共查询到20条相似文献,搜索用时 15 毫秒
1.
In a 116-d greenhouse growth experiment on a terrestrial carnivorous plant Genlisea violacea (Lentibulariaceae), mild fertilization of a peaty soil led to a 2.4 fold increase in total plant biomass as compared to the controls. Tissue P and K content in fertilized plants was significantly higher than that in the controls. 相似文献
2.
It is likely to provide plants with their necessary nutrients using chemical and biological fertilization. Although chemical fertilization is a quick method, it is not recommendable economically and environmentally, especially if overused. Biological fertilization is the use of soil microbes including arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria to inoculate plants. It has been proved that biological fertilization is an efficient method to supply plants with their necessary nutrients. It is economically and environmentally recommendable, because it results in sustainability. In this article, some of the most important details including the mechanisms and processes regarding the effects of soil microbes on the availability and hence uptake of nutrients by plant are reviewed. Such details can be important for the selection and hence production of microbial inoculums, which are appropriate for biological fertilization. 相似文献
4.
A growth chamber study was conducted to evaluate the effect of application of phosphate fertilizer on soil solution dynamics of cadmium (Cd) and Cd accumulation in durum wheat ( Triticum turgidum L. var. durum). Treatments consisted of three phosphate fertilizer sources containing 3.4, 75.2, and 232 mg Cd kg ?1 applied at three rates (20, 40 and 80 mg P kg ?1) plus a no fertilization control. An unplanted treatment at 40 mg P kg ?1 was included to separate the effects on soil solution Cd dynamics of the crop from that of the fertilizer. Soil solution samples were obtained using soil moisture samplers every 10 days after germination. The experimental results indicated that plant biomass significantly increased with P application rates and decreased with increased Cd concentration in the phosphate fertilizers. Total cadmium concentration in soil solution was not consistently affected by phosphate fertilization rate and fertilizer sources, and therefore Cd concentration in the fertilizer. Application of phosphate fertilizer, however, increased the concentration and accumulation of Cd and shoot Cd/Zn ratio, and decreased shoot Zn concentration in durum wheat. Phosphate sources had a marginally significant effect ( P?=?0.05) on shoot Cd concentration and did not affect Cd accumulation in durum wheat. Concentration of Cd in soil solution was unrelated to Cd concentration in durum wheat. These results suggest that the immediate increase in Cd concentration and Cd accumulation in durum wheat with phosphate application is due more to competition between Zn and Cd for absorption into plants, enhanced root to shoot translocation and enhanced root development, than to a direct addition effect from Cd contained in phosphate fertilizer. In the short term, application of phosphate fertilizers can increase Cd concentration in the crops, regardless of the Cd concentration of the fertilizer. An optimal P fertilization, possibly in combination with Zn application, may offer an important strategy for decreasing Cd concentration and accumulation in crops. 相似文献
5.
One of the major goals in ecology is to determine the mechanisms that drive the asymptotic increase in ecosystem productivity with plant species diversity. Niche complementarity, the current paradigm for the asymptotic diversity-productivity pattern, posits that the addition of species to a community increases productivity because each species specializes on different resources and thus can more thoroughly utilize the available resources. At higher diversity the increase in productivity decreases because resources become limiting, resulting in the classic asymptotic diversity-productivity pattern. An alternative but less tested explanation is that density-dependent disease from species-specific soil microbes drive the diversity-productivity relationship by increasing disease and thus decreasing productivity at low diversity. At higher diversity, productivity asymptotes because disease decreases with increasing diversity until it reaches a uniformly low level. Using a series of field experiments, we found that the classic asymptotic diversity-productivity pattern existed only when soil microbes were present. Soil microbes created the well-known pattern by depressing plant growth at low productivity though negative density dependent disease. In contrast, niche complementarity played only a weak role in explaining the diversity-productivity relationship because productivity remained high at low abundance in the absence of soil microbes. Based on our findings, the ongoing loss of species in natural ecosystems will likely increase per capita plant disease and lower ecosystem productivity. Furthermore, recent evidence suggests that negative density dependent disease maintains plant species diversity, and thus this single mechanism appears to link diversity maintenance to the diversity-productivity curve—two important ecological processes.Key words: density dependence, diversity-productivity, negative feedback, pathogens, species richness, soil microbesThe asymptotically saturating increase in ecosystem productivity with increasing diversity is a well know pattern in nature 1–4 (). The pattern has been used as an argument for the importance of species diversity, 5 and understanding the mechanisms that drive the pattern is critical to determine the potential loss in productivity with ongoing and accelerating species loss in many ecosystems. The cause of the diversity-productivity pattern can be explained by either bottom-up control, such as plant resource competition, or top-down control from plant herbivores or pathogens. Most contemporary explanations for the pattern are centered on the bottom-up concept of niche-based resource competition, in which different species utilize different resources. The commonly accepted explanation, the niche complementarity hypothesis, states that the increase in species diversity increases productivity because each additional species uses a differ set of resources (e.g., nutrients) and thus more thoroughly utilizes whole-ecosystem resources. 3,4,6 At high diversity, however, the resource requirements of additional species overlap with existing ones and thus productivity no longer increases with diversity, resulting in the asymptotic diversity-productivity pattern (). Open in a separate windowTheoretical relationship between species number and biomass. As diversity increases, total biomass increases asymptotically.Top-down control from plant enemies may also produce the asymptotic diversity-productivity pattern if the enemies are species-specific and have a strong negative density-dependent effect at low diversity. One general group of enemies is plant pathogens and parasites (bacterial, fungal, viral) that live in the soil and infect plant roots (hereafter referred to as soil pathogens). The specificity of soil pathogens has been shown in various studies and is now generally accepted. 1,7,8 The negative density dependent effect of plant pathogens at low diversity is likely because when diversity is low the relative abundance of each remaining species is high, 9–11 which leads to most individuals growing in close proximity of conspecifics and thus a greater probability of species-specific disease transmission. Unlike other plant enemies, such as foliar pathogens or insect and mammalian herbivores, which can be broadly dispersed, soil-borne pathogens may be a particularly effective driver of negative density dependent effects because they have low mobility and thus are more likely to infect nearby conspecifics, which causes increased disease at low diversity. 9–11 As diversity increases, the effect of soil-borne pathogens decreases because there is a lower likelihood of growing near a conspecific and there are lower concentrations of host-specific soil enemies. 10 Consequently, soil-borne, species-specific disease may limit ecosystem productivity through top-down density-dependent regulation, even in the absence of niche-based explanations. Few studies, however, have considered the role of plant soil pathogens in driving the classic diversity-productivity relationship 1 (see also ref. 2) and, until now, no study has compared the two potential drivers simultaneously. 1We used a modeling approach to first demonstrate that both niche complementarity and species-specific soil pathogens can both theoretically drive the well-known diversity-productivity pattern. 1 We then used a series of complementary field experiments in grasslands in North America (Ontario, Canada and Minnesota, USA) to determine how plant disease and productivity change over a gradient of plant species richness in the presence and absence of soil microbes, and whether feedback between plants and their species-specific soil biota influenced the diversity-productivity pattern. 1 We first tested whether the asymptotic diversity-ecosystem productivity relationship arose in the presence of soil pathogens (a test of the negative density dependence hypothesis) or in the absence of soil pathogens (a test of the niche complementarity hypothesis). We then confirmed that soil biota were species specific and examined the decrease in plant disease and increase in productivity with increasing plant diversity. 相似文献
6.
In the natural environment, plants communicate with various microorganisms (pathogenic or beneficial) and exhibit differential responses. In recent years, research on microbial volatile compounds (MVCs) has revealed them to be simple, effective and efficient groups of compounds that modulate plant growth and developmental processes. They also interfere with the signaling process. Different MVCs have been shown to promote plant growth via improved photosynthesis rates, increased plant resistance to pathogens, activated phytohormone signaling pathways, or, in some cases, inhibit plant growth, leading to death. Regardless of these exhibited roles, the molecules responsible, the underlying mechanisms, and induced specific metabolic/molecular changes are not fully understood. Here, we review current knowledge on the effects of MVCs on plants, with particular emphasis on their modulation of the salicylic acid, jasmonic acid/ethylene, and auxin signaling pathways. Additionally, opportunities for further research and potential practical applications presented. 相似文献
7.
Chemical and spectroscopic studies have shown that in agricultural soils most of the soil sulphur (>95%) is present as sulphate esters or as carbon-bonded sulphur (sulphonates or amino acid sulphur), rather than inorganic sulphate. Plant sulphur nutrition depends primarily on the uptake of inorganic sulphate. However, recent research has demonstrated that the sulphate ester and sulphonate-pools of soil sulphur are also plant-bioavailable, probably due to interconversion of carbon-bonded sulphur and sulphate ester-sulphur to inorganic sulphate by soil microbes. In addition to this mineralization of bound forms of sulphur, soil microbes are also responsible for the rapid immobilization of sulphate, first to sulphate esters and subsequently to carbon-bound sulphur. The rate of sulphur cycling depends on the microbial community present, and on its metabolic activity, though it is not yet known if specific microbial species or genera control this process. The genes involved in the mobilization of sulphonate- and sulphate ester-sulphur by one common rhizosphere bacterium, Pseudomonas putida, have been investigated. Mutants of this species that are unable to transform sulphate esters show reduced survival in the soil, indicating that sulphate esters are important for bacterial S-nutrition in this environment. P. putida S-313 mutants that cannot metabolize sulphonate-sulphur do not promote the growth of tomato plants as the wild-type strain does, suggesting that the ability to mobilize bound sulphur for plant nutrition is an important role of this species. 相似文献
8.
Significant advances in the cell biology of plant-microbe interactions have been achieved recently, to a large extent based on new technical approaches such as the use of fluorescent protein tags in model plants exploited in conjunction with available genetic resources. They have highlighted the pivotal role played by epidermal cells as the first site at which direct cell-to-cell contact takes place between the plant and microbes it may host. Here, we compare the cellular aspects of early biotrophic interactions with symbiotic and pathogenic microbes and evaluate the hypothesis that their hosting by plant cells share common traits related to the necessity of preserving host-cell integrity. The cellular events that accompany cell entry by the different biotrophs are divided into three categories, depending on whether the cellular changes are triggered by diffusible molecules, direct contact, or cell lumen penetration. Similarities and differences mirror the nutritional and developmental strategies of each plant-interacting organism, underlining the fact that plant cell entry represents a key aspect in the establishment of biotrophy. 相似文献
10.
AIMS: To investigate a cultivation-independent method of enrichment for microbes living in association with plant tissues. METHODS AND RESULTS: A large quantity of leaves or seeds was enzymatically hydrolyzed, and the pellets were collected by differential centrifugation. Enzyme concentration, buffer and incubation time were optimized for release of plant-associated microbes. The relative abundance of plant nuclear DNA and bacterial DNA in the enriched sample was estimated by PCR amplification of genome-specific marker genes. The efficiency of microbe enrichment was estimated from the proportion of bacterium-derived clones and their restriction fragment length polymorphism (RFLP) types as detected by 16S rRNA gene-based techniques. With a higher ratio of bacterial to plant nuclear DNA, the enriched samples showed a considerably enhanced proportion of bacterium-derived clones and a wider sequence diversity of those clones. CONCLUSIONS: The method described here proved to be remarkably effective in enriching for bacteria living in association with plant tissues. SIGNIFICANCE AND IMPACT OF THE STUDY: The method can be applied to study plant-associated microbes in the field of environmental molecular ecology and environmental metagenomics. 相似文献
12.
Plant natural products (NPs) not only serve many functions in an organism's survivability but also demonstrate important pharmacological activities. Isolation of NPs from native sources is frequently limited by low abundance and environmental, seasonal, and regional variation while total chemical synthesis of what are often complex structures is typically commercially infeasible. Reconstruction of biosynthetic pathways in heterologous microorganisms offers significant promise for a scalable means to provide sufficient quantities of a desired NP while using inexpensive renewable resources. To this end, metabolic engineering provides the technological platform for enhancing NP production in these engineered heterologous hosts. Recent advancements in the production of isoprenoids, phenylpropanoids, and alkaloids were made possible by utilizing a variety of techniques including combinatorial biosynthesis, codon optimization, expression of regulatory elements, and protein engineering of P450s. 相似文献
13.
Understanding commonalities and differences of how symbiotic and parasitic microbes interact with plants will improve advantageous interactions and allow pathogen control strategies in crops. Recently established systems enable studies of root pathogenic and symbiotic interactions in the same plant species.Interactions between organisms shape ecological communities [ 1]. It is fascinating how plants fine-tune defense to prevent detrimental interactions while supporting development towards advantageous interactions [ 2]. As plants are unable to escape parasite attacks, they needed to evolve strong defense mechanisms to effectively ward off pathogens [ 3]. But plants also engage in symbiosis with advantageous microorganisms such as root-associated bacteria or fungi to gain extended nutrient access [ 4]. Knowing how plants control their interactions has a direct impact on our crop plants and influence on our agricultural strategies, and is thus a very important field of research.Driven by the impact of diseases on agriculture, plant-pathogen research has resulted in extensive knowledge on how plants defend themselves against above-ground pathogens. Also, how plants engage in beneficial root symbiosis is a field of intense research [ 5]. However, there is much less known on the overlap between the two types of interaction. One reason is that historically research into plant-pathogen interactions and symbiosis research were motivated by different aims. Economically relevant pathogens such as the fungus-like oomycete Phytophthora infestans, trigger of the Irish potato famine, continue to cause dramatic yield losses in crops such as potato and tomato [ 6]. Given these economic and societal impacts, plant pathology research has focused on disease resistance, and has therefore been dominated by the study of pathogen modulation of plant immunity [ 7].In contrast, research into beneficial effects of plant microbes is mainly guided by nutritional aspects [ 5] with much less focus on immunity and compatibility aspects. A well-studied example for beneficial symbiosis is the association of plant roots with fungi [ 8]. This mycorrhiza can be found in 80% of all land plants. Arbuscular mycorrhiza (AM) relies on an evolutionarily ancient program dating back to early land plants and was key when plants conquered the land. It is conceivable that pathogens take advantage of this symbiosis program to gain access to the host plant''s resources.We have extensive evidence for commonalities between pathogenic and symbiotic lifestyles. Both interaction types follow similar developmental processes of identification, plant cell penetration and re-differentiation of the host cells to establish intracellular interfaces for nutrient and information exchange (Figure ) [ 9]. Undecorated chitin oligomers of microbe origin, known to be potent inducers of plant immunity [ 10], were found recently to also activate symbiosis-related signaling [ 11]. Furthermore, effector proteins, hallmarks of animal and plant pathogens and which suppress defense and reprogram the host, were also described recently in mycorrhizal fungi [ 12, 13]. Considering these similarities, it is surprising that very few parallels have been made between modes of pathogen and symbiotic colonization. Since symbiotic mycorrhiza occur only below ground, we are bound to study both types of interactions in roots. This will enable us to generate pathogen-resistant crop plants without affecting beneficial symbiosis. To do so, we need dual research systems that enable these comparative studies. Open in a separate windowPhytophthora species and arbuscular mycorrhizal (AM) fungi follow analogous steps to establish a root interaction. Following chemical cross-talk, the microbe germinates and forms attachment and penetration structures, termed appressoria and hyphopodia, respectively. Penetration occurs through or between cells, and in the case of AM fungi intracellular hyphae are supported by a plant-derived pre-penetration apparatus [ 17]. Specialized intracellular interfaces, termed haustoria and arbuscules, form within plant root cells. Phytophthora infections eventually result in cell death of the infected tissue, while obligate biotrophic AM fungi continuously reside in living plant roots.Our ability to compare principles of colonization is hampered by the traditional separation of plant pathology systems and symbiosis systems on different plant species. Arabidopsis thaliana, the plant system of choice for numerous plant-pathogen interactions, does not support feeding structure formation by endomycorrhizal fungi, and thus is limited to studies of non-host interactions [ 14]. Notably, separate research of Phytophthora pathogens in its host plants potato and tomato, and beneficial AM fungi in legumes and rice, has shown that both follow analogous steps to establish an interaction (Figure ). Moreover, both form specialized accommodation structures within plant cells (Figure ). Thus, it would be good to have a single plant species that allows direct comparison between pathogenic and symbiotic interactions. Open in a separate windowAccommodation structures formed by filamentous microbes in Nicotiana benthamiana roots. Phytophthora palmivora projects digit-like haustoria into root cells that are surrounded by plant endoplasmic reticulum (labeled using green fluorescent protein, GFP). Arbuscular mycorrhizal (AM) fungi form arbuscules, visualized using a plant membrane-associated GFP fusion protein. 相似文献
15.
Plants can respond to soil conditions in ways that can not readily be explained in terms of the ability of the roots to take up water and nutrients. Roots may sense difficult conditions in the soil and thence send inhibitory signals to the shoots which harden the plants against the consequences of a deteriorating or restrictive environment, especially if the plants' water supply is at risk. Generally, this behaviour can be interpreted as feedforward responses to the soil becoming too dry or too hard, or to the available soil volume being very small as with bonsai plants, or to roots' becoming infected with pathogens. However, soil that is too soft or in which the roots are forced to grow in very large pores can also induce large conservative responses, the significance of which is unclear. The inhibitory signals may affect stomatal conductance, cell expansion, cell division and the rate of leaf appearance. Their nature is still under debate, and the debate is becoming increasingly complex, which probably signifies that a network of hormonal and other responses is involved in attuning the growth and development of a plant to its environment. 相似文献
16.
The use of green manures in agriculture can provide nutrients, affect soil microbial communities, and be a more sustainable management practice. The activities of soil microbes can effect crop growth, but the extent of this effect on yield remains unclear. We investigated soil bacterial communities and soil properties under four different green manure fertilization regimes (Vicia villosa, common vetch, milk vetch, and radish) and determined the effects of these regimes on maize growth. Milk vetch showed the greatest potential for improving crop productivity and increased maize yield by 31.3 %. This change might be related to changes in soil microbes and soil properties. The entire soil bacterial community and physicochemical properties differed significantly among treatments, and there were significant correlations between soil bacteria, soil properties, and maize yield. In particular, abundance of the phyla Acidobacteria and Verrucomicrobia was positively correlated with maize yield, while Proteobacteria and Chloroflexi were negatively correlated with yield. These data suggest that the variation of maize yield was related to differences in soil bacteria. The results also indicate that soil pH, alkali solution nitrogen, and available potassium were the key environmental factors shaping soil bacterial communities and determining maize yields. Both soil properties and soil microbes might be useful as indicators of soil quality and potential crop yield. 相似文献
17.
Summary Vanillic acid, p-hydroxy benzoic acid, p-coumaric acid and three other unidentified phenolic acids were detected in the Annamalainagar rice field soils. The quantity of total phenols decreased significantly following increased dose of nitrogenous fertilizer. The rice cultivar Co. 13 responded well to increasing N application. When tested in vitro, cinnamic acid even at 0.0001 M concentration proved detrimental to the growth of rice seedlings. The decrease in the level of phenols in soil following increased N application was suggested as one of the causes for prolific growth of rice plants. re]19721024 相似文献
18.
Background and aimsTo test the hypothesis that dominant plant species could acquire different nitrogen (N) forms over a spatial scale and they also have the ability to compete for available N with microbes.MethodsA short-term 15N labeling experiment was conducted in the temperate grassland ecosystem of North China in July of 2013. Three N forms (NO3 ? , NH4 + and glycine) labeled with 15N were injected into the two soil depths (0–5 and 5–15 cm) surrounding each plant to explore N acquisition by plants and microbes. Three dominant plant species (Artemisia frigida, Cleistogenes squarrosa and Artemisia capillaris) were investigated.ResultsTwo hours after 15N labeling, all three dominant plant species absorbed both organic and inorganic N, but different patterns were observed at two soil depths. Uptake of NO3 ? was significantly higher at 0–5 cm than at 5–15 cm soil depth among all the dominant plant species. 15N recovery by microbes was significantly higher than plants. However, 15N recovery by plants showed different patterns over soil depths.ConclusionsDominant plant species in the temperate grassland have different patterns in acquisition of N added to soil in organic form and absorption of inorganic N, and microbes were more effectively than plants at competing for N in a short-term period. 相似文献
19.
Legumes develop different mutually beneficial symbioses with soil microbes, such as arbuscular mycorrhizal (AM) fungi, nodule bacteria and plant growth promoting bacteria. Symbioses supply the plants with nutrients (predominantly with nitrogen and phosphorus), protect them from pathogens and abiotic stresses and improve soil microbial biodiversity and fertility. The synergistic activity of beneficial soil microbes (BSM) on the plants has great importance for the use of multi-component symbiotic systems in low-input sustainable environmentally-friendly agrotechnologies. However, the complex nature of the AM symbiosis when in a multi-component symbiosis (plant-fungus-bacteria) creates complications for the fungus to produce AM fungal propagules and poses questions (a) about the effectiveness of the fungus per se in interactions with the plants, without associates, and (b) about the necessity of using sterile/axenic conditions for the production of the AM fungi based inoculants because of any mixing and competition by microbes from the inoculants with the local soil microbial consortia. The legume genes controlling interactions with BSM (including genes responsible for effectiveness of such interactions) should be considered as a united genetic system. The plant genome is more stable than that of microbes and therefore crop plants should select beneficial microbes and control the effectiveness of the whole plant-microbe system in the field for the benefit of the crop and therefore of human beings. There is clearly a need to breed legume crops with improved performance under sustainable conditions involving interactions with BSM and optimising the use of agrochemicals. 相似文献
20.
Sex-possessing organisms perform sexual reproduction, in which gametes from different sexes fuse to produce offspring. In most eukaryotes, one or both sex gametes are motile, and gametes actively approach each other to fuse. However, in flowering plants, the gametes of both sexes lack motility. Two sperm cells (male gametes) that are contained in a pollen grain are recessively delivered via pollen tube elongation. After the pollen tube bursts, sperm cells are released toward the egg and central cells (female gametes) within an ovule (). The precise mechanism of sperm cell movement after the pollen tube bursts remains unknown. Ultimately, one sperm cell fuses with the egg cell and the other one fuses with the central cell, producing an embryo and an endosperm, respectively. Fertilization in which 2 sets of gamete fusion events occur, called double fertilization, has been known for over 100 y. The fact that each morphologically identical sperm cell precisely recognizes its fusion partner strongly suggests that an accurate gamete interaction system(s) exists in flowering plants. Open in a separate windowIllustration of the fertilization process in flowering plants. First, each pollen tube accesses an ovule containing egg and central cells. Next, the 2 sperm cells face the female gametes in the ovule after the pollen tube bursts. Finally, each sperm cell simultaneously fuses with either egg or central cell. 相似文献
|