the endothelium essentially decreases the SMCs calcium level and may move the SMCs from a steady state to an oscillatory domain, and vice versa. In the oscillatory domain, a population of coupled SMCs exhibits synchronous calcium oscillations. Outside the oscillatory domain, the coupled SMCs present only irregular calcium flashings arising from noise modeling stochastic opening of channels. Our findings provide explanations for the published contradictory experimental observations.  相似文献   

8.
In this paper theoretical and experimental evidence is presented which indicates that oscillations in internal calcium and cyclic AMP concentrations due to an instability in their common control loops are possible and indeed may be widespread. Further, it is demonstrated that fluctuations in various cellular properties, in particular membrane potential, are a direct consequence of these second messenger oscillations. Given the central importance of calcium and cyclic AMP to the regulation of metabolism, these oscillations would influence most metabolic processes especially rhythmic behaviour. We propose that these oscillations form the basis of several biological rhythms including, potential oscillations in cardiac pacemaker cells, neurones and insulin secreting β-cells, the minute rhythm in smooth muscle, cyclic AMP pulses in Dictyostelium, rhythmical cytoplasmic streaming in Physarum and transepitheliel potential oscillations in Calliphora salivary gland. This model makes possible an explanation of the frequency and amplitude effects of hormones.  相似文献   

9.
T Hfer 《Biophysical journal》1999,77(3):1244-1256
Hepatocytes respond with repetitive cytosolic calcium spikes to stimulation by vasopressin and noradrenalin. In the intact liver, calcium oscillations occur in a synchronized fashion as periodic waves across whole liver lobules, but the mechanism of intercellular coupling remains unclear. Recently, it has been shown that individual hepatocytes can have very different intrinsic oscillation frequencies but become phase-locked when coupled by gap junctions. We investigate the gap junction hypothesis for intercellular synchronization by means of a mathematical model. It is shown that junctional calcium fluxes are effective in synchronizing calcium oscillations in coupled hepatocytes. An experimentally testable estimate is given for the junctional coupling coefficient required; it mainly depends on the degree of heterogeneity between cells. Intercellular synchronization by junctional calcium diffusion may occur also in other cell types exhibiting calcium-activated calcium release through InsP(3) receptors, if the gap junctional coupling is strong enough and the InsP(3) receptors are sufficiently sensitized by InsP(3).  相似文献   

10.
It has been shown that transient single mitochondrial depolarizations, known as flickers, tend to occur randomly in space and time. On the other hand, many studies have shown that mitochondrial depolarization waves and whole-cell oscillations occur under oxidative stress. How single mitochondrial flickering events and whole-cell oscillations are mechanistically linked remains unclear. In this study, we developed a Markov model of the inner membrane anion channel in which reactive-oxidative-species (ROS)-induced opening of the inner membrane anion channel causes transient mitochondrial depolarizations in a single mitochondrion that occur in a nonperiodic manner, simulating flickering. We then coupled the individual mitochondria into a network, in which flickers occur randomly and sparsely when a small number of mitochondria are in the state of high superoxide production. As the number of mitochondria in the high-superoxide-production state increases, short-lived or abortive waves due to ROS-induced ROS release coexist with flickers. When the number of mitochondria in the high-superoxide-production state reaches a critical number, recurring propagating waves are observed. The origins of the waves occur randomly in space and are self-organized as a consequence of random flickering and local synchronization. We show that at this critical state, the depolarization clusters exhibit a power-law distribution, a signature of self-organized criticality. In addition, the whole-cell mitochondrial membrane potential changes from exhibiting small random fluctuations to more periodic oscillations as the superoxide production rate increases. These simulation results may provide mechanistic insight into the transition from random mitochondrial flickering to the waves and whole-cell oscillations observed in many experimental studies.  相似文献   

11.
Vasomotion is a rhythmic variation in microvascular diameter. Although known for more than 150 years, the cellular processes underlying the initiation of vasomotion are not fully understood. In the present study a model of a single cell is extended by coupling a number of cells into a tube. The simulated results point to a permissive role of cGMP in establishing intercellular synchronization. In sufficient concentration, cGMP may activate a cGMP-sensitive calcium-dependent chloride channel, causing a tight spatiotemporal coupling between release of sarcoplasmic reticulum calcium, membrane depolarization, and influx of extracellular calcium. Low [cGMP] is associated only with unsynchronized waves. At intermediate concentrations, cells display either waves or whole cell oscillations, but these remain unsynchronized between cells. Whole cell oscillations are associated with rhythmic variation in membrane potential and flow of current through gap junctions. The amplitude of these oscillations in potential grows with increasing [cGMP], and, past a certain threshold, they become strong enough to entrain all cells in the vascular wall, thereby initiating sustained vasomotion. In this state there is a rhythmic flow of calcium through voltage-sensitive calcium channels into the cytoplasm, making the frequency of established vasomotion sensitive to membrane potential. It is concluded that electrical coupling through gap junctions is likely to be responsible for the rapid synchronization across a large number of cells. Gap-junctional current between cells is due to the appearance of oscillations in the membrane potential that again depends on the entrainment of sarcoplasmic reticulum and plasma membrane within the individual cell.  相似文献   

12.
Airway hyperresponsiveness is a major characteristic of asthma and is generally ascribed to excessive airway narrowing associated with the contraction of airway smooth muscle cells (ASMCs). ASMC contraction is initiated by a rise in intracellular calcium concentration ([Ca2+]i), observed as oscillatory Ca2+ waves that can be induced by either agonist or high extracellular K+ (KCl). In this work, we present a model of oscillatory Ca2+ waves based on experimental data that incorporate both the inositol trisphosphate receptor and the ryanodine receptor. We then combined this Ca2+ model and our modified actin-myosin cross-bridge model to investigate the role and contribution of oscillatory Ca2+ waves to contractile force generation in mouse ASMCs. The model predicts that: 1), the difference in behavior of agonist- and KCl-induced Ca2+ waves results principally from the fact that the sarcoplasmic reticulum is depleted during agonist-induced oscillations, but is overfilled during KCl-induced oscillations; 2), regardless of the order in which agonist and KCl are added into the cell, the resulting [Ca2+]i oscillations will always be the short-period, agonist-induced-like oscillations; and 3), both the inositol trisphosphate receptor and the ryanodine receptor densities are higher toward one end of the cell. In addition, our results indicate that oscillatory Ca2+ waves generate less contraction than whole-cell Ca2+ oscillations induced by the same agonist concentration. This is due to the spatial inhomogeneity of the receptor distributions.  相似文献   

13.

The lymphatics maintain fluid balance by returning interstitial fluid to veins via contraction/compression of vessel segments with check valves. Disruption of lymphatic pumping can result in a condition called lymphedema with interstitial fluid accumulation. Lymphedema treatments are often ineffective, which is partially attributable to insufficient understanding of specialized lymphatic muscle lining the vessels. This muscle exhibits cardiac-like phasic contractions and smooth muscle-like tonic contractions to generate and regulate flow. To understand the relationship between this sub-cellular contractile machinery and organ-level pumping, we have developed a multiscale computational model of phasic and tonic contractions in lymphatic muscle and coupled it to a lymphangion pumping model. Our model uses the sliding filament model (Huxley in Prog Biophys Biophys Chem 7:255–318, 1957) and its adaptation for smooth muscle (Mijailovich in Biophys J 79(5):2667–2681, 2000). Multiple structural arrangements of contractile components and viscoelastic elements were trialed but only one provided physiologic results. We then coupled this model with our previous lumped parameter model of the lymphangion to relate results to experiments. We show that the model produces similar pressure, diameter, and flow tracings to experiments on rat mesenteric lymphatics. This model provides the first estimates of lymphatic muscle contraction energetics and the ability to assess the potential effects of sub-cellular level phenomena such as calcium oscillations on lymphangion outflow. The maximum efficiency value predicted (40%) is at the upper end of estimates for other muscle types. Spontaneous calcium oscillations during diastole were found to increase outflow up to approximately 50% in the range of frequencies and amplitudes tested.

  相似文献   

14.
Lu HL  Wang ZY  Huang X  Han YF  Wu YS  Guo X  Kim YC  Xu WX 《Regulatory peptides》2011,167(2-3):170-176
In the present study, we investigated the effect of Ang II on gastric smooth muscle motility and its mechanism using intracellular recording and whole-cell patch clamp techniques. Ang II dose-dependently increased the tonic contraction and the frequency of spontaneous contraction in the gastric antral circular smooth muscles of guinea pig. ZD7155, an Ang II type 1 receptor (AT(1)R) blocker, completely blocked the effect of Ang II on the spontaneous contraction of gastric smooth muscle. In contrast, TTX, a sodium channel blocker, failed to block the effect. Furthermore, nicardipine, a voltage-gated Ca(2+)-channel antagonist, did not block the effect of Ang II on the tonic contraction of gastric smooth muscle, but external free-calcium almost completely blocked this effect. Both ryanodine, an inhibitor of calcium-induced Ca(2+) release (CICR) from ryanodine-sensitive calcium stores, and thapsigargin, which depletes calcium in calcium stores, almost completely blocked the effect of Ang II on tonic contraction. However, 2-APB, an inositol trisphosphate (IP(3)) receptor blocker, significantly, but not completely, blocked the Ang II effect on tonic contraction. We also determined that Ang II depolarized membrane potential and increased slow wave frequency in a dose-dependent manner. It also inhibited delayed rectifying potassium currents in a dose-dependent manner, but did not affect L-type calcium currents or calcium-activated potassium currents. These results suggest that Ang II plays an excitatory regulation in gastric motility via AT(1)R-IP(3) and the CICR signaling pathway. The Ang II-induced inhibition of delayed rectifying potassium currents that depolarize membrane potential is also involved in the potentiation of tonic contraction and the frequency of spontaneous contraction in the gastric smooth muscle of guinea pig.  相似文献   

15.
Cell coupling is important for the normal function of the beta-cells of the pancreatic islet of Langerhans, which secrete insulin in response to elevated plasma glucose. In the islets, electrical and metabolic communications are mediated by gap junctions. Although electrical coupling is believed to account for synchronization of the islets, the role and significance of diffusion of calcium and metabolites are not clear. To address these questions we analyze two different mathematical models of islet calcium and electrical dynamics. To study diffusion of calcium, we use a modified Morris-Lecar model. Based on our analysis, we conclude that intercellular diffusion of calcium is not necessary for islet synchronization, at most supplementing electrical coupling. Metabolic coupling is investigated with a recent mathematical model incorporating glycolytic oscillations. Bifurcation analysis of the coupled system reveals several modes of behavior, depending on the relative strength of electrical and metabolic coupling. We find that whereas electrical coupling always produces synchrony, metabolic coupling can abolish both oscillations and synchrony, explaining some puzzling experimental observations. We suggest that these modes are generic features of square-wave bursters and relaxation oscillators coupled through either the activation or recovery variable.  相似文献   

16.
The inositol trisphosphate receptor () is one of the most important cellular components responsible for oscillations in the cytoplasmic calcium concentration. Over the past decade, two major questions about the have arisen. Firstly, how best should the be modeled? In other words, what fundamental properties of the allow it to perform its function, and what are their quantitative properties? Secondly, although calcium oscillations are caused by the stochastic opening and closing of small numbers of , is it possible for a deterministic model to be a reliable predictor of calcium behavior? Here, we answer these two questions, using airway smooth muscle cells (ASMC) as a specific example. Firstly, we show that periodic calcium waves in ASMC, as well as the statistics of calcium puffs in other cell types, can be quantitatively reproduced by a two-state model of the , and thus the behavior of the is essentially determined by its modal structure. The structure within each mode is irrelevant for function. Secondly, we show that, although calcium waves in ASMC are generated by a stochastic mechanism, stochasticity is not essential for a qualitative prediction of how oscillation frequency depends on model parameters, and thus deterministic models demonstrate the same level of predictive capability as do stochastic models. We conclude that, firstly, calcium dynamics can be accurately modeled using simplified models, and, secondly, to obtain qualitative predictions of how oscillation frequency depends on parameters it is sufficient to use a deterministic model.  相似文献   

17.
Of all the lifeforms that obtain their energy from glycolysis, yeast cells are among the most basic. Under certain conditions the concentrations of the glycolytic intermediates in yeast cells can oscillate. Individual yeast cells in a suspension can synchronize their oscillations to get in phase with each other. Although the glycolytic oscillations originate in the upper part of the glycolytic chain, the signaling agent in this synchronization appears to be acetaldehyde, a membrane-permeating metabolite at the bottom of the anaerobic part of the glycolytic chain. Here we address the issue of how a metabolite remote from the pacemaking origin of the oscillation may nevertheless control the synchronization. We present a quantitative model for glycolytic oscillations and their synchronization in terms of chemical kinetics. We show that, in essence, the common acetaldehyde concentration can be modeled as a small perturbation on the "pacemaker" whose effect on the period of the oscillations of cells in the same suspension is indeed such that a synchronization develops.  相似文献   

18.
We present a mathematical model for calcium oscillations in the cilia of olfactory sensory neurons. The underlying mechanism is based on direct negative regulation of cyclic nucleotide-gated channels by calcium/calmodulin and does not require any autocatalysis such as calcium-induced calcium release. The model is in quantitative agreement with available experimental data, both with respect to oscillations and to fast adaptation. We give predictions for the ranges of parameters in which oscillations should be observable. Relevance of the model to calcium oscillations in other systems is discussed.  相似文献   

19.
We have developed a quantitative model for the creation of cytoplasmic Ca2+ gradients near the inner surface of the plasma membrane (PM). In particular we simulated the refilling of the sarcoplasmic reticulum (SR) via PM–SR junctions during asynchronous [Ca2+]i oscillations in smooth muscle cells of the rabbit inferior vena cava. We have combined confocal microscopy data on the [Ca2+]i oscillations, force transduction data from cell contraction studies and electron microscopic images to build a basis for computational simulations that model the transport of calcium ions from Na+/Ca2+ exchangers (NCX) on the PM to sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pumps on the SR as a three-dimensional random walk through the PM–SR junctional cytoplasmic spaces. Electron microscopic ultrastructural images of the smooth muscle cells were elaborated with software algorithms to produce a very clear and dimensionally accurate picture of the PM–SR junctions. From this study, we conclude that it is plausible and possible for enough Ca2+ to pass through the PM–SR junctions to replete the SR during the regenerative Ca2+ release, which underlies agonist induced asynchronous Ca2+ oscillations in vascular smooth muscle.  相似文献   

20.
In rat mesenteric arteries, smooth muscle cells exhibit intercellular calcium waves in response to local phenylephrine stimulation. These waves have a velocity of ∼20 cells/s and a range of ∼80 cells. We analyze these waves in a theoretical model of a population of coupled smooth muscle cells, based on the hypothesis that the wave results from cell membrane depolarization propagation. We study the underlying mechanisms and highlight the importance of voltage-operated channels, calcium-induced calcium release, and chloride channels. Our model is in agreement with experimental observations, and we demonstrate that calcium waves presenting a velocity of ∼20 cells/s can be mediated by electrical coupling. The wave velocity is limited by the time needed for calcium influx through voltage-operated calcium channels and the subsequent calcium-induced calcium release, and not by the speed of the depolarization spreading. The waves are partially regenerated, but have a spatial limit in propagation. Moreover, the model predicts that a refractory period of calcium signaling may significantly affect the wave appearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号