首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three native E. coli proteins-NusA, GrpE, and bacterioferritin (BFR)-were studied in fusion proteins expressed in E. coli for their ability to confer solubility on a target insoluble protein at the C-terminus of the fusion protein. These three proteins were chosen based on their favorable cytoplasmic solubility characteristics as predicted by a statistical solubility model for recombinant proteins in E. coli. Modeling predicted the probability of soluble fusion protein expression for the target insoluble protein human interleukin-3 (hIL-3) in the following order: NusA (most soluble), GrpE, BFR, and thioredoxin (least soluble). Expression experiments at 37 degrees C showed that the NusA/hIL-3 fusion protein was expressed almost completely in the soluble fraction, while GrpE/hIL-3 and BFR/hIL-3 exhibited partial solubility at 37 degrees C. Thioredoxin/hIL-3 was expressed almost completely in the insoluble fraction. Fusion proteins consisting of NusA and either bovine growth hormone or human interferon-gamma were also expressed in E. coli at 37 degrees C and again showed that the fusion protein was almost completely soluble. Starting with the NusA/hIL-3 fusion protein with an N-terminal histidine tag, purified hIL-3 with full biological activity was obtained using immobilized metal affinity chromatography, factor Xa protease cleavage, and anion exchange chromatography.  相似文献   

2.
Fusing recombinant proteins to highly soluble partners is frequently used to prevent aggregation of recombinant proteins in Escherichia coli. Moreover, co-overexpression of prokaryotic chaperones can increase the amount of properly folded recombinant proteins. To understand the solubility enhancement of fusion proteins, we designed two recombinant proteins composed of uncoupling protein 1 (UCP1), a mitochondrial membrane protein, in fusion with MBP or NusA. We were able to express soluble forms of MBP-UCP1 and NusA-UCP1 despite the high hydrophobicity of UCP1. Furthermore, the yield of soluble fusion proteins depended on co-overexpression of GroEL that catalyzes folding of polypeptides. MBP-UCP1 was expressed in the form of a non-covalent complex with GroEL. MBP-UCP1/GroEL was purified and characterized by dynamic light scattering, gel filtration, and electron microscopy. Our findings suggest that MBP and NusA act as solubilizing agents by forcing the recombinant protein to pass through the bacterial chaperone pathway in the context of fusion protein.  相似文献   

3.
The construction of expression vectors encoding either the human insulin A- or B-chains fused to a synthetic peptide and the temperature-induced expression of the recombinant genes in Escherichia coli are reported. Using this two-chain approach we also describe the separate isolation of the insulin A- and B-chains from inclusion bodies and their subsequent assembly into native human insulin. The production of the insulin fusion proteins were carried out in high-cell density fed-batch cultures using a synthetic medium with glucose as sole carbon and energy source. The expression of the recombinant genes by temperature-shift in high-cell density cultures of recombinant E. coli resulted in product yields of grams per litre of culture broth, e.g. 4.5 g of insulin B-chain fusion protein per litre of culture broth. This translates into an expression yield of about 800 mg of the insulin B-chain per litre of culture. Under similar cultivation conditions the expression yield of the insulin A-chain corresponds to approximately 600 mg per litre of culture. The metabolic burden imposed on the recombinant cells during temperature-induced production of insulin fusion proteins in high-cell density cultures is reflected in an increased respiratory activity and a reduction of the biomass yield coefficient with respect to glucose.  相似文献   

4.
Ribonuclease inhibitor (RI) is a 50-kDa cytosolic scavenger of pancreatic-type ribonucleases which inhibits ribonucleolytic activity. Expression of recombinant RI is extremely difficult to reach high levels in soluble form in the cytoplasm of Escherichia coli. Here, we utilized five N-terminal fusion partners to improve the soluble expression of RI. Among these five fusion partners which have been screened, maltose-binding protein (MBP), N-utilization substance A (NusA) and translation initiation factor 2 domain I (IF2) have greatly improved the soluble expression level of recombinant murine RI under the drive of T7 promoter, while glutathione S-transferase (GST) and small ubiquitin modifying protein (SUMO) were much less efficient. All these RI-fusion proteins remained to be highly active in inhibiting RNase A activity. Furthermore, all fusion tags can be efficiently removed by enterokinase digestion to generate native RI which results the highest yield to date (>30mg of native RI per liter culture). And a convenient two-step immobilized metal affinity chromatography (IMAC) method has been implemented in our study, comparing with the traditional RNase A affinity chromatography method.  相似文献   

5.
Endostatin, a 20 kDa C-terminal fragment of collagen XVIII, is a specific inhibitor of endothelial cell proliferation and angiogenesis. In the present study, we produced soluble and biologically active recombinant human endostatin (rhEndostatin) in Escherichia coli by expressing via fusion with solubility-promoting peptides and optimizing the expression conditions. The rhEndostatin was expressed via fusion with glutathione S-transferase (GST) and NusA protein, respectively. It revealed that NusA protein enhanced the production of soluble rhEndostatin; but GST didn’t. By optimizing the expression conditions, the production of soluble NusA-rhEndostatin fusion protein was about 50% of total cellular proteins and about 90% of the products appeared in the cellular supernatant fraction. The soluble NusA-rhEndostatin fusion protein was purified by one-step hydrophobic interaction chromatography and NusA was removed by thrombin. Then rhEndostatin was purified by affinity chromatography and gel filtration chromatography. As a result, a simple and economical purification procedure for rhEndostatin isolation was obtained. The biological activity of the rhEndostatin was demonstrated in vitro using a human vascular endothelial cells (HuVECs) proliferation assay. Our study provides a feasible and convenient approach to produce soluble and biologically active rhEndostatin.  相似文献   

6.
Recombinant single-chain variable fragment (scFv) antibodies have wide applications in the areas of biotechnology and medicine. However, there is currently no universal expression-purification system for generating different soluble scFvs. In this study, A15 and E34, two genes coding scFvs against human IL-17A, were fused with N-terminal signal peptide sequences pelB or STII, or with highly hydrophilic tags Trx, NusA, or MBP, respectively. These constructs were expressed in Escherichia coli. We found that the scFvs fused with either NusA or MBP showed a higher solubility than fused with signal peptides or Trx. The scFvs were aggregated when the NusA or MBP was removed by thrombin. Interestingly, we observed a reduction of precipitation when the fusion proteins were expressed in Origami B(DE3)pLysS cells but not in BL21(DE3)pLysS. Because cleaving the tags resulted in the aggregation of scFvs, several solubility-enhancing additives were added in the digestion buffer and only L-arginine (Arg) or Tween20 promoted the solubility. After an affinity chromatography, the scFvs were separated from the tags with the purity up to 90%. The final yield of scFvs from the scFv-MBP system was approximately 8.9 mg/L of culture medium and 1.5 mg/g of wet weight cells, which was 1.6-fold higher than the yield from the scFv-NusA system. The obtained scFvs exhibited normal binding affinities and activities after endotoxin removal. In conclusion, we describe a strategy combining the fusion tags, the Escherichia coli with oxidizing bacterial cytoplasm, and the solubility-enhancing additives for expressing and purifying the soluble and functional scFvs.  相似文献   

7.
Cyclomaltodextrinases are multidomain and often dimeric proteins from the alpha-amylase family (glycoside hydrolase family 13) which frequently have been very difficult to express in active form in Escherichia coli. To express the soluble form of this type of proteins in larger quantities the expression has to be optimized. We have used and combined two strategies to increase the yield of soluble recombinant cyclomaltodextrinase expressed from a gene originating from the thermophilic Gram-positive bacterium Anoxybacillus flavithermus. One strategy involved tuning of the inducer concentration while the other involved fusion of the gene encoding the target protein to the gene encoding the solubility-enhancing protein NusA. The enzyme activity could be increased 6-7 times solely by finely tuning the IPTG concentration, but the activity level was very sensitive to the amount of inducer applied. Hence, the IPTG concentration may have to be optimized for every protein under the conditions used. The fusion protein-strategy gave a slightly lower total activity but the level of soluble recombinant protein obtained was in this case significantly less sensitive to the inducer concentration applied. Moreover, the activity could be increased about 2-fold by cleaving off the solubility-tag (NusA) by enterokinase.  相似文献   

8.
For optimal expression of delta-endotoxins from Bacillus thuringiensis in plants, preferential changes in the codon sequences, and reduction in overall AT content in the nucleotide sequence of the genes is important. Reports suggest that sequences with such modifications cannot be overexpressed in bacteria. We report here that the modified genes can be overexpressed in a strain of Escherichia coli carrying extra tRNA genes for some of the codons occurring at high frequency in plant genes and less preferred in E. coli. We also demonstrate that proteins when expressed as fusion products with NusA protein, are obtained as soluble fraction rather than in inclusion bodies. This allows easy and accurate LC50 analysis on insect pests.  相似文献   

9.
The Escherichia coli host system is an advantageous choice for simple and inexpensive recombinant protein production but it still presents bottlenecks at expressing soluble proteins from other organisms. Several efforts have been taken to overcome E. coli limitations, including the use of fusion partners that improve protein expression and solubility. New fusion technologies are emerging to complement the traditional solutions. This work evaluates two novel fusion partners, the Fh8 tag (8 kDa) and the H tag (1 kDa), as solubility enhancing tags in E. coli and their comparison to commonly used fusion partners. A broad range comparison was conducted in a small-scale screening and subsequently scaled-up. Six difficult-to-express target proteins (RVS167, SPO14, YPK1, YPK2, Frutalin and CP12) were fused to eight fusion tags (His, Trx, GST, MBP, NusA, SUMO, H and Fh8). The resulting protein expression and solubility levels were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis before and after protein purification and after tag removal. The Fh8 partner improved protein expression and solubility as the well-known Trx, NusA or MBP fusion partners. The H partner did not function as a solubility tag. Cleaved proteins from Fh8 fusions were soluble and obtained in similar or higher amounts than proteins from the cleavage of other partners as Trx, NusA or MBP. The Fh8 fusion tag therefore acts as an effective solubility enhancer, and its low molecular weight potentially gives it an advantage over larger solubility tags by offering a more reliable assessment of the target protein solubility when expressed as a fusion protein.  相似文献   

10.
将人源肿瘤坏死因子Ⅰ型受体(hTNFR1)基因克隆到pET-22b表达载体,成功构建了重组表达质粒pETH1,电转到Escherichia coli BL21(DE3)表达菌株中进行摇瓶发酵。实现了hTNFR1在大肠杆菌表达系统中的重组表达。但目的蛋白全部以包涵体的形式存在于沉淀中。为了提高hTNFR1在大肠杆菌中的可溶性表达,融合标签和分子伴侣两种策略被实施用于辅助hTNFR1的可溶性表达。结果表明,在hTNFR1的N端融合NusA标签后,hTNFR1的可溶性有一定提高;在NusA-hTNFR1基础上,过表达了7种分子伴侣,筛选出tig分子伴侣对hTNFR1蛋白可溶性表达有明显的促进作用,可溶性表达量约占总量的90%;对优化后的hTNFR1表达系统的可溶性蛋白进行Ni-NTA亲和层析纯化后,TEV蛋白酶酶切去除N端的NusA标签,结合Western blot分析鉴定,获得了大量高纯度的hTNFR1蛋白。研究结果为进一步研究hTNFR1的生理学活性及其在疾病治疗方面的应用奠定了良好基础。  相似文献   

11.
It is well established that certain highly soluble proteins have the ability to enhance the solubility of their fusion partners. However, very little is known about how different solubility enhancers compare in terms of their ability to promote the proper folding of their passenger proteins. We compared the ability of two well-known solubility enhancers, Escherichia coli maltose-binding protein (MBP) and N utilization substance A (NusA), to improve the solubility and promote the proper folding of a variety of passenger proteins that are difficult to solubilize. We used an intracellular processing system to monitor the solubility of these passenger proteins after they were cleaved from MBP and NusA by tobacco etch virus protease. In addition, the biological activity of some fusion proteins was compared to serve as a more quantitative indicator of native structure. The results indicate that MBP and NusA have comparable solubility-enhancing properties. Little or no difference was observed either in the solubility of passenger proteins after intracellular processing of the MBP and NusA fusion proteins or in the biological activity of solubilized passenger proteins, suggesting that the underlying mechanism of solubility enhancement is likely to be similar for both the proteins, and that they play a passive role rather than an active one in the folding of their fusion partners.  相似文献   

12.
Chemokines are a class of low molecular weight proteins that are involved in leukocytes trafficking. Due to their involvement in recruiting immune cells to sites of inflammation, chemokines, and chemokine receptors have become an attractive class of therapeutic targets. However, when expressed in Escherichia coli chemokines are poorly soluble and accumulate in inclusion bodies. Several purification methods have been described but involve time-consuming refolding, buffer exchange, and purification steps that complicate expression of these proteins. Here, we describe a simple and reliable method to express chemokines as fusions to the protein NusA. The fusion proteins were largely found in the soluble fraction and could be readily purified in a single step. Proteolytic cleavage was used to obtain soluble recombinant chemokines that were found to be very active in a novel in vitro chemotaxis assays. This method could be applied to several alpha and beta human chemokines, suggesting that it is generally applicable to this class of proteins.  相似文献   

13.
human renin binding protein (hRnBp), showingN-acetylglucosamine-2-epimerase activity, was over-expressed inE. coli, but was mainly present as an inclusion body. To improve its solubility and activity, ubiquitin (Ub), thioredoxin (Trx), maltose binding protein (MBP) and NusA, were used as fusion partners. The comparative solubilities of the fusion proteins were, from most to least soluble: NusA, MBP, Trx, Ub. Only the MBP fusion did not significantly reduce the activity of hRnBp, but enhanced the stability. The Origami (DE3), permitting a more oxidative environment for the cytoplasm inE. coli, helped to increase its functional activity.  相似文献   

14.
Expression of archaeal proteins in soluble form is of importance because archaeal proteins are usually produced as insoluble inclusion bodies in Escherichia coli. In this study, we investigated the use of soluble fusion tags to enhance the solubility of two archaeal proteins, d-gluconate dehydratase (GNAD) and 2-keto-3-deoxy-D-gluconate kinase (KDGK), key enzymes in the glycolytic pathway of the thermoacidophilic archaeon Sulfolobus solfataricus. These two proteins were produced as inclusion bodies in E. coli when polyhistidine was used as a fusion tag. To reduce inclusion body formation in E. coli, GNAD and KDGK were fused with three partners, thioredoxin (Trx), glutathione-S-transferase (GST), and N-utilization substance A (NusA). With the use of fusion-partners, the solubility of the archaeal proteins was remarkably enhanced, and the soluble fraction of the recombinant proteins was increased in this order: Trx>GST>NusA. Furthermore, In the case of recombinant KDGKs, the enzyme activity of the Trx-fused proteins was 200-fold higher than that of the polyhistidine-fusion protein. The strategy presented in this work may contribute to the production of other valuable proteins from hyperthermophilic archaea in E. coli.  相似文献   

15.
Li M  He S 《Journal of biotechnology》2006,122(3):334-340
Human interleukin (IL)-29 is the latest member of the class II cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-29, little is known of its functions in man. In the present study, an Escherichia coli expression system for the rapid expression of the human IL-29 gene was developed. It involved of cloning IL-29 gene into the pET-44 Ek/LIC vector, which allowed expression of IL-29 with a fusion tag consisting of the NusA protein, polyhistidine and S peptide (Nus-His-S-tag), and introducing a thrombin recognition site between the fusion tag and IL-29. The expressed fusion protein was purified by S-protein agarose affinity chromatography, and the fusion tag was removed from recombinant IL-29 by cleavage with thrombin. The purified IL-29 appeared a single band on SDS-PAGE, and the yield of IL-29 was 60 mg from 1 l of bacterial culture. N-terminal sequencing confirmed the identity of the purified protein. The recombinant IL-29 showed specific antiviral activity that was comparable to the commercially available IFN alfa-2b preparation.  相似文献   

16.
17.
Li JF  Cui XW  Ji HY  Qiu T  Ji XM  Du MX  Wu HT  Xu XZ  Zhang SQ 《The protein journal》2011,30(8):592-597
Bone morphogenetic proteins (BMPs) are cytokines from the TGF-β superfamily, with important roles during embryonic development and in the induction of bone and cartilage tissue differentiation in the adult body. In this contribution, We report here the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of human BMP-14. The fusion protein expressed in a soluble form was purified to a purity of 90% by Ni-IDA chromatography. After the SUMO-BMP14 fusion protein was cleaved by the SUMO protease at 30 °C for 1 h, the cleaved sample was re-applied to a Ni-IDA. Finally, about 45 mg recombinant hBMP-14 was obtained from 1 litre bacterial culture with no less than 95% purity. The purified hBMP-14 dimer was over 90% purity and could induce the expression of alkaline phosphatase activity in C2C12 cells in a dose-dependent manner. Thus the SUMO-mediated peptide expression and purification system potentially could be employed for the production of other homodimeric proteins.  相似文献   

18.
The human peptidyl-prolyl isomerase FK-binding protein (FKBP) was cloned as a fusion partner with CMP-KDO synthetase (CKS), and the resultant construct was characterized as an improved high-expression source for FKBP. The CKS-FKBP fusion was expressed as a soluble protein at levels approaching 1 gm/L inEscherichia coli fermentations. The fusion protein was purified to near homogeneity by a one-step ammonium sulfate fractionation of whole cell lysate. After selective cleavage, the fusion precursor produced yields approaching 300 mg of purified FKBP per liter of harvested culture, a 30 to 60-fold increase over that observed for a nonfusion construct. Selective cleavage of the fusion partners was accomplished using either hydroxylamine or specific, limited proteolysis. Once separated from the CKS fusion partner, the FKBP was isolated in a single step by either reversed-phase HPLC or chromatography on Q-Sepharose. For comparison of physical and chemical properties, a nonfusion construct of recombinant human FKBP was expressed inE. coli and isolated. The purified FKBPs exhibited expected SDS-PAGE molecular weights and N-terminal sequences. The proteins had similar proton NMR spectra and binding to [3H]FK-506. The fusion construct, CKS-FKBP, was also found to bind [3H]FK-506. These data indicate that FKBP fused to the C-terminus of CKS folds independently of the fusion partner and suggests the fused FKBP adopts a conformation resembling that of the native protein.  相似文献   

19.
Although several proton-pumping pyrophosphatases (H+-PPases) have been overexpressed in heterologous systems, purification of these recombinant integral membrane proteins in large amounts in order to study their structure-function relationships has proven to be a very difficult task. In this study we report a new method for large-scale production of pure and stable thermophilic H+-PPase from Thermotoga maritima. Following overexpression in yeast, a “Hot-Solve” procedure based on high-temperature solubilization and metal-affinity chromatography was used to obtain a highly purified detergent-solubilized TVP fraction with a yield around 1.5 mg of protein per litre of yeast culture. Electron microscopy showed the monodispersity of the purified protein and single particle analysis provided the first direct evidence of a dimeric structure for H+-PPases. We propose that the method developed could be useful for large-scale purification of other recombinant thermophilic membrane proteins.  相似文献   

20.
Plasmid vectors were constructed which expressed three adenovirus tumor antigens fused to a portion of the trpE protein of Escherichia coli. Insertion of adenovirus type 2 DNA from early region 1A (E1A) into such a plasmid led to a fusion protein which contained the C-terminal 266 amino acids of the 289-amino acid protein encoded by the viral 13S mRNA. Similarly, insertion of adenovirus type 5 DNA corresponding to the E1B 55- and 21-kilodalton proteins led to production of fusion proteins containing amino acid sequences from these proteins. After induction with indoleacrylic acid, fusion proteins accumulated stably in the E. coli cells. By using a simple extraction of insoluble protein, 1 to 10 mg of fusion protein per liter of culture was obtained. The fusion proteins were purified on preparative polyacrylamide gels and used to immunize rabbits. Specific antisera for the E1A 289- and closely related 243-amino acid proteins and the E1B 55- and 21-kilodalton proteins were obtained. These sera were used to immunoprecipitate the tumor antigens in cells infected with wild-type and various mutants of adenovirus or to analyze them by an immunoblotting procedure. Mutant E1A proteins in which the C-terminal 70 amino acids are deleted were phosphorylated to much lower extents than the wild-type E1A proteins. This indicates that the deleted region is important for the process of phosphorylation. The E1A proteins were extracted, sedimented in glycerol gradients, analyzed by immunoprecipitation, and found to sediment primarily as monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号