首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Trumbo TA  Maurer MC 《Biochemistry》2002,41(8):2859-2868
In blood coagulation, thrombin helps to activate factor XIII by cleaving the activation peptide at the R37-G38 peptide bond. The more easily activated factor XIII V34L has been correlated with protection from myocardial infarction. V34L and V29F factor XIII mutant peptides were designed to further characterize substrate binding to thrombin. HPLC kinetic studies have been carried out on thrombin hydrolysis of FXIII activation peptide (28-41), FXIII (28-41) V34L, FXIII (28-41) V29F, and FXIII (28-41) V29F V34L. The V34L mutations lead to improvements in both K(m) and k(cat) whereas the V29F mutation primarily affects K(m). Interactions of the peptides with thrombin have been monitored by 1D proton line broadening NMR and 2D transferred NOESY studies. The results were compared with previously published X-ray crystal structures of thrombin-bound fibrinogen Aalpha (7-16), thrombin receptor PAR1 (38-60), and factor XIII (28-37). In solution, the (34)VVPR(37) and (34)LVPR(37) segments of the factor XIII activation peptide serve as the major anchor points onto thrombin. The N-terminal segments are proposed to interact transiently with the enzyme surface. Long-range NOEs from FXIII V29 or F29 toward (34)V/LVPR(37) have not been observed by NMR studies. Overall, the kinetic and NMR results suggest that the factor XIII activation peptide binds to thrombin in a manner more similar to the thrombin receptor PAR1 than to fibrinogen Aalpha. The V29 and V34 positions affect, in different ways, the ability of thrombin to effectively hydrolyze the activation peptide. Mutations at these sites may prove useful in controlling factor XIII activation.  相似文献   

2.
In blood coagulation, thrombin helps to activate factor XIII (FXIII) by cleaving the activation peptide (AP) at the R37-G38 peptide bond. The common polymorphism V34L yields a FXIII that is more easily activated than the wild type enzyme. Peptides based on the FXIII (28-41) (28TVELQGVVPRGVNL41) sequence serve as an important model system to evaluate the substrate specificity of thrombin and thus how to regulate FXIII activation. Our previous kinetic and nuclear magnetic resonance (NMR) studies have suggested that the P4-P1 amino acids on this FXIII segment provide key anchors to the thrombin active site surface. Furthermore, the most effective amino acid to have at the P4 position is a leucine. In the current work, a peptide containing V34F was examined to probe the ability to accommodate an aromatic residue at this position. Kinetic parameters for thrombin-catalyzed hydrolysis of FXIII AP (28-41) V34F are comparable with that of the wild type V34. One-dimensional proton line-broadening studies reveal that the 34FVPR37 segment encompassing the P4-P1 positions makes the most contact with the thrombin surface. Two-dimensional transferred-nuclear overhauser effect spectroscopy (NOESY) studies indicate that when the peptide is bound to thrombin, the F34 aromatic ring is oriented to promote P4-P2 interactions with P36. This characteristic has been viewed as a hallmark for V34L. An ability to generate this interaction may promote the ability of FXIII AP (28-41) V34F to remain a viable substrate for thrombin.  相似文献   

3.
Thrombin cleaves fibrinopeptides A and B from fibrinogen leading to the formation of a fibrin network that is later covalently crosslinked by Factor XIII (FXIII). Thrombin helps activate FXIII by catalyzing hydrolysis of the FXIII activation peptides (AP). In the current work, the role of exosites in the ternary thrombin-FXIII-fibrin(ogen) complex was further explored. Hydrolysis studies indicate that thrombin predominantly utilizes its active site region to bind extended Factor XIII AP (FXIII AP 33-64 and 28-56) leaving the anion-binding exosites for fibrin(ogen) binding. The presence of fibrin-I leads to improvements in the K(m) for hydrolysis of FXIII AP (28-41), whereas peptides based on the cardioprotective FXIII V34L sequence exhibit less reliance on this cofactor. Surface plasmon resonance measurements reveal that d-Phe-Pro-Arg-chloromethylketone-thrombin binds to fibrinogen faster than to FXIII a(2) and dissociates from fibrinogen more slowly than from FXIII a(2). This system of thrombin exosite interactions with differing affinities promotes efficient clot formation.  相似文献   

4.
Isetti G  Maurer MC 《Biochemistry》2007,46(9):2444-2452
In the last stages of coagulation, thrombin helps to activate Factor XIII. The resultant transglutaminase introduces covalent cross-links into fibrin thus promoting clot stability. To better understand the roles of individual thrombin residues in recognition and hydrolysis of the Factor XIII activation peptide, mutations within thrombin's aryl and apolar binding site were explored. The thrombin mutants W215A, E217A, W215A/E217A, L99A, and I174A were examined through HPLC kinetics against the substrates FXIII (28-41) V34 AP and FXIII (28-41) V34L AP. Several mutants responded differently to FXIII (28-41) V34 AP vs the cardioprotective V34L AP. W215 provides an important platform for binding and directing FXIII APs for proper hydrolysis. Loss of this platform leads to decreases in kinetics, particularly to the kcat of FXIII V34L AP. E217 also plays a supporting role, but the E217A mutation is not as detrimental as W215A. W215A/E217A is unfavorable for both activation peptides and its coupling effect has been characterized. This mutant can readily bind the peptides but cannot orient them for effective hydrolysis. Kinetic studies with I174A indicate that this thrombin residue is more crucial for interactions with the larger V34L AP segment. The L99A mutation causes deleterious effects to binding and hydrolysis of both APs. The V34L, however, is able to partially compensate for the loss perhaps by increasing contact within the aryl and apolar sites. Understanding how specific FXIII and thrombin residues participate in binding and control hydrolysis may lead to the design of coagulation enzymes whose degree of activation and optimal target site can be controlled.  相似文献   

5.
Thrombin helps to activate Factor XIII (FXIII) by hydrolyzing the R37-G38 peptide bond. The resultant transglutaminase introduces cross-links into the fibrin clot. With the development of therapeutic coagulation factors, there is a need to better understand interactions involving FXIII. Such knowledge will help predict ability to activate FXIII and thus ability to promote/hinder the generation of transglutaminase activity. Kinetic parameters have been determined for a series of thrombin species hydrolyzing the FXIII (28-41) V34X activation peptides (V34, V34L, V34F, and V34P). The V34P substitution introduces PAR4 character into the FXIII, and the V34F exhibits important similarities to the cardioprotective V34L. FXIII activation peptides containing V34, V34L, or V34P could each be accommodated by alanine mutants of thrombin lacking either the W60d or Y60a residue in the 60-insertion loop. By contrast, FXIII V34F AP could be cleaved by thrombin W60dA but not by Y60aA. FXIII V34P is highly reliant on the thrombin W215 platform for its strong substrate properties whereas FXIII V34F AP becomes the first segment that can maintain its K(m) upon loss of the critical thrombin W215 residue. Interestingly, FXIII V34F AP could also be readily accommodated by thrombin L99A and E217A. Hydrolysis of FXIII V34F AP by thrombin W217A/E217A (WE) was similar to that of FXIII V34L AP whereas WE could not effectively cleave FXIII V34P AP. FXIII V34F and V34P AP show promise for designing FXIII activation systems that are either tolerant of or greatly hindered by the presence of anticoagulant thrombins.  相似文献   

6.
Factor XIII (FXIII) is a transglutaminase involved in blood coagulation. The enzyme is activated by thrombin cleaving the peptide bond R(37)-G(38). A common mutation V34L found in FXIII has been correlated with protection from myocardial infarction. Also FXIII V34L is activated more quickly than the wild type. In the present study, FXIII (28-41) V34L mutant peptide bound to thrombin has been modeled and molecular dynamics simulations were carried out using Insight II. An average structure was calculated after simulation. The structure showed significant difference from the crystal structure of the wild type FXIII (28-37) peptide bound to thrombin. In the crystal structure the peptide adopts a folded conformation in such a way that the hydrophobic side chains of V(29) and V(34) occupy the apolar binding site of thrombin. The modeled V34L peptide adopts a significantly different conformation and only the bulkier L(34) occupies the apolar binding site while V(29) side chain is exposed to the bulk solvent. Hence, this may speed up the release of FXIII from thrombin after its activation.  相似文献   

7.
In the blood coagulation cascade, thrombin cleaves fibrinopeptides A and B from fibrinogen revealing sites for fibrin polymerization that lead to insoluble clot formation. Factor XIII stabilizes this clot by catalyzing the formation of intermolecular cross-links in the fibrin network. Thrombin activates the Factor XIII a(2) dimer by cleaving the Factor XIII activation peptide segment at the Arg(37)-Gly(38) peptide bond. Using a high performance liquid chromatography assay, the kinetic constants K(m), k(cat), and k(cat)/K(m) were determined for thrombin hydrolysis of fibrinogen Aalpha-(7-20), Factor XIII activation peptide-(28-41), and Factor XIII activation peptide-(28-41) with a Val(34) to Leu substitution. This Val to Leu mutation has been correlated with protection from myocardial infarction. In the absence of fibrin, the Factor XIII activation peptide-(28-41) exhibits a 10-fold lower k(cat)/K(m) value than fibrinogen Aalpha-(7-20). With the Factor XIII V34L mutation, decreases in K(m) and increases in k(cat) produce a 6-fold increase in k(cat)/K(m) relative to the wild-type Factor XIII sequence. A review of the x-ray crystal structures of known substrates and inhibitors of thrombin leads to a hypothesis that the new Leu generates a peptide with more extensive interactions with the surface of thrombin. As a result, the Factor XIII V34L is proposed to be susceptible to wasteful conversion of zymogen to activated enzyme. Premature depletion may provide cardioprotective effects.  相似文献   

8.
The serine protease thrombin proteolytically activates blood coagulation factor XIII by cleavage at residue Arg(37); factor XIII in turn cross-links fibrin molecules and gives mechanical stability to the blood clot. The 2.0-A resolution x-ray crystal structure of human alpha-thrombin bound to the factor XIII-(28-37) decapeptide has been determined. This structure reveals the detailed atomic level interactions between the factor XIII activation peptide and thrombin and provides the first high resolution view of this functionally important part of the factor XIII molecule. A comparison of this structure with the crystal structure of fibrinopeptide A complexed with thrombin highlights several important determinants of thrombin substrate interaction. First, the P1 and P2 residues must be compatible with the geometry and chemistry of the S1 and S2 specificity sites in thrombin. Second, a glycine in the P5 position is necessary for the conserved substrate conformation seen in both factor XIII-(28-37) and fibrinopeptide A. Finally, the hydrophobic residues, which occupy the aryl binding site of thrombin determine the substrate conformation further away from the catalytic residues. In the case of factor XIII-(28-37), the aryl binding site is shared by hydrophobic residues P4 (Val(34)) and P9 (Val(29)). A bulkier residue in either of these sites may alter the substrate peptide conformation.  相似文献   

9.
The first step in the activation of blood coagulation factor XIII (FXIII) is the proteolytic cleavage of the potentially active A subunit (FXIII-A) by thrombin at Arg37-Gly38. Both fibrin formation and FXIII-A Val34Leu polymorphism influence the rate of proteolytic activation of purified factor XIII, however their relative importance and interaction in determining the time of onset and the rate of FXIII activation in whole plasma have not yet been explored. In the present study it was shown that in plasma, fibrin formation preceded the truncation of FXIII-A by thrombin, the activation process took place exclusively on the surface of newly formed fibrin and activated FXIII remained associated with the fibrin clot. The time of fibrin formation closely correlated with the time of FXIII activation, while there was no significant relationship between the time of FXIII activation and FXIII-A Val34Leu genotype. However, in the case of Leu34 variant the lag phase between fibrin formation and FXIII-A truncation was significantly shorter than in the case of Val34 variant. The results suggest that in whole plasma the onset of FXIII activation is determined by fibrin formation, while the rate of activation is modulated by Val34Leu polymorphism.  相似文献   

10.
Fibrin clot structure is highly dependent on factor XIII activity. Activated FXIII catalyzes the formation of the peptide bonds between the gamma and alpha chains in noncovalently bound fibrin polymers and incorporates various adhesive and antifibrinolytic proteins into the final fibrin clot. In the absence of activated FXIII, clots are unstable and susceptible to fibrinolysis. Several studies have examined the effects of FXIII polymorphisms on final fibrin clot structure and clinical thrombotic risk. The Val34Leu FXIII polymorphism is associated with increased activation by thrombin. In the presence of saturating thrombin concentrations, however, FXIIIa specific enzyme activity is not affected by genetic polymorphisms. Fibrin clots formed in the presence of the FXIII 34Leu polymorphisms do tend to be thinner and less porous, however. The effects of prothrombin concentrations on clot structure have suggested that thinner clots are more resistant to fibrinolysis and associated with increased thrombotic risk. Most clinical studies of 34Leu FXIII carriers, however, have demonstrated a lower incidence of both venous and arterial thrombosis in carriers of the mutant allele compared to Val/Val carriers. One recent study has suggested that the interactions between FXIII phenotype and plasma fibrinogen concentrations significantly influence clinical thrombotic risk.  相似文献   

11.
D Lukacova  G R Matsueda  E Haber  G L Reed 《Biochemistry》1991,30(42):10164-10170
As the final enzyme in the coagulation cascade, activated fibrin stabilizing factor or factor XIII catalyzes the intermolecular cross-linking of fibrin chains. To study this enzyme in plasma, we derived a monoclonal antibody (MAb 309) against a peptide sequence (NH2-G-V-N-L-Q-E-F-C-COOH) in the thrombin activation site of factor XIII. Radioimmunoassays indicate that MAb 309 binds specifically to both platelet and plasma factor XIII. Peptide inhibition studies demonstrate that the MAb binds equally well to the factor XIII (FXIII) zymogen and the active form of FXIII (FXIIIa). In immunoblots of whole platelet lysates, MAb 309 binds only to FXIII and does not cross-react with other proteins. In saturation binding studies, the antibody shows a binding avidity of (1.75 +/- 0.35) x 10(9) M-1. MAb 309 also inhibited 99% of apparent FXIIIa activity in a standard transglutaminase assay. SDS-PAGE analysis of fibrin clots showed that MAb 309 inhibited fibrin gamma-gamma cross-linking. Moreover, MAb 309 accelerated the lysis of plasma clots, consistent with inhibition of fibrin-fibrin and fibrin-alpha 2-antiplasmin cross-linking. Immunoblotting experiments revealed that MAb 309 affected apparent FXIIIa activity by inhibiting the thrombin activation of the FXIII zymogen. In addition to its utility as a specific probe for the FXIII a-subunit, the strategy used to obtain MAb 309 may be used to generate MAbs that inhibit the activation of other coagulation factor zymogens.  相似文献   

12.
Factor XIII is activated by thrombin, and this reaction is enhanced by the presence of fibrin(ogen). Using a substrate-based screening assay for factor XIII activity complemented by kinetic analysis of activation peptide cleavage, we show by using thrombin mutants of surface-exposed residues that Arg-178, Arg-180, Asp-183, Glu-229, Arg-233, and Trp-50 of thrombin are necessary for direct activation of factor XIII. These residues define a low specificity site known to be important also for both protein C activation and for inhibition of thrombin by antithrombin. The enhancing effect of fibrinogen occurs as a consequence of its conversion to fibrin and subsequent polymerization. Surface residues of thrombin further involved in high specificity fibrin-enhanced factor XIII activation were identified as His-66, Tyr-71, and Asn-74. These residues represent a distinct interaction site on thrombin (within exosite I) also employed by thrombomodulin in its cofactor-enhanced activation of protein C. In competition experiments, thrombomodulin inhibited fibrin-enhanced factor XIII activation. Based upon these and prior published results, we propose that the polymerization process forms a fibrin cofactor that acts to approximate thrombin and factor XIII bound to separate and complementary domains of fibrinogen. This enables enhanced factor XIII activation to be localized around the fibrin clot. We also conclude that proximity to and competition for cofactor interaction sites primarily directs the fate of thrombin.  相似文献   

13.
Covalent cross-linking of fibrin chains is required for stable blood clot formation, which is catalyzed by coagulation factor XIII (FXIII), a proenzyme of plasma transglutaminase consisting of catalytic A (FXIII-A) and non-catalytic B subunits (FXIII-B). Herein, we demonstrate that FXIII-B accelerates fibrin cross-linking. Depletion of FXIII-B from normal plasma supplemented with a physiological level of recombinant FXIII-A resulted in delayed fibrin cross-linking, reduced incorporation of FXIII-A into fibrin clots, and impaired activation peptide cleavage by thrombin; the addition of recombinant FXIII-B restored normal fibrin cross-linking, FXIII-A incorporation into fibrin clots, and activation peptide cleavage by thrombin. Immunoprecipitation with an anti-fibrinogen antibody revealed an interaction between the FXIII heterotetramer and fibrinogen mediated by FXIII-B and not FXIII-A. FXIII-B probably binds the γ-chain of fibrinogen with its D-domain, which is near the fibrin polymerization pockets, and dissociates from fibrin during or after cross-linking between γ-chains. Thus, FXIII-B plays important roles in the formation of a ternary complex between proenzyme FXIII, prosubstrate fibrinogen, and activator thrombin. Accordingly, congenital or acquired FXIII-B deficiency may result in increased bleeding tendency through impaired fibrin stabilization due to decreased FXIII-A activation by thrombin and secondary FXIII-A deficiency arising from enhanced circulatory clearance.  相似文献   

14.
This study describes a purification protocol of salmon fibrinogen that gives a consumable and highly clottable fibrinogen. Some characteristics of salmon and human fibrinogen are compared. Fibrinogen was purified from barium sulphate adsorbed plasma of Atlantic salmon, using two steps of 25% ammonium sulphate precipitation followed by ultrafiltration. The clottability of the purified salmon fibrinogen was 91%. The Aalpha chains of salmon fibrinogen were heterogeneous with a molecular mass of 90-110 kDa, compared to approximately 67 kDa of human fibrinogen Aalpha chains. The Bbeta and gamma chains of salmon and human fibrinogen had molecular masses of approximately 55 and 50 kDa, respectively. Western blotting revealed that polyclonal rabbit anti-human fibrinogen antibodies had affinity for the gamma chains of salmon fibrinogen, making it possible to study factor XIII activity in purified salmon fibrinogen. Cross-linking of either gamma-gamma or gamma-alpha chains was not detected upon incubation of the purified fibrinogen with thrombin and calcium alone, but was detected when clotting was performed in plasma indicating absence of factor XIII activity in the purified product.  相似文献   

15.
Fibrinogen interactions with vascular endothelial cells are implicated in various physiological and pathophysiological events, including angiogenesis and wound healing. We have shown previously that integrin alpha(5)beta(1) is a fibrinogen receptor on endothelial cells [Suehiro, K., Gailit, J., and Plow, E.F. (1997) J. Biol. Chem. 272, 5360-5366]. In the present study, we have characterized fibrinogen interactions with purified alpha(5)beta(1) and have identified the recognition sequence in fibrinogen for alpha(5)beta(1). The binding of fibrinogen to immobilized alpha(5)beta(1) was selectively supported by Mn(2+). Fibrinogen bound to purified alpha(5)beta(1) in a time-dependent, specific, and saturable manner in the presence of Mn(2+), and the binding was blocked completely by Arg-Gly-Asp (RGD)-containing peptides and by anti-alpha(5) and anti-alpha(5)beta(1) monoclonal antibodies. A monoclonal antibody directed to the C-terminal RGD sequence at Aalpha572-574 significantly inhibited the binding of fibrinogen to alpha(5)beta(1), whereas monoclonal antibodies directed to either the N-terminal RGD sequence at Aalpha95-97 or the C-terminus of the gamma-chain did not. Furthermore, substituting RGE for RGD at position Aalpha95-97 in recombinant fibrinogen had a minimal effect on binding, whereas substituting RGE for RGD at position Aalpha572-574 decreased binding by 90%. These results demonstrate that the C-terminal RGD sequence at Aalpha572-574 is required for the interaction of fibrinogen with alpha(5)beta(1).  相似文献   

16.
Factor XIII is the terminal enzyme of the clotting cascade. A cDNA sequence encoding human placental factor XIII was expressed in Saccharomyces cerevisiae with the yeast ADH2-4c promoter. Expression levels were a strong function of the noncoding flanking DNA content of the construction. When the terminal 3'-flanking noncoding DNA was removed, expression increased approximately 50-fold. The protein was produced in quantity by high-yield fermentation and purified to homogeneity. The recombinant protein was cleaved by thrombin at the same activation site as purified human placental FXIII and exhibited 100% enzymatic activity. At high thrombin concentrations rFXIIIa was cleaved into inactive 54- and 25-kDa polypeptides. The identity of these cleavage sites and the blocked N-terminus to that of the human protein was revealed by amino acid microsequencing. A time course of thrombin activation was performed and the relative distribution of the thrombin-cleaved subunits to the uncleaved zymogen subunits determined; the results were consistent with the half of the sites catalytic model for transglutaminase activity proposed by Chung et al. (Chung, S. I., Lewis, M. S., & Folk, J. E. (1974) J. Biol. Chem. 249, 940-950, 1974) and Hornyak et al. (Hornyak, T. J., Bishop, P. D., & Shafer, J. A. (1989) Biochemistry 28, 7326-7332). Equilibrium and velocity sedimentation analysis indicated that rFXIII exists as a 166-kDa nondissociating dimer that behaves as a compact particle of 8.02 S. Thus, all of the properties of rFXIII thus far examined are consistent with those reported for human platelet and placental FXIII.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Staphylococcus aureus secretes coagulase (Coa) and von Willebrand factor-binding protein (vWbp) to activate host prothrombin and form fibrin cables, thereby promoting the establishment of infectious lesions. The D1-D2 domains of Coa and vWbp associate with, and non-proteolytically activate prothrombin. Moreover, Coa encompasses C-terminal tandem repeats for binding to fibrinogen, whereas vWbp has been reported to associate with von Willebrand factor and fibrinogen. Here we used affinity chromatography with non-catalytic Coa and vWbp to identify the ligands for these virulence factors in human plasma. vWbp bound to prothrombin, fibrinogen, fibronectin, and factor XIII, whereas Coa co-purified with prothrombin and fibrinogen. vWbp association with fibrinogen and factor XIII, but not fibronectin, required prothrombin and triggered the non-proteolytic activation of FXIII in vitro. Staphylococcus aureus coagulation of human plasma was associated with the recruitment of prothrombin, FXIII, and fibronectin as well as the formation of cross-linked fibrin. FXIII activity in staphylococcal clots could be attributed to thrombin-dependent proteolytic activation as well as vWbp-mediated non-proteolytic activation of FXIII zymogen.  相似文献   

18.
Turner BT  Sabo TM  Wilding D  Maurer MC 《Biochemistry》2004,43(30):9755-9765
The transglutaminase Factor XIII (FXIII) catalyzes the formation of covalent cross-links between adjacent noncovalently associated fibrin chains in blood coagulation. The resulting covalently cross-linked hard clot is much more mechanically stable and resistant to proteolytic degradation. FXIII is activated by the serine protease thrombin in the presence of calcium ions. Protein modification experiments involving the labeling of cysteine and lysine side chains of the enzyme were performed before and after activation of the enzyme in an effort to gain further insight into structural changes occurring during the activation of FXIII. The experiments revealed differences in the labeling patterns of nonactivated and activated FXIII. These differences result from the exposure or sequestration of specific cysteine or lysine residues when the enzyme is activated, either physiologically with thrombin or nonproteolytically by exposure to calcium. Of note is the acetylation of Lys 73 and Lys 221 upon activation. Both of these residues lie within possible substrate recognition regions of FXIII. The active site Cys 314 is consistently alkylated in the activated enzyme, as is Cys 409, located near the dimer interface. Within the beta-barrel 2 domain of FXIII, Cys 695 becomes alkylated in activated FXIII. Within the same domain, an acetylated Lys (677 or 678), which is observed in the zymogen, cannot be found in the activated enzyme. The results provide a more extensive view of FXIII activation than has been previously available.  相似文献   

19.
To elucidate the role of the COOH-terminal region of antithrombin III, we studied the effects of synthetic peptides corresponding to its sequence on the amidolytic and proteolytic activities of thrombin and Factor Xa in the presence or absence of the inhibitor, antithrombin III. The peptides ANRPFLVFI and IIFMGRVANP corresponding to residues Ala404 to Ile412 and Ile420 to Pro429, respectively, blocked the inhibition by antithrombin III. The effect of IIFMGRVANP was reduced in the presence of heparin. Both peptides at a concentration of 1 mM blocked complex formation between antithrombin III and thrombin or Factor Xa. The two peptides, particularly IIFMGRVANP, directly enhanced the amidolytic activity of thrombin and Factor Xa on the synthetic substrate Boc-Ala-Gly-Arg-MCA (where Boc is t-butoxycarbonyl and MCA is 4-methylcoumarin), which corresponds to residues P3-P1 of the reactive site of antithrombin III, and also on other substrates due to increased Vmax. IIFMGRVANP also shortened the thrombin-induced fibrinogen clotting time, whereas ANRPFLVFI inhibited the thrombin-catalyzed activation of protein C both in the presence and absence of thrombomodulin. The direct effect of ANRPFLVFI and IIFMGRVANP on thrombin was confirmed by enhancement of the incorporation of dansylarginine-N-(3-ethyl-1,5-pentanediyl)amide into thrombin. These findings suggest that the COOH-terminal region of antithrombin III interacts with thrombin and Factor Xa to increase the reactivity of the enzyme, which may enhance acyl-bond formation between the inhibitor and the enzyme.  相似文献   

20.
Thrombomodulin, a cofactor in the thrombin-catalyzed activation of protein C, blocks the procoagulant activities of thrombin such as fibrinogen clotting, Factor V activation, and platelet activation. The binding site for thrombomodulin within human thrombin has been localized at a region comprising residues Thr147-Ser158 of the B-chain of thrombin. The dodecapeptide sequence, TWTANVGKGQPS, corresponding to these residues inhibits thrombin binding to thrombomodulin with an apparent Ki = 94 microM (Suzuki, K., Nishioka, J., and Hayashi, T. (1990) J. Biol. Chem. 265, 13263-13267). We have found that the inhibitory effect of the dodecapeptide on the thrombin-thrombomodulin interaction is sequence-specific, and that residues Asn151, Lys154, and Gln156 are essential for thrombomodulin binding. The dodecapeptide was also found to directly block thrombin procoagulant activities, fibrinogen clotting (concentration for half-maximum inhibition, 385 microM). Factor V activation (concentration for half-maximum inhibition, 33 microM), and platelet activation (concentration for half-maximum inhibition, 645 microM). This peptide did not block thrombin inhibition by antithrombin III, but blocked thrombin inhibition by hirudin. These findings suggest that the binding site for thrombomodulin in thrombin is shared with the sites for fibrinogen, Factor V, platelets, and hirudin, and that, therefore, the inhibition of thrombin procoagulant activities by thrombomodulin in part results from blocking of the interaction between thrombin and the procoagulant protein substrates by thrombomodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号