首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The poly(rC) binding protein (PCBP) is a cellular protein required for poliovirus replication. PCBP specifically interacts with two domains of the poliovirus 5' untranslated region (5'UTR), the 5' cloverleaf structure, and the stem-loop IV of the internal ribosome entry site (IRES). Using footprinting analysis and site-directed mutagenesis, we have mapped the RNA binding site for this cellular protein within the stem-loop IV domain. A C-rich sequence in a loop at the top of this large domain is required for PCBP binding and is crucial for viral translation. PCBP binds to stem-loop IV RNA with six-times-higher affinity than to the 5' cloverleaf structure. However, the binding of the viral protein 3CD (precursor of the viral protease 3C and the viral polymerase 3D) to the cloverleaf RNA dramatically increases the affinity of PCBP for this RNA element. The viral protein 3CD binds to the cloverleaf RNA but does not interact directly with stem-loop IV nor with other RNA elements of the viral IRES. Our results indicate that the interactions of PCBP with the poliovirus 5'UTR are modulated by the viral protein 3CD.  相似文献   

2.
The coding region for the structural and nonstructural polypeptides of the type A12 foot-and-mouth disease virus genome has been identified by nucleotide sequencing of cloned DNA derived from the viral RNA. In addition, 704 nucleotides in the 5' untranslated region between the polycytidylic acid tract and the probable initiation codon of the first translated gene, P16-L, have been sequenced. This region has several potential initiation codons, one of which appears to be a low-frequency alternate initiation site. The coding region encompasses 6,912 nucleotides and ends in a single termination codon, UAA, located 96 nucleotides upstream from a 3'-terminal polyadenylic acid tract. Microsequencing of radiolabeled in vivo and in vitro translation products identified the genome position of the major foot-and-mouth disease virus proteins and the cleavage sites recognized by the putative viral protease and an additional protease(s), probably of cellular origin, to generate primary and functional foot-and-mouth disease virus polypeptides.  相似文献   

3.
T V Pestova  C U Hellen    E Wimmer 《Journal of virology》1991,65(11):6194-6204
Translation of poliovirus RNA is initiated by cap-independent internal entry of ribosomes into the 5' nontranslated region. This process is dependent on elements within the 5' nontranslated region (the internal ribosomal entry site) and may involve novel translation factors. Systematic mutation of a conserved oligopyrimidine tract has revealed a cis-acting element that is essential for translation in vitro. The function of this element is related to its position relative to other cis-acting domains. This element is part of a more complex structure that interacts with several cellular factors, but changes in protein binding after mutation of this element were not detected in a UV cross-linking assay. A 57-kDa protein from the ribosomal salt wash fraction of HeLa cells was identified that binds upstream of the oligopyrimidine tract. Translation of poliovirus mRNA in vitro was strongly and specifically inhibited by competition with the p57-binding domain (nucleotides 260 to 488) of the 5' nontranslated region of encephalomyocarditis virus, indicating a probable role for p57 in poliovirus translation. p57 is likely to be identical to the ribosome-associated factor that binds to and is necessary for the function of the internal ribosomal entry site of encephalomyocarditis virus RNA.  相似文献   

4.
Picornavirus internal ribosome entry sites (IRESs) are approximately 450 nt. RNA elements that direct internal initiation of translation, such that when placed between the two cistrons of a dicistronic construct, they drive independent translation of the downstream cistron. Consequently they have been widely used for coordinated expression of two or more proteins. All picornavirus IRESs have an AUG triplet at the very 3' end, which is thought to be the actual site of internal ribosome entry. However with some IRESs, such as foot-and-mouth disease virus, and especially poliovirus, the majority of ribosomes do not initiate translation at this putative entry site AUG, but at the next AUG further downstream, which is thought to be accessed by a process of linear ribosome scanning from the entry site. If this is so, then it should be possible to regulate IRES-dependent translation by inserting an iron responsive element (IRE) between the putative entry site AUG and the main functional initiation site. This should make IRES-dependent translation sensitive to the concentration of iron regulatory protein (IRP), the protein that specifically binds to the IRE. This has been attempted with both the foot-and-mouth disease virus and poliovirus IRESs, and was successful in so far as an inhibition specifically of IRES-dependent translation was observed that was strictly dependent on both the presence of IRP and of a functional IRE motif inserted in the sense orientation. However, the range over which expression could be varied was rather limited (three- to fourfold maximum), because some IRES-dependent translation remained completely refractory to inhibition by even very high IRP concentrations. In contrast, with a cap-proximal IRE in the 5' untranslated region of an mRNA translated by the scanning mechanism, addition of sufficient IRP results in complete inhibition. These results support the model of IRES-promoted ribosome entry at an upstream site followed by strictly linear scanning to the main functional initiation site for the majority of internal initiation events, but imply that some ribosomes must access the functional initiation site by another route, possibly a nonlinear shunting-like mechanism.  相似文献   

5.
Translation initiation on poliovirus RNA occurs by internal binding of ribosomes to a sequence within the 5' untranslated region. We have previously characterized a HeLa cell protein, p52, that binds to a fragment of the poliovirus 5' untranslated region (K. Meerovitch, J. Pelletier, and N. Sonenberg, Genes Dev. 3:1026-1034, 1989). Here we report the purification of the HeLa p52. Protein microsequencing identified p52 as La autoantigen. The La protein is a human antigen that is recognized by antibodies from patients with autoimmune disorders such as systemic lupus erythematosus and Sjögren's syndrome. We show that the La protein stimulates translation of poliovirus RNA, but not brome mosaic virus, tobacco mosaic virus, and alfalfa mosaic virus 4 RNA, translation in a reticulocyte lysate. In addition, La corrects aberrant translation of poliovirus RNA in a reticulocyte lysate. Subcellular immunolocalization showed that La protein is mainly nuclear, but after poliovirus infection, La is redistributed to the cytoplasm. Our results suggest that La protein is involved in poliovirus internal initiation of translation and might function through a similar mechanism in the translation of cellular mRNAs.  相似文献   

6.
R Kühn  N Luz    E Beck 《Journal of virology》1990,64(10):4625-4631
Mutagenesis of the large untranslated sequence at the 5' end of the genome of foot-and-mouth disease virus revealed that a region of approximately 450 nucleotides preceding the open reading frame of the viral polyprotein is involved in the regulation of translation initiation at two internal start sites. Variations in two domains of this region reduced the translation efficiency up to 10-fold, whereas an intermediate segment seemed to be less essential. A pyrimidine-rich sequence preceding the start codon was most sensitive in that conversion of single pyrimidine residues to purines decreased the translation efficiency strongly. The data are in agreement with a recently proposed general structural model for the internal ribosome entry site of the cardiovirusaphthovirus subgroup of picornaviruses (E. V. Pilipenko, V. M. Blinov, B. K. Chernov, T. M. Dmitrieva, and V. I. Agol, Nucleic Acids Res. 17:5701-5711, 1989). They suggest, however, that this model represents only a core structure for the internal entry of ribosomes and that foot-and-mouth disease virus and other members of the picornaviruses need additional regulatory RNA elements for efficient translation initiation.  相似文献   

7.
N Luz  E Beck 《FEBS letters》1990,269(2):311-314
A ribosome-associated 57 kDa protein from rabbit reticulocytes was linked to the internal translation initiation site of foot-and-mouth disease virus by mild UV-irradiation. Binding studies with different RNA fragments revealed that this protein interacts with two distinct sites within the translational control region. One site is located approximately 400 nucleotides upstream from the translational start codon and the second binding site could be confined to 60 nucleotides preceding this codon. Both sequences coincide with hairpin structures at the two opposite ends of a secondary structure model of the internal ribosomal entry site proposed by Pilipenko et al. [(1989) Nucleic Acids Res. 17, 5701-5711].  相似文献   

8.
9.
10.
Translation initiation by internal ribosome binding is a recently discovered mechanism of eukaryotic viral and cellular protein synthesis in which ribosome subunits interact with the mRNAs at internal sites in the 5' untranslated RNA sequences and not with the 5' methylguanosine cap structure present at the extreme 5' ends of mRNA molecules. Uncapped poliovirus mRNAs harbor internal ribosome entry sites (IRES) in their long and highly structured 5' noncoding regions. Such IRES sequences are required for viral protein synthesis. In this study, a novel poliovirus was isolated whose genomic RNA contains two gross deletions removing approximately 100 nucleotides from the predicted IRES sequences within the 5' noncoding region. The deletions originated from previously in vivo-selected viral revertants displaying non-temperature-sensitive phenotypes. Each revertant had a different predicted stem-loop structure within the 5' noncoding region of their genomic RNAs deleted. The mutant poliovirus (Se1-5NC-delta DG) described in this study contains both stem-loop deletions in a single RNA genome, thereby creating a minimum IRES. Se1-5NC-delta DG exhibited slow growth and a pinpoint plaque phenotype following infection of HeLa cells, delayed onset of protein synthesis in vivo, and defective initiation during in vitro translation of the mutated poliovirus mRNAs. Interestingly, the peak levels of viral RNA synthesis in cells infected with Se1-5NC-delta DG occurred at slightly later times in infection than those achieved by wild-type poliovirus, but these mutant virus RNAs accumulated in the host cells during the late phases of virus infection. UV cross-linking assays with the 5' noncoding regions of wild-type and mutated RNAs were carried out in cytoplasmic extracts from HeLa cells and neuronal cells and in reticulocyte lysates to identify the cellular factors that interact with the putative IRES elements. The cellular proteins that were cross-linked to the minimum IRES may represent factors playing an essential role in internal translation initiation of poliovirus mRNAs.  相似文献   

11.
G J Belsham 《The EMBO journal》1992,11(3):1105-1110
The initiation of protein synthesis on foot-and-mouth disease virus RNA occurs at two sites separated by 84 nucleotides. Immediately upstream from the first of these sites is the internal ribosome entry site (IRES), which directs the translation of this RNA to be cap-independent. The utilization of these two initiation sites has been examined using artificial fusion genes in vivo under a variety of conditions. Additional in-frame AUG codons have been introduced between these two authentic start sites to determine the mechanism by which ribosomes recognize the second start site. The results indicate that following internal entry of ribosomes on the 5' side of the first initiation codon, many fail to initiate protein synthesis at this position and scan along the RNA to the second initiation site. In the presence or absence of the IRES both initiation sites are efficiently used but the utilization of the two sites is slightly biased towards the second initiation site by the IRES. Furthermore, in the presence of the IRES, protein synthesis initiates at both sites independently of the activity of the cap-binding complex.  相似文献   

12.
Cell-free translation of the RNA of encephalomyocarditis virus was examined after hybridization of chemically synthesized cDNA fragments to different sites of the 5' noncoding region of the viral RNA. The following results were obtained. The binding of cDNA fragments to the first 41 nucleotides, to the poly(C) tract (between nucleotides 149 and 263), and to the sequence between nucleotides 309 and 338 did not affect translation of the viral RNA; the binding of cDNA fragments to the sequence between nucleotides 420 and 449 caused a slight inhibition; and the binding of fragments to eight different sites between nucleotides 450 and the initiator AUG codon (nucleotide 834) caused high degrees of inhibition. The results suggest that the first part of the 5' untranslated region, at least to nucleotide 338, may not be required for encephalomyocarditis viral RNA translation; however, the region near nucleotide 450 is important for translation of the viral RNA. The possibility that initiation occurs at an internal site is discussed.  相似文献   

13.
M Niepmann  A Petersen  K Meyer    E Beck 《Journal of virology》1997,71(11):8330-8339
The synthesis of picornavirus polyproteins is initiated cap independently far downstream from the 5' end of the viral RNA at the internal ribosome entry site (IRES). The cellular polypyrimidine tract-binding protein (PTB) binds to the IRES of foot-and-mouth disease virus (FMDV). In this study, we demonstrate that PTB is a component of 48S and 80S ribosomal initiation complexes formed with FMDV IRES RNA. The incorporation of PTB into these initiation complexes is dependent on the entry of the IRES RNA, since PTB and IRES RNA can be enriched in parallel either in 48S or 80S ribosomal complexes by stage-specific inhibitors of translation initiation. The formation of the ribosomal initiation complexes with the IRES occurs slowly, is temperature dependent, and correlates with the incorporation of PTB into these complexes. In a first step, PTB binds to the IRES, and then the small ribosomal subunit encounters this PTB-IRES complex. Mutations in the major PTB-binding site interfere simultaneously with the formation of initiation complexes, translation efficiency, and PTB cross-linking. PTB stimulates translation directed by the FMDV IRES in a rabbit reticulocyte lysate depleted of internal PTB, and the efficiency of translation can be restored to the original level by the addition of PTB. These results indicate that PTB plays an important role in the formation of initiation complexes with FMDV IRES RNA and in stimulation of internal translation initiation with this picornavirus.  相似文献   

14.
Translational initiation of encephalomyocarditis virus (EMCV) mRNA occurs by ribosomal entry into the 5' nontranslated region of the EMCV mRNA, rather than by ribosomal scanning. Internal ribosomal binding requires a cis-acting element termed the internal ribosomal entry site (IRES). IRES elements have been proposed to be involved in the translation of picornavirus mRNAs and some cellular mRNAs. Internal ribosome binding likely requires the interaction of trans-acting factors that recognize both the mRNA and the ribosomal complex. Five cellular proteins (p52, p57, p70, p72, and p100) cross-link the EMCV IRES or fragments of the IRES. For one of these proteins, p57, binding to the IRES correlates with translation. Recently, p57 was identified to be very similar, if not identical, to polypyrimidine tract-binding protein. On the basis of cross-linking results with 21 different EMCV IRES fragments and cytoplasmic HeLa extract or rabbit reticulocyte lysate as the source of polypeptides, consensus binding sites for p52, p57, p70, and p100 are proposed. It is suggested that each of these proteins recognizes primarily a structural feature of the RNA rather than a specific sequence.  相似文献   

15.
The insulin-like growth factor I receptor (IGF-IR) is a heterotetrameric receptor mediating the effects of insulin-like growth I and other growth factors. This receptor is encoded by an mRNA containing an unusually long, G-C-rich, and highly structured 5' untranslated region. Using bicistronic constructs, we demonstrated here that the 5' untranslated region of the IGF-IR allows translation initiation by internal ribosome entry and therefore constitutes an internal ribosome entry site. In vitro cross-linking revealed that this internal ribosome entry site binds a protein of 57 kDa. Immunoprecipitation of UV cross-linked proteins proved that this protein was the polypyrimidine tract-binding protein, a well known regulator of picornavirus mRNA translation. The efficiency of translation of the endogenous IGF-IR mRNA is not affected by rapamycin, which is a potent inhibitor of cap-dependent translation. This result provides evidence that the endogenous IGF-IR mRNA is translated, at least in part, through a cap-independent mechanism. This is the first report of a growth factor receptor containing sequence elements that allow translation initiation to occur by internal initiation. Because the IGF-IR has a pivotal function in the cell cycle, this mechanism of translation regulation could play a crucial role in the control of cell proliferation and differentiation.  相似文献   

16.
17.
The 3' poly(A) tail of eukaryotic mRNAs plays an important role in the regulation of translation. The poly(A) binding protein (PABP) interacts with eukaryotic initiation factor 4G (eIF4G), a component of the eIF4F complex, which binds to the 5' cap structure. The PABP-eIF4G interaction brings about the circularization of the mRNA by joining its 5' and 3' termini, thereby stimulating mRNA translation. The activity of PABP is regulated by two interacting proteins, Paip1 and Paip2. To study the mechanism of the Paip1-PABP interaction, far-Western, glutathione S-transferase pull-down, and surface plasmon resonance experiments were performed. Paip1 contains two binding sites for PABP, PAM1 and PAM2 (for PABP-interacting motifs 1 and 2). PAM2 consists of a 15-amino-acid stretch residing in the N terminus, and PAM1 encompasses a larger C-terminal acidic-amino-acid-rich region. PABP also contains two Paip1 binding sites, one located in RNA recognition motifs 1 and 2 and the other located in the C-terminal domain. Paip1 binds to PABP with a 1:1 stoichiometry and an apparent K(d) of 1.9 nM.  相似文献   

18.
The translation of picornavirus RNA occurs by a cap-independent mechanism directed by a region of about 450 nucleotides from the 5' untranslated region, termed an internal ribosome entry site (IRES). Internal initiation of protein synthesis occurs without any requirement for viral proteins. Furthermore, it is maintained when host cell protein synthesis is almost abolished. By using in vitro translation systems, two distinct families of IRES elements which have very different predicted RNA secondary structures have been defined. The cardiovirus and aphthovirus elements function very efficiently in rabbit reticulocyte lysate, whereas the enterovirus and rhinovirus elements function poorly in this system. However, supplementation of this translation system with additional cellular proteins can stimulate translation directed by the enterovirus and rhinovirus RNAs and reduce production of aberrant initiation products. The characterization of cellular proteins interacting with the picornavirus IRES is a major focus of research. Many different protein species can be observed to interact with regions of the IRES by in vitro analyses, e.g., UV cross-linking. However, the function and significance of many of these interactions are not always known. For two proteins, La and the polypyrimidine tract-binding protein, evidence has been obtained for a functional role of their interaction with IRES elements.  相似文献   

19.
Translation initiation in Hepatitis C Virus is controlled by the presence of an internal ribosome entry site element (IRES) principally located in its 5' untranslated region (UTR). Mutation/deletion analyses have shown that the integrity of this structure is essential for initiation of cap-independent protein synthesis. We have developed a strategy to swap the position of the two major domains (II and III) on the 5'UTR sequence. The aim was to further characterize this mechanism by preserving domain-specific interactions but possibly losing contacts that require any interdomain geometry. The expression of dicistronic mRNAs containing these different UTRs showed that the positioning of the different domains on the 5'UTR is essential for efficient IRES functioning. We then used these mutants to identify cellular factors implicated in IRES activity. Using UV crosslinking assays we found that domain III makes direct contact with two proteins (p170/p120) which can be associated with efficient IRES activity. In particular, we have mapped the binding sites of these proteins and shown that p120 binds to the apical loop segment of domain III, whilst p170 binds in the stem portion, independently of domain III position or context. Finally, we provide evidence showing that p170 and p120 represent two subunits of eukaryotic initiation factor eIF3: p170 and p116/p110.  相似文献   

20.
K H Chang  E A Brown    S M Lemon 《Journal of virology》1993,67(11):6716-6725
The 5' nontranslated region (5'NTR) of hepatitis A virus (HAV) RNA contains structural elements which facilitate 5' cap-independent initiation of virus translation and are likely to interact with cellular proteins functioning as translation initiation factors. To define these interactions, we characterized the binding of ribosome-associated proteins from several cell types to synthetic RNAs representing segments of the 5'NTR by using a UV cross-linking/label transfer assay. Four major proteins (p30, p39, p57, and p110) were identified. p30 and p39 were present in ribosomal salt washes prepared only from HAV-permissive BS-C-1 and FRhK-4 cells, while p57 was found only in HeLa cells and rabbit reticulocyte lysates. p110 was present in all cell types. Both p30 and p39 bound to multiple sites within the 5'NTR. Efficient transfer of label to p30 occurred with minimal RNA probes representing nucleotides (nt) 96 to 155, 151 to 354, and, to a much lesser extent, 634 to 744, while label transfer to p39 occurred with probes representing nt 96 to 155 and 634 to 744. All of these probes represent regions of the 5'NTR which are rich in pyrimidines. Competitive inhibition studies indicated that both p30 and p39 bound with greater affinity to sites in the 5' half of the NTR (a probe representing nt 1 to 354) than to the more 3' site (nt 634 to 744). Binding of p39 to the probe representing nt 96 to 155 was inhibited in the presence of an equal amount of proteins derived from HeLa cells, suggesting that p39 shares binding site specificity with one or more HeLa cell proteins. A 57-kDa protein in HeLa cell protein extracts reacted with antibody to polypyrimidine tract-binding protein in immunoblots, but no immunoreactive protein was identified in a similar BS-C-1 protein fraction. These results demonstrate that ribosome-associated proteins which bind to the 5'NTR of HAV vary substantially among different mammalian cell types, possibly accounting for differences in the extent to which individual cell types support growth of the virus. Mutations in the 5'NTR which enhance the growth of HAV in certain cell types may reflect specific adaptive responses to these or other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号