首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The structural changes of phalloidin-rhodamin labelled F-actin at relaxed and contracted skeletal muscle fibre containing phosphorylated myosin and at contracted state after dephosphorylation were investigated by measuring of polarized fluorescence of the fluorophore. The mechanical properties (isometric tension development) of fibre were studied in parallel. At submaximal concentration of Ca ions (0.6 mumol/l) the isometric tension was decreased after dephosphorylation of fibre myosin. The changes in polarization of fluorophore bound to actin filament were correlated with isometric tension developed by the muscle fibre. The angles between the actin filament long axis and the absorption and emission dipoles for contracted and relaxed fibre were different, suggesting changes in the organization of the actin monomers in thin filament, dependent on the physiological state of the fibre. The flexibility of the thin filaments during transition of the fibre from relaxed to "contracted" state increases as indicated by greater average angle between the F-actin long axis and the fibre axis.  相似文献   

2.
Fluorescence spectra of ANM-labeled, glycerinated rabbit psoas muscle fibers were recorded in relaxed, contracted, and rigor states. SDS polyacrylamide gel electrophoresis of the ANM-labeled muscle fibers indicated that proteins labeled with ANM were myosin heavy chain, C protein, and actin. In a relaxed state in the presence of ATP, myosin heavy chain was mainly labeled. During the transition from rigor to the relaxed or contracted state, there was a blue shift (about 5 nm) of the ANM emission spectrum. Similar experiments with FAM (N-(3-fluoranthyl)-maleimide)-labeled muscle fibers showed that these fluorescence changes were not artifacts due to the movement of muscle fibers. The fibers labeled in the ATP relaxing solution showed a marked decrease in both isometric force and unloaded shortening velocity (Vo), while in the fibers labeled in the rigor solution isometric tension was not markedly suppressed, though Vo decreased to the same extent as in the fibers labeled in the ATP relaxing solution. Fluorescence spectra of ANM-labeled HMM in different states were also measured. A fluorescence enhancement and a blue shift (about 5 nm) of the emission maximum were observed in HMM + MgATP or HMM + MgATP + F-actin in comparison with HMM + F-actin. These results suggest that the fluorescence spectra of the ANM-labeled muscle fibers reflect their conformational changes between the rigor state (in the absence of MgATP) and the relaxed or contracted state (in the presence of MgATP).  相似文献   

3.
Hydrostatic compression in glycerinated rabbit muscle fibers.   总被引:2,自引:2,他引:0       下载免费PDF全文
Glycerinated muscle fibers isolated from rabbit psoas muscle, and a number of other nonmuscle elastic fibers including glass, rubber, and collagen, were exposed to hydrostatic pressures of up to 10 MPa (100 Atm) to determine the pressure sensitivity of their isometric tension. The isometric tension of muscle fibers in the relaxed state (passive tension) was insensitive to increased pressure, whereas the muscle fiber tension in rigor state increased linearly with pressure. The tension of all other fiber types (except rubber) also increased with pressure; the rubber tension was pressure insensitive. The pressure sensitivity of rigor tension was 2.3 kN/m2/MPa and, in comparison with force/extension relation determined at atmospheric pressure, the hydrostatic compression in rigor muscle fibers was estimated to be 0.03% Lo/MPa. As reported previously, the active muscle fiber tension is depressed by increased pressure. The possible underlying basis of the different pressure-dependent tension behavior in relaxed, rigor, and active muscle is discussed.  相似文献   

4.
The dependence of polarized fluorescence of rhodaminylphalloin specifically bound to F-actin and the tension developed by a fiber upon phosphorylation of myosin (18.5 kD) light chains as well as on the concentration of free Ca2+ was observed during the contraction of glycerinated rabbit skeletal muscle fibers. Still greater changes in the polarized fluorescence and higher values of tension were recorded for fibers with phosphorylated light chains at low (0.6 microM) Ca2+ concentrations as well as for those with dephosphorylated light chains at high (10 microM) Ca2+ concentrations. It is concluded that phosphorylation of myosin light chains modulates skeletal muscle contraction. The mechanisms of modulation involve conformational changes in F-actin.  相似文献   

5.
The fluorophore, N(iodoacetylamino)-1-naphthylamine-5-sulfonic acid (1,5-IAEDANS), incubated with glycerinated psoas fibers primarily labels the S-1 moieties of such fibers, but it does not impair fiber contractility even when the degree of labeling is as high as 0.8 moles fluorophore per mole myosin. The polarization of the on-axis fluorescence from either the IAEDANS fluorophore, or the intrinsic tryptophane fluorophore, depends on whether the fiber is relaxed, in rigor, or developing isometric tension; furthermore, the changes in polarization on going from one state to another are much the same with either tryptophane or IAEDANS fluorophores. The foregoing is true whether the plane of the exciting light is parallel or perpendicular to the fiber axis. Also, if a fiber is first freed of its myosin by extraction, and is then incubated with IAEDANS-labeled S-1 the resulting polarization approaches that observed with a labeled, unextracted fiber in rigor. By contrast, incubation with the fluorophore, 7-nitro-4-chlorobenz-2-oxa-1,3-diazole (NBD-Cl) confers fluorescence only on actin, without impairing contractility, but the polarization of such fluorescence changes in a different direction and magnitude from myosin-originating fluorescence. It is concluded from these various observations that whether the fluorophore is IAEDANS or tryptophane the polarization change with change in physiological state originates in the S-1 moieties of fibers, and relates to the space attitude of these moieties.  相似文献   

6.
The chemical states of a cross-bridge--nucleotide complex were studied using a fluorescent ATP analogue, 1-N6-etheno-2-aza-ATP(epsilon-2-aza-ATP). The fluorescence of epsilon-2-aza-ATP at specific emission wavelengths was enhanced by 12.5 times upon binding to myosin in a relaxed muscle and the fluorescence from the resultant myosin(M)-epsilon-2-aza-ADP-Pi intermediate was 2.5 times greater than that from a M-epsilon-2-aza-ADP complex. Similar enhancements of the fluorescence of epsilon-2-aza-ATP and epsilon-2-aza-ADP were observed upon binding to heavy meromyosin in solution. Binding of F-actin did not change the fluorescence of epsilon-2-aza-ATP or epsilon-2-aza-ADP bound to heavy meromyosin. When a muscle went from a relaxed state to a state of isometric contraction or contraction with shortening, the fluorescence intensity decreased only slightly or not at all, i.e. the fluorescence of nucleotides bound to most of the myosin heads during contraction is the same as that of the M-epsilon-2-aza-ADP-Pi intermediate. These results suggest that an actomyosin(AM)-epsilon-2-aza-ADP-Pi intermediate is the predominant attached state during contraction. When the ionic strength of the relaxing solution was decreased, cross-bridges formed at 6 degrees C without tension generation. At 20 degrees C, a large tension was produced although the shortening velocity was negligibly small or zero. The fluorescence intensity decreased by 15% at 20 degrees C but only a small decrease of 3% was observed at 6 degrees C, suggesting that the predominant complexes in the attached state were AM-epsilon-2-aza-ATP and/or AM-2-aza-ADP-Pi at 6 degrees C and AM-epsilon-2-aza-ADP at 20 degrees C. Thus, the identification of the actomyosin-nucleotide complexes existing before and after the force-generating step lent further support to the conclusion that the sliding force is generated by conformational changes in actomyosin when the (epsilon-2-aza-)ADP-Pi complex is bound to it.  相似文献   

7.
This paper presents the results of simultaneous measurements of the electron paramagnetic resonance signal of spin-label bound to myosin cross-bridges and the mechanical response of glycerol-treated rabbit psoas fibers under isometric contraction. No observable change has been detected in vitro in the local motion of spin-label bound to myosin-ATP with conventional electron paramagnetic resonance techniques when F-actin is added, even under conditions where more than 30% of the myosin is expected to be in an attached state. In contrast, a clear change in the spin-label mobility is observed when cross-bridges are attached to thin filaments. Similar spectra are also observed when cross-bridges are in the rigor state or in an attached state in the presence of 5′-adenylyl imidodiphosphate in place of ATP. A good proportionality is found between the change in the electron paramagnetic resonance signal and the tension when substrate concentration is varied under conditions where no appreciable amount of rigor complex is present. Thus, by assuming 0 and 100% attachment in the relaxed and rigor states, respectively, the extent of cross-bridge attachment can be estimated; it is about 80% at a relatively low ATP concentration where the maximum tension is observed, while it is about 35% in the millimolar range of ATP concentration. A consistent explanation can be given for the spectra obtained both in solution and in the fiber, provided that two distinct states, the preactive and active states, exist in cross-bridges attached to thin filaments. The contribution of intermediate complexes to the force generation is discussed. The effect of Ca2+ control on cross-bridge attachment is also studied at various concentrations of substrate.  相似文献   

8.
The effect of caldesmon and its actin-binding C-terminal 35 kDa fragment on conformational alterations of actin in a muscle fiber at relaxation, rigor and at simulation of strong and weak binding of myosin heads to actin was studied by polarizational fluorimetry technique. The strong and weak binding forms were mimicked during binding of F-actin of ghost muscle fibers to myosin subfragment-1 modified with NEM (NEM-S1) or pPDM (pPDM-S1), respectively. As a test for alterations in actin conformation, changes in orientation and mobility of a fluorescent probe, TRITC-phalloidin, bound specifically to F-actin were used. The results obtained have shown that during transition of the muscle fiber from the relaxed state into the rigor and during binding of actin filaments to NEM-S1, changes of polarization parameters take place, which are characteristic of formation between actin and myosin of the strong binding and of transformation of actin subunits from the "turned-off" (inactive) to the "turned-on" (active) conformation. Binding of pPDM-S1 to actin and relaxation of the muscle fiber are accompanied, on the contrary, by the changes of orientation and of the fluorescent probe mobility, which are typical of formation of the weak ("non-force-producing") form of actin-myosin binding and of transformation of actin subunits from the active conformation into the inactive one. Caldesmon and its C-terminal fragment markedly inhibit formation of the strong binding at rigor and activate transition of actin monomers to the switched off conformation at relaxation of muscle fiber. In parallel experiments, these regulatory proteins have been shown to inhibit an active force developed at the transition of a muscle fiber from relaxation to rigor. Besides, caldesmon and its fragment decrease the rate of actin filament sliding over myosin in an in vitro motility assay. Caldesmon is suggested to regulate the smooth muscle contraction in an allosterical manner. The alterations in actin conformation inhibit formation of strong binding of myosin cross bridges to actin and activate the ability of weakly bound cross bridges to switch actin monomers from the "on" to the "off" conformation.  相似文献   

9.
The orientation of the ELC region of myosin in skeletal muscle was determined by polarized fluorescence from ELC mutants in which pairs of introduced cysteines were cross-linked by BSR. The purified ELC-BSRs were exchanged for native ELC in demembranated fibers from rabbit psoas muscle using a trifluoperazine-based protocol that preserved fiber function. In the absence of MgATP (in rigor) the ELC orientation distribution was narrow; in terms of crystallographic structures of the myosin head, the LCD long axis linking heavy-chain residues 707 and 843 makes an angle (β) of 120-125° with the filament axis. This is ∼30° larger than the broader distribution determined previously from RLC probes, suggesting that, relative to crystallographic structures, the LCD is bent between its ELC and RLC regions in rigor muscle. The ELC orientation distribution in relaxed muscle had two broad peaks with β ∼70° and ∼110°, which may correspond to the two head regions of each myosin molecule, in contrast with the single broad distribution of the RLC region in relaxed muscle. During isometric contraction the ELC orientation distribution peaked at β ∼105°, similar to that determined previously for the RLC region.  相似文献   

10.
The orientation of the N-terminal lobe of the myosin regulatory light chain (RLC) in demembranated fibers of rabbit psoas muscle was determined by polarized fluorescence. The native RLC was replaced by a smooth muscle RLC with a bifunctional rhodamine probe attached to its A, B, C, or D helix. Fiber fluorescence data were interpreted using the crystal structure of the head domain of chicken skeletal myosin in the nucleotide-free state. The peak angle between the lever axis of the myosin head and the fiber or actin filament axis was 100—110° in relaxation, isometric contraction, and rigor. In each state the hook helix was at an angle of ~40° to the lever/filament plane. The in situ orientation of the RLC D and E helices, and by implication of its N- and C-lobes, was similar in smooth and skeletal RLC isoforms. The angle between these two RLC lobes in rigor fibers was different from that in the crystal structure. These results extend previous crystallographic evidence for bending between the two lobes of the RLC to actin-attached myosin heads in muscle fibers, and suggest that such bending may have functional significance in contraction and regulation of vertebrate striated muscle.  相似文献   

11.
Glycerol-extracted rabbit psoas muscle fibers were impaled with KCl-filled glass microelectrodes. For fibers at rest-length, the potentials were significantly more negative in solutions producing relaxation than in solutions producing either rigor or contraction; further the potentials in the latter two cases were not significantly different. For stretched fibers, with no overlap between thick and thin filaments, the potentials did not differ in the rigor, the relaxation, or the contraction solutions. The potentials measured from fibers in rigor did not vary significantly with the sarcomere length. For relaxed fibers, however, the potential magnitude decreased with increasing sarcomere length. The difference between the potentials measured for rigor and relaxed fibers exhibited a nonlinear relationship with sarcomere length. The potentials from calcium-insensitive fibers were less negative in both the rigor and the relaxation solutions than those from normal fibers. When calcium-insensitive fibers had been incubated in Hasselbach and Schneider's solution plus MgCl2 or Guba-Straub's solution plus MgATP the potentials recorded upon impalement were similar in the rigor and the relaxation solution to those obtained from normal fibers in the relaxed state. It is concluded that the increase in the negative potential as the glycerinated fiber goes from rigor to relaxation may be due to an alteration in the conformation of the contractile proteins in the relaxed state.  相似文献   

12.
The changes in birefringence in the rigor to relax transition of single Triton-extracted rabbit psoas muscle fibers have been investigated. The total birefringence of rigor muscle fibers was dependent on sarcomere length and ranged from (1.46 ± 0.08) × 10−3 to (1.60 ± 0.06) ± 10−3 at sarcomere lengths from 2.70 μm to 3.40 μm. An increase in total birefringence was measured dependent on sarcomere length when 55 single fibers were relaxed from the rigor state with Mg-ATP. Pyrophosphate relaxation produced a smaller increase in retardation when compared to Mg-ATP. The expected change in intrinsic birefringence during the rigor to relax transition was calculated assuming a hinge function of the subfragment 2 moiety of myosin. The changes in birefringence during isometric contraction and relaxation have been discussed in relation to possible structural changes.  相似文献   

13.
We show prolonged contraction of permeabilized muscle fibers of the frog during which structural order, as judged from low-angle x-ray diffraction, was preserved by means of partial cross-linking of the fibers using the zero-length cross-linker 1-ethyl-3-[3-dimethylamino)propyl]carbodiimide. Ten to twenty percent of the myosin cross-bridges were cross-linked, allowing the remaining 80-90% to cycle and generate force. These fibers displayed a well-preserved sarcomeric order and mechanical characteristics similar to those of intact muscle fibers. The intensity of the brightest meridional reflection at 14.5 nm, resulting from the projection of cross-bridges evenly spaced along the myofilament length, decreased by 60% as a relaxed fiber was deprived of ATP and entered the rigor state. Upon activation of a rigorized fiber by the addition of ATP, the intensity of this reflection returned to 97% of the relaxed value, suggesting that the overall orientation of cross-bridges in the active muscle was more perpendicular to the filament axis than in rigor. Following a small-amplitude length step applied to the active fibers, the reflection intensity decreased for both releases and stretches. In rigor, however, a small stretch increased the amplitude of the reflection by 35%. These findings show the close link between cross-bridge orientation and tension changes.  相似文献   

14.
The stiffness of the single myosin motor (epsilon) is determined in skinned fibers from rabbit psoas muscle by both mechanical and thermodynamic approaches. Changes in the elastic strain of the half-sarcomere (hs) are measured by fast mechanics both in rigor, when all myosin heads are attached, and during active contraction, with the isometric force (T0) modulated by changing either [Ca2+] or temperature. The hs compliance is 43.0+/-0.8 nm MPa-1 in isometric contraction at saturating [Ca2+], whereas in rigor it is 28.2+/-1.1 nm MPa-1. The equivalent compliance of myofilaments is 21.0+/-3.3 nm MPa-1. Accordingly, the stiffness of the ensemble of myosin heads attached in the hs is 45.5+/-1.7 kPa nm-1 in isometric contraction at saturating [Ca2+] (e0), and in rigor (er) it rises to 138.9+/-21.2 kPa nm-1. Epsilon, calculated from er and the lattice molecular dimensions, is 1.21+/-0.18 pN nm-1. epsilon estimated, using a thermodynamic approach, from the relation of T0 at saturating [Ca2+] versus the reciprocal of absolute temperature is 1.25+/-0.14 pN nm-1, similar to that estimated for fibers in rigor. Consequently, the ratio e0/er (0.33+/-0.05) can be used to estimate the fraction of attached heads during isometric contraction at saturating [Ca2+]. If the osmotic agent dextran T-500 (4 g/100 ml) is used to reduce the lateral filament spacing of the relaxed fiber to the value before skinning, both e0 and er increase by approximately 40%. Epsilon becomes approximately 1.7 pN nm-1 and the fraction and the force of myosin heads attached in the isometric contraction remain the same as before dextran application. The finding that the fraction of myosin heads attached to actin in an isometric contraction is 0.33 rules out the hypothesis of multiple mechanical cycles per ATP hydrolyzed.  相似文献   

15.
The intensity of light scattered by chemically skinned rabbit psoas fibers in relaxed, rigor, and activated states was monitored at 90 degrees to the incident beam. In the relaxed state, scattering varied in proportion to the volume of muscle in the beam. Scattering increased to 2.3 times the resting value when rigor was induced by withdrawal of MgATP or when the myofibrils were activated by the caffeine-induced release of Ca from the sarcoplasmic reticulum. The rigor-induced increase in scattering decreased monotonically when MgATP was reintroduced stepwise (0-100 microM). This decrease in scattering was accompanied by an increase in tension up to an optimum MgATP level of approximately 10 microM, and then tension decreased at higher concentrations (10-100 microM). The increase in scattering during both rigor and activation was dependent upon fiber length. At lengths when thick-thin filament overlap was near zero, the light signal due to rigor and activation fell to within 10% of the signal for the relaxed fiber at that length. The signal during rigor increased only minimally (approximately 10%) when stretch (approximately 1%) was applied. This increase in signal was small despite a measured 5- to 10-fold increase in tension and an estimated twofold increase in stiffness. Thus, the increased light scattering caused by rigor and activation depends on filament overlap and not tension, stiffness, or substrate binding.  相似文献   

16.
The properties of some models of the actin filament are compared with those of the thin filament in muscle. The greater stiffness of thin filaments ex vivo with respect to F-actin in vitro is attributed to the effect of both protein osmotic pressure and the attached cross-bridges. By comparing the stiffness of thin filaments in vitro and in isometric and rigor muscles the stiffness of thin filaments in relaxed muscle is computed. The upper limit of thin filament stretching is deduced to approach approximately 10 nm microm(-1). It is also calculated that, on stretching by 2.02 nm of the fully non-overlapped thin filament or by 1.59 nm of the thin filament on isometric contraction, the energy released on the hydrolysis of one molecule of ATP is fully used up.  相似文献   

17.
Step changes in length (between -3 and +5 nm per half-sarcomere) were imposed on isolated muscle fibers at the plateau of an isometric tetanus (tension T0) and on the same fibers in rigor after permeabilization of the sarcolemma, to determine stiffness of the half-sarcomere in the two conditions. To identify the contribution of actin filaments to the total half-sarcomere compliance (C), measurements were made at sarcomere lengths between 2.00 and 2.15 microm, where the number of myosin cross-bridges in the region of overlap between the myosin filament and the actin filament remains constant, and only the length of the nonoverlapped region of the actin filament changes with sarcomere length. At 2.1 microm sarcomere length, C was 3.9 nm T0(-1) in active isometric contraction and 2.6 nm T0(-1) in rigor. The actin filament compliance, estimated from the slope of the relation between C and sarcomere length, was 2.3 nm microm(-1) T0(-1). Recent x-ray diffraction experiments suggest that the myosin filament compliance is 1.3 nm microm(-1) T0(-1). With these values for filament compliance, the difference in half-sarcomere compliance between isometric contraction and rigor indicates that the fraction of myosin cross-bridges attached to actin in isometric contraction is not larger than 0.43, assuming that cross-bridge elasticity is the same in isometric contraction and rigor.  相似文献   

18.
Two attached non-rigor crossbridge forms in insect flight muscle   总被引:1,自引:0,他引:1  
We have performed thin-section electron microscopy on muscle fibers fixed in different mechanically monitored states, in order to identify structural changes in myosin crossbridges associated with force production and maintenance. Tension and stiffness of fibers from glycerinated Lethocerus flight muscle were monitored during a sequence of conditions using AMPPNP and then AMPPNP plus increasing concentrations of ethylene glycol, which brought fibers through a graded sequence from rigor relaxation. Two intermediate crossbridge forms distinct from the rigor or relaxed forms were observed. The first was produced by AMPPNP at 20 degrees C, which reduced isometric tension 60 to 70% below rigor level without reducing rigor stiffness. Electron microscopy of these fibers showed that, in spite of the drop in tension, no obvious change from the 45 degrees crossbridge angle characteristic of rigor occurred. However, the thick filament ends of the crossbridges were altered from their rigor positions, so that they now marked a 14.5 nm repeat, and formed four separate origins at each crossbridge level. The bridges were also less slewed and bent than rigor bridges, as seen in transverse sections. The second crossbridge form was seen in glycol-AMPPNP at 4 degrees C, just below the glycol concentration that produced mechanical relaxation. These fibers retained 90% of rigor stiffness at 40 Hz oscillation, but would not bear sustained tension. Stiffness was also high in the presence of calcium at room temperature under similar conditions. Electron microscopy showed crossbridges projecting from the thick filaments at an angle that centered around 90 degrees, rather than the 45 degree angle familiar from rigor. This coupling of relaxed appearance with persistent stiffness suggests that the 90 degree form may represent a weakly attached crossbridge state like that proposed to precede force development in current models of the crossbridge power stroke.  相似文献   

19.
We have measured the microsecond rotational motions of myosin heads in contracting rabbit psoas muscle fibers by detecting the transient phosphorescence anisotropy of eosin-5-maleimide attached specifically to the myosin head. Experiments were performed on small bundles (10-20 fibers) of glycerinated rabbit psoas muscle fibers at 4 degrees C. The isometric tension and physiological ATPase activity of activated fibers were unaffected by labeling 60-80% of the heads. Following excitation of the probes by a 10-ns laser pulse polarized parallel to the fiber axis, the time-resolved emission anisotropy of muscle fibers in rigor (no ATP) showed no decay from 1 microsecond to 1 ms (r infinity = 0.095), indicating that all heads are rigidly attached to actin on this time scale. In relaxation (5 mM MgATP but no Ca2+), the anisotropy decayed substantially over the microsecond time range, from an initial anisotropy (r0) of 0.066 to a final anisotropy (r infinity) of 0.034, indicating large-amplitude rotational motions with correlation times of about 10 and 150 microseconds and an overall angular range of 40-50 degrees. In isometric contraction (MgATP plus saturating Ca2+), the amplitude of the anisotropy decay (and thus the amplitude of the microsecond motion) is slightly less than in relaxation, and the rotational correlation times are about twice as long, indicating slower motions than those observed in relaxation. While the residual anisotropy (at 1 ms) in contraction is much closer to that in relaxation than in rigor, the initial anisotropy (at 1 microsecond) is approximately equidistant between those of rigor and relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Frog sartorius muscles, equilibrated to 2 x 10(-4)M iodoacetic acid-Ringer's solution and activated by a series of twitches or a long tetanus, perform a rigor response consisting in general of a contractile change which plateaus and is then automatically reversed. Isotonic rigor shortening obeys a force-velocity relation which, with certain differences in value of the constants, accords with Hill's equation for this relation. Changes in rigidity during either isotonic or isometric rigor response show that the capacity of the rigor muscle to bear a load increases more abruptly than the corresponding onset of the ordinarily recorded response, briefly plateaus, and then decays. A quick release of about 1 mm. applied at any instant of isometric rigor output causes the tension to drop instantaneously to zero and then redevelop, the rate of redevelopment varying as does the intensity of the load-bearing capacity. These results demonstrate that rigor mechanical responses result from interaction of a passive, undamped series elastic component, and a contractile component with active state properties like those of normal contraction. Adenosinetriphosphate is known to break down in association with development of the rigor active state. This is discussed in relation to the apparent absence of ATP splitting in normal activation of the contractile component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号