首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ssy1p and Ptr3p are known components of a yeast plasma membrane system that functions to sense the presence of amino acids in the extracellular environment. In response to amino acids, this sensing system initiates metabolic signals that ultimately regulate the functional expression of several amino acid-metabolizing enzymes and transport proteins, including multiple, genetically distinct amino acid permeases. We have found that SSY5 encodes a third component of this amino acid sensing system. Mutations in SSY5 manifest phenotypes that are indistinguishable from those resulting from either single ssy1 and ptr3 mutations or ssy5 ssy1 and ssy5 ptr3 double mutations. Although Ssy5p is predicted to be a soluble protein, it exhibits properties indicating that it is a peripherally associated plasma membrane protein. Each of the three sensor components, Ssy1p, Ptr3p, and Ssy5p, adopts conformations and modifications that are dependent upon the availability of amino acids and on the presence of the other two components. These results suggest that these components function as part of a sensor complex localized to the plasma membrane. Consistent with a sensor complex, the overexpression of SSY1 or the unique N-terminal extension of this amino acid permease homologue inactivates the amino acid sensor in a dominant-negative manner. Each of the components of the Ssy1p-Ptr3p-Ssy5p (SPS) signaling system undergoes rapid physical changes, reflected in altered electrophoretic mobility, when leucine is added to cells grown in media lacking amino acids. Furthermore, the levels of each SPS sensor component present in whole-cell extracts diminish upon leucine addition. The rapid physical alterations and reduced levels of sensor components are consistent with their being downregulated in response to amino acid availability. These results reveal the dynamic nature of the amino acid-initiated signals transduced by the SPS sensor.  相似文献   

3.
C Yanofsky  V Horn    P Gollnick 《Journal of bacteriology》1991,173(19):6009-6017
Escherichia coli forms three permeases that can transport the amino acid tryptophan: Mtr, AroP, and TnaB. The structural genes for these permeases reside in separate operons that are subject to different mechanisms of regulation. We have exploited the fact that the tryptophanase (tna) operon is induced by tryptophan to infer how tryptophan transport is influenced by the growth medium and by mutations that inactivate each of the permease proteins. In an acid-hydrolyzed casein medium, high levels of tryptophan are ordinarily required to obtain maximum tna operon induction. High levels are necessary because much of the added tryptophan is degraded by tryptophanase. An alternate inducer that is poorly cleaved by tryptophanase, 1-methyltryptophan, induces efficiently at low concentrations in both tna+ strains and tna mutants. In an acid-hydrolyzed casein medium, the TnaB permease is most critical for tryptophan uptake; i.e., only mutations in tnaB reduce tryptophanase induction. However, when 1-methyltryptophan replaces tryptophan as the inducer in this medium, mutations in both mtr and tnaB are required to prevent maximum induction. In this medium, AroP does not contribute to tryptophan uptake. However, in a medium lacking phenylalanine and tyrosine the AroP permease is active in tryptophan transport; under these conditions it is necessary to inactivate the three permeases to eliminate tna operon induction. The Mtr permease is principally responsible for transporting indole, the degradation product of tryptophan produced by tryptophanase action. The TnaB permease is essential for growth on tryptophan as the sole carbon source. When cells with high levels of tryptophanase are transferred to tryptophan-free growth medium, the expression of the tryptophan (trp) operon is elevated. This observation suggests that the tryptophanase present in these cells degrades some of the synthesized tryptophan, thereby creating a mild tryptophan deficiency. Our studies assign roles to the three permeases in tryptophan transport under different physiological conditions.  相似文献   

4.
5.
In Saccharomyces cerevisiae, amino acid permeases are divided into two classes. One class, represented by the general amino acid permease GAP1, contains permeases regulated in response to the nitrogen source. The other class, including the high affinity tryptophan permease, TAT2, consists of the so-called constitutive permeases. We show that TAT2 is regulated at the level of protein stability. In exponentially growing cells, TAT2 is in the plasma membrane and also accumulates in internal compartments of the secretory pathway. Upon nutrient deprivation or rapamycin treatment, TAT2 is transported to and degraded in the vacuole. The ubiquitination machinery and lysine residues within the NH(2)-terminal 31 amino acids of TAT2 mediate ubiquitination and degradation of the permease. Starvation-induced degradation of internal TAT2 is blocked in sec18, sec23, pep12, and vps27 mutants, but not in sec4, end4, and apg1 mutants, suggesting that, upon nutrient limitation, internal TAT2 is diverted from the late secretory pathway to the vacuolar pathway. Furthermore, our results suggest that TAT2 stability and sorting are controlled by the TOR signaling pathway, and regulated inversely to that of GAP1.  相似文献   

6.
Mycelial interconnectedness achieved by hyphal fusion has been hypothesized to facilitate the distribution and sharing of nutrients between different parts of a mycelium, especially when nutrients are heterogeneously distributed in the environment. However, the link between environmental nutrient availability and hyphal fusion is little understood. Here, we report that amino acids and extracellular pH regulate conidial anastomosis tube (CAT) fusion during colony initiation in Neurospora crassa. Quantitative analyses revealed that low extracellular pH and certain amino acids, particularly tryptophan, inhibit CAT fusion. Conidial germination was also inhibited by tryptophan but this inhibition was mitigated by the presence of other amino acids. This provides evidence for tryptophan having a role as a signal molecule that regulates CAT fusion. Tryptophan acts intracellularly because two amino acid permease mutants (Δmtr and Δaap-20) exhibited resistance against tryptophan-mediated inhibition of CAT fusion. Tryptophan and low pH did not significantly affect vegetative hyphal fusion in mature colonies, indicating that the latter is regulated in a different manner to CAT fusion.  相似文献   

7.
We have identified carbon catabolite repression (CCR) as a regulator of amino acid permeases in Saccharomyces cerevisiae, elucidated the permeases regulated by CCR, and identified the mechanisms involved in amino acid permease regulation by CCR. Transport of l-arginine and l-leucine was increased by approximately 10-25-fold in yeast grown in carbon sources alternate to glucose, indicating regulation by CCR. In wild type yeast the uptake (pmol/10(6) cells/h), in glucose versus galactose medium, of l-[(14)C]arginine was (0.24 +/- 0.04 versus 6.11 +/- 0.42) and l-[(14)C]leucine was (0.30 +/- 0.02 versus 3.60 +/- 0.50). The increase in amino acid uptake was maintained when galactose was replaced with glycerol. Deletion of gap1Delta and agp1Delta from the wild type strain did not alter CCR induced increase in l-leucine uptake; however, deletion of further amino acid permeases reduced the increase in l-leucine uptake in the following manner: 36% (gnp1Delta), 62% (bap2Delta), 83% (Delta(bap2-tat1)). Direct immunofluorescence showed large increases in the expression of Gnp1 and Bap2 proteins when grown in galactose compared with glucose medium. By extending the functional genomic approach to include major nutritional transducers of CCR in yeast, we concluded that SNF/MIG, GCN, or PSK pathways were not involved in the regulation of amino acid permeases by CCR. Strikingly, the deletion of TOR1, which regulates cellular response to changes in nitrogen availability, from the wild type strain abolished the CCR-induced amino acid uptake. Our results provide novel insights into the regulation of yeast amino acid permeases and signaling mechanisms involved in this regulation.  相似文献   

8.
The gene encoding the amino acid permease ArlP (Aromatic and leucine Permease) was isolated from the filamentous fungus Penicillium chrysogenum after PCR using degenerated oligonucleotides based on conserved regions of fungal amino acid permeases. The cDNA clone was used for expression of the permease in Saccharomyces cerevisiae M4054, which is defective in the general amino acid permease Gap1. Upon overexpression, an increase in the uptake of l-tyrosine, l-phenylalanine, l-tryptophan and l-leucine was observed. Further competition experiments indicate that ArlP recognizes neutral and aromatic amino acids with an unbranched β-carbon atom.  相似文献   

9.
Hansenula polymorpha uses maltase to grow on maltose and sucrose. Inspection of genomic clones of H. polymorpha showed that the maltase gene HPMAL1 is clustered with genes corresponding to Saccharomyces cerevisiae maltose permeases and MAL activator genes orthologues. We sequenced the H. polymorpha maltose permease gene HPMAL2 of the cluster. The protein (582 amino acids) deduced from the HPMAL2 gene is predicted to have eleven transmembrane domains and shows 39-57% identity with yeast maltose permeases. The identity of the protein is highest with maltose permeases of Debaryomyces hansenii and Candida albicans. Expression of the HPMAL2 in a S. cerevisiae maltose permease-negative mutant CMY1050 proved functionality of the permease protein encoded by the gene. HPMAL1 and HPMAL2 genes are divergently positioned similarly to maltase and maltose permease genes in many yeasts. A two-reporter assay of the expression from the HPMAL1-HPMAL2 intergenic region showed that expression of both genes is coordinately regulated, repressed by glucose, induced by maltose, and that basal expression is higher in the direction of the permease gene.  相似文献   

10.
The general amino acid permease, Gap1, of Saccharomyces cerevisiae is very active in cells grown on proline as the sole nitrogen source. Adding NH4+ to the medium triggers inactivation and degradation of the permease via a regulatory process involving Npi1p/Rsp5p, a ubiquitin–protein ligase. In this study, we describe several mutations affecting the C-terminal region of Gap1p that render the permease resistant to NH4+-induced inactivation. An in vivo isolated mutation ( gap1 pgr  ) causes a single Glu→Lys substitution in an amino acid context similar to the DXKSS sequence involved in ubiquitination and endocytosis of the yeast α-factor receptor, Ste2p. Another replacement, substitution of two alanines for a di-leucine motif, likewise protects the Gap1 permease against NH4+-induced inactivation. In mammalian cells, such a motif is involved in the internalization of several cell-surface proteins. These data provide the first indication that a di-leucine motif influences the function of a plasma membrane protein in yeast. Mutagenesis of a putative phosphorylation site upstream from the di-leucine motif altered neither the activity nor the regulation of the permease. In contrast, deletion of the last eleven amino acids of Gap1p, a region conserved in other amino acid permeases, conferred resistance to NH4+ inactivation. Although the C-terminal region of Gap1p plays an important role in nitrogen control of activity, it was not sufficient to confer this regulation to two NH4+-insensitive permeases, namely the arginine (Can1p) and uracil (Fur4p) permeases.  相似文献   

11.
Many plasma membrane transporters are downregulated by ubiquitylation, endocytosis, and delivery to the lysosome in response to various stimuli. We report here that two amino acid transporters of Saccharomyces cerevisiae, the general amino acid permease (Gap1) and the arginine-specific permease (Can1), undergo ubiquitin-dependent downregulation in response to their substrates and that this downregulation is not due to intracellular accumulation of the transported amino acids but to transport catalysis itself. Following an approach based on permease structural modeling, mutagenesis, and kinetic parameter analysis, we obtained evidence that substrate-induced endocytosis requires transition of the permease to a conformational state preceding substrate release into the cell. Furthermore, this transient conformation must be stable enough, and thus sufficiently populated, for the permease to undergo efficient downregulation. Additional observations, including the constitutive downregulation of two active Gap1 mutants altered in cytosolic regions, support the model that the substrate-induced conformational transition inducing endocytosis involves remodeling of cytosolic regions of the permeases, thereby promoting their recognition by arrestin-like adaptors of the Rsp5 ubiquitin ligase. Similar mechanisms might control many other plasma membrane transporters according to the external concentrations of their substrates.  相似文献   

12.
A Schmidt  T Beck  A Koller  J Kunz    M N Hall 《The EMBO journal》1998,17(23):6924-6931
The Saccharomyces cerevisiae targets of rapamycin, TOR1 and TOR2, signal activation of cell growth in response to nutrient availability. Loss of TOR or rapamycin treatment causes yeast cells to arrest growth in early G1 and to express several other physiological properties of starved (G0) cells. As part of this starvation response, high affinity amino acid permeases such as the tryptophan permease TAT2 are targeted to the vacuole and degraded. Here we show that the TOR signalling pathway phosphorylates the Ser/Thr kinase NPR1 and thereby inhibits the starvation-induced turnover of TAT2. Overexpression of NPR1 inhibits growth and induces the degradation of TAT2, whereas loss of NPR1 confers resistance to rapamycin and to FK506, an inhibitor of amino acid import. NPR1 is controlled by TOR and the type 2A phosphatase-associated protein TAP42. First, overexpression of NPR1 is toxic only when TOR function is reduced. Secondly, NPR1 is rapidly dephosphorylated in the absence of TOR. Thirdly, NPR1 dephosphorylation does not occur in a rapamycin-resistant tap42 mutant. Thus, the TOR nutrient signalling pathway also controls growth by inhibiting a stationary phase (G0) programme. The control of NPR1 by TOR is analogous to the control of p70 s6 kinase and 4E-BP1 by mTOR in mammalian cells.  相似文献   

13.
14.
The yeast YCC5 gene encodes a putative amino acid permease and is homologous to GNP1 (encoding a high-affinity glutamine permease). Using strains with disruptions in the genes for multiple permeases, we demonstrated that Ycc5 (which we have renamed Agp1) is involved in the transport of asparagine and glutamine, performed a kinetic analysis of this activity, and showed that AGP1 expression is subject to nitrogen repression.  相似文献   

15.
Eight amino acid permease genes from the protozoan parasite Leishmania donovani (AAPLDs) were cloned, sequenced, and shown to be expressed in promastigotes. Seven of these belong to the amino acid transporter-1 and one to the amino acid polyamino-choline superfamilies. Using these sequences as well as known and characterized amino acid permease genes from all kingdoms, a training set was established and used to search for motifs, using the MEME motif discovery tool. This study revealed two motifs that are specific to the genus Leishmania, four to the family trypanosomatidae, and a single motif that is common between trypanosomatidae and mammalian systems A1 and N. Interestingly, most of these motifs are clustered in two regions of 50-60 amino acids. Blast search analyses indicated a close relationship between the L. donovani and Trypanosoma brucei amino acid permeases. The results of this work describe the cloning of the first amino acid permease genes in parasitic protozoa and contribute to the understanding of amino acid permease evolution in these organisms. Furthermore, the identification of genus-specific motifs in these proteins might be useful to better understand parasite physiology within its hosts.  相似文献   

16.
17.
The Antarctic bacterial isolate Sphingomonas sp. strain Ant 17 utilized a wide range of L-isomer amino acids as the sole carbon and energy source for growth. The pH and temperature optima for growth on amino acids were pH 7.0 and 15°C, respectively. Growth on serine and tryptophan was inhibited by uncouplers and inhibitors of oxidative phosphorylation, but not by monensin, a Na+/H+ antiporter, suggesting that sodium gradients were not specifically required for growth on these amino acids. Serine transport was via a high-affinity (apparent Km of 8 M) permease specific for both the L- and D-isomer. Tryptophan transport exhibited biphasic kinetics with both high-affinity (apparent Km of 2.5 M) and low-affinity (non-saturable) uptake systems detected. The high-affinity system was specific for L-tryptophan, L-tyrosine, and L-phenylalanine whereas the low-affinity permease was specific for L-tryptophan and L-phenylalanine, but not L-tyrosine. Neither orthovanadate nor sodium arsenate, inhibitors of ATP-dependent permeases, had any significant inhibitory effect on the rate of serine and tryptophan transport. The protonophore carbonyl cyanide m-chlorophenylhydrazone completely abolished serine and tryptophan transport; maximum rates of solute uptake were observed at acidic pH values (pH 4.0–5.0) for both amino acids. These results suggest that an electrochemical potential of protons is the driving force for serine and tryptophan transport by Ant 17. These high-affinity proton-driven permeases function over environmental extremes (e.g. broad temperature and pH range) that are likely to prevail in the natural habitat of this bacterium.  相似文献   

18.
To investigate the mechanism of action of volatile anesthetics, we are studying mutants of the yeast Saccharomyces cerevisiae that have altered sensitivity to isoflurane, a widely used clinical anesthetic. Several lines of evidence from these studies implicate a role for ubiquitin metabolism in cellular response to volatile anesthetics: (i) mutations in the ZZZ1 gene render cells resistant to isoflurane, and the ZZZ1 gene is identical to BUL1 (binds ubiquitin ligase), which appears to be involved in the ubiquitination pathway; (ii) ZZZ4, which we previously found is involved in anesthetic response, is identical to the DOA1/UFD3 gene, which was identified based on altered degradation of ubiquitinated proteins; (iii) analysis of zzz1Delta zzz4Delta double mutants suggests that these genes encode products involved in the same pathway for anesthetic response since the double mutant is no more resistant to anesthetic than either of the single mutant parents; (iv) ubiquitin ligase (MDP1/RSP5) mutants are altered in their response to isoflurane; and (v) mutants with decreased proteasome activity are resistant to isoflurane. The ZZZ1 and MDP1/RSP5 gene products appear to play important roles in determining effective anesthetic dose in yeast since increased levels of either gene increases isoflurane sensitivity whereas decreased activity decreases sensitivity. Like zzz4 strains, zzz1 mutants are resistant to all five volatile anesthetics tested, suggesting there are similarities in the mechanisms of action of a variety of volatile anesthetics in yeast and that ubiquitin metabolism affects response to all the agents examined.  相似文献   

19.
20.
The rice pathogenic fungus Fusarium fujikuroi is well known for the production of a broad spectrum of secondary metabolites (SMs) such as gibberellic acids (GAs), mycotoxins and pigments. The biosynthesis of most of these SMs strictly depends on nitrogen availability and of the activity of permeases of nitrogen sources, e.g. the ammonium and amino acid permeases. One of the three ammonium permeases, MepB, was recently shown to act not only as a transporter but also as a nitrogen sensor affecting the production of nitrogen-repressed SMs. Here we describe the identification of a general amino acid permease, FfGap1, among the 99 putative amino acid permeases (AAPs) in the genome of F. fujikuroi. FfGap1 is able to fully restore growth of the yeast gap1∆ mutant on several amino acids including citrulline and tryptophane. In S. cerevisiae, Gap1 activity is regulated by shuttling between the plasma membrane (nitrogen limiting conditions) and the vacuole (nitrogen sufficiency), which we also show for FfGap1. In yeast, the Npr1 serine/threonine kinase stabilizes the Gap1 position at the plasma membrane. Here, we identified and characterized three NPR1-homologous genes, encoding the putative protein kinases FfNpr1-1, FfNpr1-2 and FfNpr1-3 with significant similarity to yeast Npr1. Complementation of the yeast npr1Δ mutant with each of the three F. fujikuroi NPR1 homologues, resulted in partial restoration of ammonium, arginine and proline uptake by FfNPR1-1 while none of the three kinases affect growth on different nitrogen sources and nitrogen-dependent sorting of FfGap1 in F. fujikuroi. However, exchange of the putative ubiquitin-target lysine 9 (K9A) and 15 (K15A) residues of FfGap1 resulted in extended localization to the plasma membrane and increased protein stability independently of nitrogen availability. These data suggest a similar regulation of FfGap1 by nitrogen-dependent ubiquitination, but differences regarding the role of Fusarium Npr1 homologues compared to yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号