首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At low and high concentrations, respectively, KCN stimulatedand inhibited the CO2 output of radish root slices. Analysisof tissue slices showed that CO2 production is nearly accountedfor by the loss in carbohydrates. After 48 hr, the content ofprotein-N was slightly changed in all the cyanide-treated tissues;whereas, that of soluble-N decreased markedly at high cyanideconcentrations and hardly changed at low concentrations. Leakageof soluble-N occurred at high concentrations of cyanide. The nitrogen compounds taken up were incorporated into the nitrogenpool of radish slices. KCN retarded uptake of nitrogen compounds,inhibited their utilization and led to excessive leakage ofsoluble-N from the tissues into the media. Increased CO2 outputof slices in nitrogen media was largely accounted for by theloss in carbohydrates from the tissues. High concentrations of cyanide are thought to inhibit CO2 outputthrough inhibition of the oxidase system and accompanying phosphorylations.The present results with low concentrations further substantiatethe uncoupling theory as a main factor involved in respiration. 1Permanent address: Department of Botany, Faculty of Science,University of A'in Shams, Abbassia, Cairo, Egypt, U.A.R. (Received October 3, 1969; )  相似文献   

2.
Seeni  S.; Gnanam  A. 《Plant & cell physiology》1983,24(6):1033-1041
Photomixotrophic cell suspension culture was established fromthe leaf derived callus cells of Gisekia pharnaceoides L., aC4 dicotyledonous weed. The late log phase cells possessed shade-typecharacters such as low chlorophyll a/b ratio, less pronouncedO2 evolution and CO2 fixation, saturation of photosyntheticCO2 fixation at low intensity. The chloroplasts from these cellscontained granal stacking with high degree of a very few granawhich are characterized by their wide and high degree of stackings. The predominant labelling of 3-phosphoglyceric acid and sugarphosphates (40% of the total 14C incorporated) during 5 s exposureto 14CO2 in light and subsequent decrease in percentage of 14Cin these compounds with increase in exposure time indicatedthe operation of the C3 pathway in these cells. The simultaneoussynthesis of malate (23% of the total 14C incorporated) is relatedto the much pronounced glycolytic and tricarboxylic acid cycleactivities in these cells. The initial proliferation of callimainly from the zones of vascular supplies in the leaf, highstarch content of the cells, presence of large starch grainsin all the chloroplasts, activities of Calvin cycle enzymes,heavy labelling of C3 type intermediates and less labellingof aspartate as early photosynthates and rapid accumulationof radioactivity into starch during 14CO2 assimilation indicatedthat most of the cells in photomixotrophic culture were derivedfrom bundle sheath cells or the leaf cells of Gisekia changetheir function under culture conditions. 1Present address: Tropical Botanic Garden and Research Institute,Navaranga Road, Trivandrum 695 011, India. (Received January 29, 1982; Accepted June 4, 1983)  相似文献   

3.
Organic acid metabolism and ethylene formation during controlledatmosphere storage (CA-storage) of apples (Mallus pumila MILLER,cv Rolls) were studied. A higher titratable acidity was observedin apples during CA-storage as compared to those in air control.The incorporation of atmospheric 14CO2 into malic acid was greaterin apples stored in the higher CO2 concentration. The conversionof succinic acid-14C into fumaric acid-14C was slightly lessin the apple in modified high carbon dioxide atmosphere thanthose in air. O2 uptake and CO2 output by apple slices weremarkedly inhibited by the addition of succinic and malic acidsat a concentration higher than 25 mM. These factors seem to be the possible cause of a higher acidityof fruits stored in CA-condition. Ethylene production from wholefruits or tissue slices was markedly inhibited under CA-condition. The retardation of acid metabolism and the inhibition of ethyleneproduction of apples during CA-storage seem to be the importantfactors which help to maintain their storage quality. (Received March 18, 1970; )  相似文献   

4.
Iodoacetate greatly retarded the uptake of sucrose and slightlyaffected its inversion by radish root slices. Carbohydrate content of the samples decreased substantiallyboth in water and in iodoacetate. Feeding with sucrose led tomarked accumulation of carbohydrates and supplemental additionof iodoacetate induced less accumulation of carbohydrates. Iodoacetate caused exudation of nitrogen fractions into theculture media. Protein synthesis via amino acids seems to beoperative in iodoacetate treated slices. It is also suggestedthat nitrate-N, in presence of sucrose, is converted into peptidesand proteins. Addition of iodoacetate to sucrose media inhibitedthis pathway of protein synthesis. Both sucrose and iodoacetate (4 x 10–4M) stimulated theCO2 output whereas 25 x 10–4M iodoacetate did not changethe CO2 output when compared with that of controls. Sucroseand iodoacetate (4 x 10–4 M) when joined together maskedthe accelerating effect of each other. 1Present address: Department of Botany, Faculty of Science,University of A'in Shams, Abbassia, Cairo, Egypt, U. A. R. (Received November 6, 1968; )  相似文献   

5.
The effects of night-time temperature, leaf-to-air vapour pressuredeficit (VPD) and water stress on CO2 recycling in Bromeliahumilis Jacq. grown under two light and nitrogen regimes wereinvestigated. At night-time temperatures above 30°C, integratednet dark CO2 uptake was severely reduced and CO2 for malatesynthesis was mainly derived from dark respiration. At 35°C,up to 84% of the CO2 liberated by dark respiration was refixedinto malic acid. Below 30 °C only nitrogen deficient plantsshowed significant recycling. No significant differences wereobserved between high and low light grown plants in CO2 recycling.A doubling of leaf-to-air VPD from 7-46 Pa kPa–1 to 15.49Pa kPa–1 resulted in a 2- to 20-fold decrease in leafconductance and about 50 to 65% reduction in integrated darkCO2 uptake. However, about twice as much CO2 was recycled atthe higher VPD as in the lower. Ten days of water stress resultedin 80 to 100% recycling of respiratory CO2. Under high VPD andwater stress treatments, the amount of water potentially savedthrough recycling of CO2 reached 2- to 6-fold of the actualtranspiration. In general, nitrogen deficient plants had higherper cent recycling of respiratory CO2 in response to high night-timetemperature, increased VPD or water stress. The results emphasizethe ecological relevance of carbon recycling in CAM plants. Key words: Bromelia humilis, CAM, PPFD, dark respiration, temperature, VPD, water stress  相似文献   

6.
Experiments were performed, using rice, barley and Hydrangealeaves, to examine the re-assimilation of respiratory 14CO2while photosynthesis is going on in an open air flow system. It was found that the leaves which had assimilated 14CO2 beforehandevolved, when kept under photosynthesizing conditions, threeto four tenths (variable according to plant species and externalconditions) of the amount of 14CO2 to be produced in the dark.Such an incomplete re-utilization of 14CO2 was observed alsoin spinach leaf homogenate as well as in the leaves which hadpreviously absorbed 14C-glucose. The 14CO2 output in rice leaves was found to be acceleratedby the light of high intensity. A possibility of light stimulationon the respiration was suggested. (Received October 7, 1961; )  相似文献   

7.
Changes in respiratory metabolism accompanied by callus formationin cultured explants of carrot root were followed and the followingresults were obtained. 1) When the explant was cultured on amedium containing kinetin and 2,4-D, active cell division occurredand resulted in callus formation by the 9th–12th days.2) Fresh weight remarkably increased after a lag-time of about5 days. Changes in protein content on fresh weight basis weresimilar to changes in fresh weight. 3) Respiration rate increasedduring the first few days, when growth could not be distinctlymeasured. Accompanying the rise in respiration, the C6/C1 ratioalso increased. As callus developed, the respiratory rate andC6/C1 ratio gradually decreased and RQ, became higher than unity.4) Alcohol dehydrogenase activity increased between the 4thand 9th days after culture. 5) When sub-cultured callus tissuewas fed with G-U-14C, some radioactivity was detected in thealcohol of the tissues. 6) These results suggest that duringthe first 4–6 days after culture the activity of the EMBDEN-MEYERHOF-PARNAS-TCApathway was remarkably increased and, as callus developed, therelative participation of the pentose phosphate pathway graduallyincreased and simultaneously alcohol fermentation occurred. (Received December 13, 1968; )  相似文献   

8.
Refixation of respiratory CO2 in the ears of C3 cereals   总被引:6,自引:0,他引:6  
The spatial arrangement of tissues within the ears of cereals,and gas exchange measurements on intact ears of barley and durumwheat suggest that respiratory CO2 associated with grain-fillingprocesses, may be refixed close to its site of evolution. Apparentrefixation of respiratory CO2 in intact ears was compared withthat in flag leaves, by feeding both organs with 14C-labelledsucrose and trapping 14CO2 released by respiration. Apparentrefixation in the ears was twice that measured in flag leafblades of durum wheat genotype Durelle. In ears, the capacityof refixation of respiratory CO2 at 210 mmol mol–1 O2ranged from 55% in barley genotype Roxana to 75% in barley genotypeHatif, and 60% in duwm wheat genotype Bidi 17. A low O2 concentrationincreased refixation of respiratory CO2 by up to 90%, 92% and82%, respectively. The occurrence of CO2 refixation in the field,in a set of 12 barley genotypes grown under irrigated and rainfedMediterranean field conditions, was consistent with observedcarbon isotope ratios (  相似文献   

9.
Well-nodulated soya bean (Glycine max L.) plants were allowedto assimilate 13CO2 for 10 h in the light, under steady-stateconditions in which CO2 concentration and 13C abundance wereboth strictly controlled at constant levels. The respiratoryevolution of 13CO2 from roots and nodules and 13C incorporationinto various metabolic fractions were measured during the 13CO2feeding and subsequent 48 h chase period. CO2 respired from nodules was much more rapidly labelled with13C than that from roots. The level of labelling (percentageof carbon currently assimilated during the 13COM2 feeding period)of CO2 respired from nodules reached a maximum of about 87 percent after 4 h of steady-state l3CO2 assimilation and thereafterremained fairly constant. The absolute amount of labelled carbonevolved by the respiration of the nodules during the 10 h 13CO2feeding period was 1·5-fold that of root respiration.These results demonstrated that the currently assimilated (labelled)carbon was preferentially used to support nodule respiration,while root respiration relied considerably on earlier (non-labelled)carbon reserved in the roots. Sucrose pools were mostly composed of currently assimilatedcarbon in all tissues of the plants, since the levels of labellingaccounted for 86–91 per cent at the end of the 13CO2 feeding.In the nodules, the kinetics and levels of sucrose labellingwere in fairly good agreement with those of respired CO2, whilein the roots, the level of labelling of respired CO2 was significantlylower than that of sucrose. Succinate and malate were highly labelled in both roots andnodules but they were labelled much more slowly than sucroseand respired CO2. The kinetics and levels of labelling of theseKrebs cycle intermediates resembled those of major amino acidswhich are derived directly from Krebs cycle intermediates. Itis suggested that large fractions of organic acids in noduleswere physically separate from the respiration site. Glycine max L., Soya bean, 13CO2 assimilation, respiratory evolution of 13CO2, carbon metabolism in root nodules  相似文献   

10.
Low and high concentrations of iodoacetate stimulated and inhibitedthe CO2 production, respectively. Soluble sugars in tissue slicesdecreased sharply in high iodoacetate and showed little decreasein low concentrations of the inhibitor. The same pattern ofchanges was observed with soluble nitrogen fractions. Polysaccharidesand proteins were subjected to slight, if any changes. Leakage of different metabolites from tissue slices was operativein low and high concentrations of iodoacetate; the magnitudeof leakage being increased with an increase in concentrationof the inhibitor. That low concentrations of iodoacetate may have increased CO2output through increased accessibility of substrates to enzymesin the cytoplasm, was suggested. In high concentrations, iodoacetatewas thought to have, possibly, a general effect on cell permeabilityand enzymes and by so doing to have led to increased leakageand inhibition of respiration. 1Present address: Department of Botany, Faculty of Science,University of Khartoum, Khartoum, Sudan (Received March 1, 1968; )  相似文献   

11.
When specifically labelled glucose was fed to strawberry leaves,the C6/C1, quotient (rate of release of 14CO2 from glucose-6-14C/rateof release of 14CO2 from glucose-114C ranged from 0.27 to 0.35in leaves in water and from 0.46 to 0.96 in leaves fed withiodoacetate. These quotients indicate that both the glycolyticand the pentose phosphate pathways participate in the respirationof strawberry leaves, with a greater contribution from the formerin the iodoacetate increased CO2 output. Concurrently with the increase of CO2 output in iodoacetate,the contents of glucose-6-phosphate (G6P), fructose-6 (F6P)and fructose-1,6-diphosphate (FDP) increased greatly; therewas a smaller increase of phosphoenol-pyruvate (PEP). The increasein the CO2 output in iodoacetate may be explained solely onthe basis that the increases of G6P and FDP accelerate the ratesrespectively of the pentose phosphate pathway and of glycolysisand traffic into the tricarboxylic acid cycle. The increasein content of G6P and FDP is attributed to an increase in theaccessibility of enzymes and substrates caused by iodoacetate.Alternatively the increased CO2 output in iodoacetate may bepartly due to uncoupling of oxidative phosphorylation.  相似文献   

12.
Experiments are described which examine the flux of photosyntheticassimilates from leaves to nodules of soyabean during N2 fixation.The first part, where the respiratory efflux of 14CO2 by noduleswas used as a means of assessing the import of labelled photosynthatefrom leaves, shows that most 14CO2 loss from nodulated rootsis due to the metabolic activity of nodules. Much less photosynthatewas imported by nodules if the metabolic activity associatedwith N2 fixation was inhibited by low O2 concentration. The second part describes the chemical fate of current photosynthateas it is utilized by nodules. Labelled material was detectedin nodules within c.15 min of supplying 14CO2 to the leaf. Thisrose to a maximum at c.70 min before declining by 85% withinthe following 4 h. Most (80%) 14carbon imported by nodules waseither lost as respiratory 14CO2 or re-exported as productsof N2 fixation. Ten per cent of imported carbon was found asstructural material and 10% as starch. Of the 14C soluble in ethanol, most was found in the neutralfraction (80% declining to 50% as sucrose) with smaller amountsas amino acids, organic acids (each category rising from 10%to 20%) and phosphate esters (<5%). Comparison of the distribution of 14C among amino acids, amidesand ureides in the nodules with that of xylem exudates indicatedthat selected compounds were exported from nodules. The 14Cdata indicate that c.80% of the nitrogen exported from noduleswas in the form of ureides (mainly allantoic acid) and only10–12% as amides. Key words: Nodules, 14C-photosynthate, Respiration, Carbon flux  相似文献   

13.
HOLE  C. C.; BARNES  A. 《Annals of botany》1980,45(3):295-307
Carbon dioxide efflux from 5- to 20-day-old pea fruits was measuredfor plants grown in controlled environment at 15 °C and600 µmol s–1 m–2 photon flux density in a16 h photoperiod. The rate of CO2 output per fruit increasedquickly from 0.005 to 0.018 mg CO2 min–1 during fruitelongation and subsequently more slowly to 0.030 mg CO2 min–1as the fruits inflated. On a d. wt basis the rate was highest,0.175 mg CO2 g–1 min–1, in the youngest fruits anddeclined curvilinearly with increasing fruit weight to 0.02mg CO2 g–1 min–1. Separation of maintenance andgrowth components was achieved by starvation methods and bymultiple regression analysis. From the latter method estimatesof the maintenance coefficient declined hyperbolically from150±8.7 mg carbohydrate g–1 d. wt day–1 inthe very young fruits (0.05 g) to 10.4±0.36 mg carbohydrateg–1 d. wt day–1 in older fruits (2.0 g). On a nitrogenbasis maintenance costs decreased from 2240 to 310 mg carbohydrateg–1 nitrogen day–1 while nitrogen concentrationfell from 6.7 to 3 per cent d. wt. A simple linear relationshipbetween maintenance cost per unit d. wt and nitrogen concentrationwas not observed. A growth coefficient of 50±6.7 mg carbohydrate g–1growth (equivalent to a conversion efficiency, YG, of 0.95)was estimated for all fruits examined. The overall efficiency, Y, increased from a mean of 0.70 to0.85 during fruit elongation and subsequently declined to 0.80.For a given fruit weight, efficiency increased asymptoticallywith relative growth rate; both asymptote and slope of the relationshipincreased as the fruits grew. Pisum sativum L., garden pea, legume fruit, carbon dioxide efflux, maintenance respiration, growth respiration  相似文献   

14.
Photosynthetic assimilation of exogenous 14CO2 and H14CO3by the aquatic angiosperm Potamogeton lucens L. is reported.Equivalent maximum rates of assimilation (1.5 µmol s–1m–2) were obtained in the presence of saturating levelsof 14CO2 (1.0 mol m–3, pH 5.3) or H14CO3 (1.5 molm–3, pH, 9.2). Under subsaturating 14CO2 levels, bothgaseous diffusion and H14CO3 transport were shown tooperate simultaneously, such that maximal photosynthetic rateswere established. An induction lag of approximately 3 min was observed when exogenous14CO2 was assimilated. A longer lag of approximately 12 minwas required, however, before linear assimilation rates wereestablished when H14CO3 acted as the carbon source. The light-activatedH14CO3 transport system was found to be quite labile.A brief (5 min) dark treatment returned the system to the inactivestate. Bicarbonate transport was shown to be competitively inhibitedby CO32–ions. The possibility is discussed that this formof inhibition may be common to many HCO3 assimilators. Preliminary polar cation transport studies (from lower to upperleaf surface) indicated an almost exact one to one relationshipbetween the rates of Na+ influx and efflux and H14CO3assimilation. The possible relationship(s) between these transportprocesses and the requirement for electrical neutrality is brieflydiscussed.  相似文献   

15.
Larsson, M., Larsson, C.-M. and Guerrero, M. G. 1985. Photosyntheticnitrogen metabolism in high and low CO2-adapted Scenedesmus.I. Inorganic carbon-dependent O2 evolution, nitrate utilizationand nitrogen recycling.—J. exp Bot. 36: 1373–1386 Scenedesmus obtusiusculus Chod. was grown on an inorganic mediumflushed with either air or air supplemented with 3% CO2. Inair-grown cells, O2 evolution dependent on low, but not high,HCO3 concentrations was strongly inhibited by the carbonicanhydrase inhibitor acetazolamide. Cells grown with 3% CO2 exhibitedlow rates of O2 evolution at low external inorganic C; however,after 30 min in air O2 evolution rates at low inorganic C approachedthose of air-grown cells. These results are compatible withthe view that Scenedesmus develops a ‘CO2 concentratingmechanism’ in air, with carbonic anhydrase as an importantconstituent When 3% CO2-grown cells were subjected to air-level of CO2,just a transient decline in NO3 utilization was observed,but in the presence of acetazolamide the rate of the processdecreased drastically in response to the decrease in the CO2level. In CO2-free air NO3 was taken up at high ratesbut in a deregulated manner, leading to release of NH4+. A portionof the NO3 taken up in the absence of CO2 was apparentlyassimilated Cellular nitrate reductase (NR) activity initially decreasedbut subsequently recovered after a transition from 3% CO2 toair. In the presence of acetazolamide, a persistent decreasein NR activity was observed. Cellular glutamine synthetase (GS)activity increased after transition from 3% CO2 to air, theactivity increase being unaffected by acetazolamide. NH4+ releaseto the medium in the presence of L-methionine-D, L-sulphoximine(MSO) transiently increased in 3% CO2-grown cells in responseto a transfer to air. MSO-induced NH4+ release was in fact higherin air-grown cells than in 3% CO2-grown cells. Glycollate wasinitially released after transition from 3% CO2 to air, butthere was no difference in glycollate release between MSO-treatedand untreated cells. In air-adapted Scenedesmus, N recyclingseems to be of minor importance in comparison to primary N assimilation Key words: CO2-fixation, N recycling, nitrate uptake, Scenedesmus  相似文献   

16.
Carbon isotope discrimination in photosynthetic bark   总被引:1,自引:0,他引:1  
We developed and tested a theoretical model describing carbon isotope discrimination during photosynthesis in tree bark. Bark photosynthesis reduces losses of respired CO2 from the underlying stem. As a consequence, the isotopic composition of source CO2 and the CO2 concentration around the chloroplasts are quite different from those of photosynthesizing leaves. We found three lines of evidence that bark photosynthesis discriminates against 13C. First, in bark of Populus tremuloides, the '13C of CO2 efflux increased from -24.2‰ in darkness to -15.8‰ in the light. In Pinus monticola, the '13C of CO2 efflux increased from -27.7‰ in darkness to -10.2‰ in the light. Observed increases in '13C were generally in good agreement with predictions from the theoretical model. Second, we found that '13C of dark-respired CO2 decreased following 2-3 h of illumination (P<0.01 for Populus tremuloides, P<0.001 for Pinus monticola). These decreases suggest that refixed photosynthate rapidly mixes into the respiratory substrate pool. Third, a field experiment demonstrated that bark photosynthesis influenced whole-tissue '13C. Long-term light exclusion caused a localized increase in the '13C of whole bark and current-year wood in branches of P. monticola (P<0.001 and P<0.0001, respectively). Thus bark photosynthesis was shown to discriminate against 13C and create a pool of photosynthate isotopically lighter than the dark respiratory pool in all three experiments. Failure to account for discrimination during bark photosynthesis could interfere with interpretation of the '13C in woody tissues or in woody-tissue respiration.  相似文献   

17.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

18.
The proplastid fraction containing no cytosol and mitochondrionwas isolated from developing castor bean endosperm by stepwisesucrose density centrifugation. This fraction possesses thecapacity to synthesize LFAs from [u-14C]sucrose, [u-14C]-glucose,[u-14C]G-1-P, [u-14C]G-6-P, [2-14C]pyruvate and [1-14C]acetate.Little was incorporated from [1-14C]pyruvate into LFAs, butmuch into 14COa. Addition of cytosol to the proplastid fractiondid not enhance the LFA synthesis. From these data, the wholepath from sucrose to LFAs through glycolytic path and pyruvatedecarboxylation seems to be located within the proplastid indeveloping castor bean endosperm. The difference in utilizationof substrates indicates that the rate of LFA synthesis in castorbean proplastids is limited at a step between sucrose and hexosephosphate. In addition, experiments with CO2 output and LFAsynthesis from [1-14C]glucose, [6-14C]glucose and [u-14C]G-6-Pstrongly suggest that the path flow branches actively throughG-6-P to the pentose phosphate path and little through acetylCoAto the TCA cycle. (Received May 12, 1975; )  相似文献   

19.
Labeling patterns of light and dark 14CO2-fixation in photoautotrophicallyand photomixotrophically cultured tobacco cells were determined.During short term 14CO2 fixation under light, malate(C3–C3carboxylation) was heavily labeled as were phosphoglyceric acidand sugar phosphates(C1–C5 carboxylation). Dark fixationcould not account for this high 14CO2 incorporation into theC4 compounds linked to PEPCase. Two carboxylation pathways linkedto the RuBPCase and PEPCase were indicated in 14CO2-fixationin light in photoautotrophically and photomixotrophically culturedcells. (Received October 25, 1979; )  相似文献   

20.
Chlorella vulgaris 11h cells grown in air enriched with 4% CO2(high-CO2 cells) had carbonic anhydrase (CA) activity whichwas 20 to 90 times lower than that of algal cells grown in ordinaryair (containing 0.04% CO2, low-CO2 cells). The CO2 concentrationduring growth did not affect either ribulose 1,5-bisphosphate(RuBP) carboxylase activity or its Km for CO2. When high-CO2 cells were transferred to low CO2 conditions,CA activity increased without a lag period, and this increasewas accompanied by an increase in the rate of photosynthetic14CO2 fixation under 14CO2-limiting conditions. On the otherhand, CA activity as well as the rate of photosynthetic 14CO2fixation at low 14CO2 concentrations decreased when low-CO2cells were transferred to high CO2 conditions. Diamox, an inhibitor of CA, at 0.1 mM did not affect photosynthesisof low-CO2 cells at high CO2 concentration (0.5%). Diamox inhibitedphotosynthesis only under low CO2 concentrations, and the lowerthe CO2 concentration, the greater was the inhibition. Consequently,the CO2 concentration at which the rate of photosynthesis attainedone-half its maximum rate (Km) greatly increased in the presenceof this inhibitor. When CO2 concentration was higher than 1%, the photosyntheticrate in low-CO2 cells decreased, while that in high-CO2 cellsincreased. Fractionation of the low-CO2 cells in non-aqueous medium bydensity showed that CA was fractionated in a manner similarto the distribution of chlorophyll and RuBP carboxylase. These observations indicate that CA enhances photosynthesisunder CO2-limiting conditions, but inhibits it at CO2 concentrationshigher than a certain level. The mechanism underlying the aboveregulatory functions of CA is discussed. 1This work was reported at the International Symposium on PhotosyntheticCO2-Assimilation and Photorespiration, Sofia, August, 1977 (18).Requests for reprints should be addressed to S. Miyachi, RadioisotopeCentre, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. (Received December 11, 1978; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号