首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble cytokeratins in Xenopus laevis oocytes and eggs   总被引:4,自引:0,他引:4  
Xenopus oocytes contain a radial network of cytokeratins which seems to fragment during meiosis reinitiation (maturation). The mature egg contains only a cortical network of cytokeratins. We have looked for the presence of soluble cytokeratins in oocytes and unfertilized eggs and have found them in both cases. However, the proportion of soluble to insoluble cytokeratins is slightly higher in the egg than in the oocyte. Soluble cytokeratins incorporate 35S-methionine at a high rate in the oocyte but to a lesser extent in the egg. This suggests that they are biosynthetic intermediates in the oocyte. In the egg, at least a fraction of the soluble cytokeratins may arise from the fragmentation of the polymer which seems to occur during the maturation process. Insoluble cytokeratins are strongly labeled with 32P both in oocytes and eggs. On the other hand only the soluble keratins of the egg incorporate 32P. Since the isoelectric point of soluble and insoluble cytokeratins is the same in oocytes and eggs, their absolute level of phosphorylation probably remains relatively constant. This suggests that: i) phosphate turnover is very slow in oocyte soluble cytokeratins, ii) phosphorylation is not a major way of changing the structural state of cytokeratins in amphibian oocytes and eggs.  相似文献   

2.
We have investigated the differences in microtubule assembly in cytoplasm from Xenopus oocytes and eggs in vitro. Extracts of activated eggs could be prepared that assembled extensive microtubule networks in vitro using Tetrahymena axonemes or mammalian centrosomes as nucleation centers. Assembly occurred predominantly from the plus-end of the microtubule with a rate constant of 2 microns.min-1.microM-1 (57 s-1.microM-1). At the in vivo tubulin concentration, this corresponds to the extraordinarily high rate of 40-50 microns.min-1. Microtubule disassembly rates in these extracts were -4.5 microns.min-1 (128 s-1) at the plus-end and -6.9 microns.min-1 (196 s-1) at the minus-end. The critical concentration for plus-end microtubule assembly was 0.4 microM. These extracts also promoted the plus-end assembly of microtubules from bovine brain tubulin, suggesting the presence of an assembly promoting factor in the egg. In contrast to activated eggs, assembly was never observed in extracts prepared from oocytes, even at tubulin concentrations as high as 20 microM. Addition of oocyte extract to egg extracts or to purified brain tubulin inhibited microtubule assembly. These results suggest that there is a plus-end-specific inhibitor of microtubule assembly in the oocyte and a plus-end-specific promoter of assembly in the eggs. These factors may serve to regulate microtubule assembly during early development in Xenopus.  相似文献   

3.
4.
Cytokeratin intermediate filaments are prominent constituents of developing Xenopus oocytes and eggs, forming radial and cortical networks. In order to investigate the dynamics of the cortical cytokeratin network, we expressed EGFP-tagged Xenopus cytokeratin 1(8) in oocytes and eggs. The EGFP-cytokeratin co-assembled with endogenous partner cytokeratin proteins to form fluorescent filaments. Using time-lapse confocal microscopy, cytokeratin filament assembly was monitored in live Xenopus oocytes at different stages of oogenesis, and in the artificially-activated mature egg during the first cell cycle. In stage III to V oocytes, cytokeratin proteins formed a loose cortical geodesic network, which became more tightly bundled in stage VI oocytes. Maturation of oocytes into metaphase II-arrested eggs induced disassembly of the EGFP-cytokeratin network. Imaging live eggs after artificial activation allowed us to observe the reassembly of cytokeratin filaments in the vegetal cortex. The earliest observable structures were loose foci, which then extended into curly filament bundles. The position and orientation of these bundles altered with time, suggesting that forces were acting upon them. During cortical rotation, the cytokeratin network realigned into a parallel array that translocated in a directed manner at 5 microm/minute, relative to stationary cortex. The cytokeratin filaments are, therefore, moving in association with the bulk cytoplasm of the egg, suggesting that they may provide a structural role at the moving interface between cortex and cytoplasm.  相似文献   

5.
6.
Quantitation of type II topoisomerase in oocytes and eggs of Xenopus laevis   总被引:5,自引:0,他引:5  
We have generated a monoclonal antibody and a polyclonal antiserum specific for Xenopus laevis topoisomerase II. Using quantitative immunoprecipitation and Western blotting techniques, we have determined the content of topoisomerase II in X. laevis oocytes during oogenesis and in unfertilized eggs. An average stage I oocyte contains 6 pg of topoisomerase II. The content of topoisomerase II per oocyte increases throughout oogenesis to 1.5 ng per stage VI oocyte. The topoisomerase II protein in stage VI oocytes is stored in the germinal vesicles. The cellular content of type II topoisomerase increases significantly when stage VI oocytes are hormonally stimulated to mature into unfertilized eggs.  相似文献   

7.
Immunocytochemical studies using a monoclonal anti-porcine vimentin antibody reveal a well-organized pattern of staining in Xenopus laevis oocytes, eggs and early embryos. The positions of Xenopus vimentin and desmin in two-dimensional (2D) polyacrylamide gels were first established by immunoblotting of muscle Triton extracts with anti-intermediate filament antibodies (anti-IFA), which cross-react with all intermediate filament proteins (IFPs). The anti-porcine vimentin reacts with vimentin and desmin in muscle 2D immunoblots, but only reacts with one polypeptide in oocyte blots in the position predicted for vimentin (Mr 55 x 10(3), pI 5.6). Using an anti-sense probe derived from a Xenopus vimentin genomic clone in RNase protection assays, we show that expression of vimentin begins in previtellogenic oocytes. The level of expression remains constant throughout oogenesis and in unfertilized eggs. These data suggest that vimentin is expressed in oocytes and eggs. Most interestingly, the immunocytochemical results also show that vimentin is present in the germ plasma of oocytes, eggs and early embryos. It is therefore possible that vimentin has an important role in the formation or behaviour of early germ line cells.  相似文献   

8.
The Xenopus laevis (African clawed frog) system has long been popular for studies of both developmental and cell biology, based on a variety of its intrinsic features including the large size of Xenopus oocytes, eggs, and embryos, and the relative ease of manipulation. Unfortunately, the large size has also been considered a serious impediment for high-resolution light microscopy, as has the heavy pigmentation. However, the recent development and exploitation of 4D imaging approaches, and the fact that much of what is of most interest to cell and developmental biologists takes place near the cell surface, indicates that such concerns are no longer valid. Consequently, the Xenopus system in many respects is now as good as other model systems considered to be ideal for microscopy-based studies. Here, 4D imaging and its recent applications to cytoskeletal imaging in Xenopus oocytes and eggs are discussed.  相似文献   

9.
10.
11.
The endogenous lectin of Xenopus laevis oocytes, unfertilized eggs, and blastula-stage embryos was immunohistochemically localized using a highly specific antiserum. Each tissue was examined with several techniques, including paraformaldehyde or glutaraldehyde fixation, frozen or plastic sections, and immunofluorescence or immunoperoxidase staining. In oocytes and unfertilized eggs, lectin was detected in association with yolk platelets, cortical granules, and the vitelline envelope. In embryos, cortical granules had disappeared and lectin was found in the cleavage furrows between the embryonic cells. The distribution of the lectin suggests that it plays more than one role in this developing system.  相似文献   

12.
Xenopus laevis histone H4 and H1 genes were transcribed in vitro to generate artificial precursor mRNAs (pre-mRNAs). These pre-mRNAs were microinjected into oocytes, matured oocytes, and unfertilized eggs of Xenopus laevis and their 3' cleavage and polyadenylation were investigated. In the oocyte nucleus both H4 and H1 pre-mRNAs were 3' cleaved but were not detectably polyadenylated. In the oocyte cytoplasm there was neither 3' cleavage nor polyadenylation of these histone pre-mRNAs. When injected into either matured oocytes or unfertilized eggs, the pre-mRNAs underwent 3' cleavage but this was inefficient when compared to the oocyte nucleus. In addition approximately 50% of the remaining uncleaved pre-mRNA was subject to a polyadenylation activity which added A tails of approximately 70 A residues. In contrast, artificial mouse beta-globin pre-mRNAs were not detectably 3' cleaved or polyadenylated in either microinjected oocytes or unfertilized eggs.  相似文献   

13.
The ribonucleotide and deoxyribonucleotide contents of eggs and oocytes of Xenopus laevis were measured. Eggs contained most deoxyribonucleotide in the form of triphosphates. dCTP, dTTP, dATP and dGTP were present in similar amounts. The egg contained sufficient deoxynucleotide triphosphate to make approximately 2500 nuclei. Oocytes contained less pyrimidine deoxyribonucleoside triphosphates than did eggs, and purine deoxyribonucleoside triphosphates were not detected. These differences may be correlated with the ability of eggs to induce nuclear DNA synthesis, a property not shown by oocytes. Both oocytes and eggs seem to contain non-phosphorylated, alpha-unsubstituted aldehydes, which may be deoxyribose derivatives. Eggs and oocytes contain similar amounts of ribonucleoside triphosphates. The low rate of RNA synthesis found in eggs, but not in oocytes, is therefore not caused by simple precursor control.  相似文献   

14.
M Cotten  L Sealy  R Chalkley 《Biochemistry》1986,25(18):5063-5069
Nucleoplasmin isolated from unfertilized Xenopus laevis eggs possesses an in vitro chromatin assembly activity which is superior to nucleoplasmin isolated from oocytes. It is demonstrated here that the two forms of the protein differ in the amount of attached phosphate, with the egg protein possessing nearly 20 phosphate groups per protein monomer and the oocyte protein possessing less than 10 phosphate groups per monomer. A kinase preparation from unfertilized eggs is shown to be capable of modifying oocyte nucleoplasmin so that it displays the electrophoretic heterogeneity of egg nucleoplasmin. Furthermore, when the egg protein is treated with phosphatase and repurified, the chromatin assembly activity deteriorates to the level of the oocyte protein.  相似文献   

15.
Cytoskeleton in Xenopus oocytes and eggs   总被引:2,自引:0,他引:2  
The Xenopus egg is a huge cell divided into compartments with distinct characteristics. The organization of the cytoskeleton reflects both the size of the egg and its regional differences. We review the information concerning the deployment and function of cytoskeletal elements during the changes in cellular organization accompanying oogenesis, oocyte maturation, and following fertilization.  相似文献   

16.
The cytoplasm of mature eggs of Xenopus laevis was found to contain a cytostatic factor (CSF) which induces cleavage arrest at metaphase when microinjected into one blastomere of a two-cell embryo of Xenopus laevis or Rana pipiens. The Rana CSF was found to be incapable of arresting mitosis in Xenopus embryos. Both Xenopus and Rana CSF were stabilized during the transfer procedure by Ca2+-chelation in the donor egg. The Xenopus CSF was not present in the germinal vesicle of immature oocytes, but arose in the cytoplasm at the time of germinal vesicle breakdown and subsequently disappeared at the time of fertilization or egg activation.  相似文献   

17.
Cytostatic factor (CSF) in the eggs of Xenopus laevis   总被引:3,自引:0,他引:3  
Cytostatic factor (CSF) in unfertilized egg cytoplasm causes metaphase arrest when microinjected into zygotes. This was originally described in Rana pipiens eggs In Xenopus laevis, CSF has also been demonstrated. but only when the calcium-chelating agent, EGTA, was injected into the egg cytoplasm. In the present study, however, CSF was demonstrated in Xenopus eggs when donor egg activation was prevented by treatment with CO2 and Mg2+ instead of by EGTA, and recipient blastomere degeneration was prevented by increasing the KCl in the surrounding medium.  相似文献   

18.
This article reviews cell cycle changes that occur during midblastula transition (MBT) in Xenopus laevis based on research carried out in the authors' laboratory. Blastomeres dissociated from the animal cap of blastulae, as well as those in an intact embryo, divide synchronously with a constant cell cycle duration in vitro, up to the 12th cell cycle regardless of their cell sizes. During this synchronous cleavage, cell sizes of blastomeres become variable because of repeated unequal cleavage. After the 12th cell cycle blastomeres require contact with an appropriate protein substrate to continue cell division. When nucleocytoplasmic (N/C) ratios of blastomeres reach a critical value during the 13th cycle, their cell cycle durations lengthen in proportion to the reciprocal of cell surface areas, and cell divisions become asynchronous due to variations in cell sizes. The same changes occur in haploid blastomeres with a delay of one cell cycle. Thus, post-MBT cell cycle control becomes dependent not only on the N/C relation but also on cell surface activities of blastomeres. Unlike cell cycle durations of pre-MBT blastomeres, which show monomodal frequency distributions with a peak at about 30 min, those of post-MBT blastomeres show polymodal frequency distributions with peaks at multiples of about 30 min, suggesting 'quantisement' of the cell cycle. Thus, we hypothesised that MPF is produced periodically during its unit cycle with 30 min period, but it titrates, and is neutralized by, an inhibitor contained in the nucleus in a quantity proportional to the genome size; however, when all of the inhibitor has been titrated, excess MPF during the last cycle triggers mitosis. At MBT, cell cycle checkpoint mechanisms begin to operate. While the operation of S phase checkpoint to monitor DNA replication is initiated by N/C relation, the initiation of M phase checkpoint operation to monitor chromosome segregation at mitosis is regulated by an age-dependent mechanism.  相似文献   

19.
Using freeze-fracture electron microscopy, compositional changes were analysed in the surface membrane of Xenopus oocytes during maturation after in vitro progesterone treatment, as well as in eggs before and after fertilization. Investigated stages were as follows: (1) defolliculated full-grown oocytes; (2) defolliculated oocytes after 5 min exposure to 5 micrograms/ml progesterone; (3) ditto at germinal vesicle breakdown (GVBD) after 5 h progesterone treatment; (4) unfertilized eggs at oviposition and (5) zygotes 30 min post-fertilization. Comparing the patterns of intramembranous particle (IMP) density and IMP size during these stages the following changes were found: a transient decrease in IMP density was found after 5 min progesterone treatment; a 48% increase during maturation; a further 17% increase after fertilization. In defolliculated oocytes tight-junction-like structures were found, but no gap junctions. These results are discussed with reference to progesterone action, membrane remodelling, protein synthesis and membrane lipid organization.  相似文献   

20.
Interest in cortical excitability—the ability of the cell cortex to generate traveling waves of protein activity—has grown considerably over the past 20 years. Attributing biological functions to cortical excitability requires an understanding of the natural behavior of excitable waves and the ability to accurately quantify wave properties. Here we have investigated and quantified the onset of cortical excitability in Xenopus laevis eggs and embryos and the changes in cortical excitability throughout early development. We found that cortical excitability begins to manifest shortly after egg activation. Further, we identified a close relationship between wave properties—such as wave frequency and amplitude—and cell cycle progression as well as cell size. Finally, we identified quantitative differences between cortical excitability in the cleavage furrow relative to nonfurrow cortical excitability and showed that these wave regimes are mutually exclusive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号