首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protease II gene of Escherichia coli HB101 was cloned and expressed in E. coli JM83. The transformant harboring a hybrid plasmid, pPROII-12, with a 2.4 kbp fragment showed 90-fold higher enzyme activity than the host. The whole nucleotide sequence of the inserted fragment of plasmid pPROII-12 was clarified by the dideoxy chain-terminating method. The sequence that encoded the mature enzyme protein was found to start at an ATG codon, as judged by comparison with amino terminal protein sequencing. The molecular weight of the enzyme was estimated to be 81,858 from the nucleotide sequence. The reactive serine residue of protease II was identified as Ser-532 with tritium DFP. The sequence around the serine residue is coincident with the common sequence of Gly-X-Ser-X-Gly, which has been found in the active site of serine proteases. Except for this region, protease II showed no significant sequence homology with E. coli serine proteases, protease IV and protease La (lon gene), or other known families of serine proteases. However, 25.3% homology was observed between protease II and prolyl endopeptidase from porcine brain. Although the substrate specificities of these two enzymes are quite different, it seems possible to classify protease II as a member of the prolyl endopeptidase family from the structural point of view.  相似文献   

2.
Prolyl endopeptidase is a cytoplasmic serine protease. The enzyme was purified from porcine kidney, and oligonucleotides based on peptide sequences from this protein were used to isolate a cDNA clone from a porcine brain library. This clone contained the complete coding sequence of prolyl endopeptidase and encoded a polypeptide with a molecular mass of 80,751 Da. The deduced amino acid sequence of prolyl endopeptidase showed no sequence homology with other known serine proteases. [3H]Diisopropyl fluorophosphate was used to identify the active-site serine of prolyl endopeptidase. One labeled peptide was isolated and sequenced. The sequence surrounding the active-site serine was Asn-Gly-Gly-Ser-Asn-Gly-Gly. This sequence is different from the active-site sequences of other known serine proteases. This difference and the lack of overall homology with the known families of serine proteases suggest that prolyl endopeptidase represents a new type of serine protease.  相似文献   

3.
The blocked amino-terminal residue of rat liver serine dehydratase was shown to be acetylalanine by analysis of an isolated amino-terminal peptide after digestion with acylamino acid-releasing enzyme. Digestion of the borohydride-reduced, carboxymethylated enzyme with lysyl endopeptidase yielded a single epsilon-N-pyridoxyllysine-containing peptide, whose sequence is Met-Asp-Ser-Ser-Gln-Pro-Ser-Gly-Ser-Phe-Lys(Pxy)-Ile-Arg-Gly- His-Leu-Cys(Cm)-Lys. This peptide comprises residues 30-49 of the cDNA-deduced amino acid sequence. The sequence of seven amino acids around the bound pyridoxal phosphate is highly conserved in serine dehydratase from rat liver, and threonine dehydratases from yeast and Escherichia coli.  相似文献   

4.
The prolyl endopeptidase from pig brain was purified to homogeneity according to SDS-gel electrophoresis and visualization with the silver staining procedure. The molecular weight of prolyl endopeptidase was estimated as 70 kDa, and the isoelectric point as 4.9. The molecular properties of prolyl endopeptidase from pig brain are therefore similar to those of prolyl endopeptidases from other mammalian tissues. Diisopropylfluorophosphate, diethylpyrocarbonate and p-chloromercuribenzoic acid are strong irreversible inhibitors of prolyl endopeptidase from pig brain. We showed that diisopropylfluorophosphate und diethylpyrocarbonate act as competitive inhibitors with respect to substrate. Therefore it is assumed that at least one serine and one histidine residue are located at the active site of this enzyme. This result supports the assumption that the prolyl endopeptidase from pig brain is a typical serine protease. Substance P, thyreoliberin, beta-casomorphin-5 and morphiceptin are hydrolysed by prolyl endopeptidase in vitro.  相似文献   

5.
The aspartase gene (aspA) of Pseudomonas fluorescens was cloned and the nucleotide sequence of the 2,066-base-pair DNA fragment containing the aspA gene was determined. The amino acid sequence of the protein deduced from the nucleotide sequence was confirmed by N- and C-terminal sequence analysis of the purified enzyme protein. The deduced amino acid composition also fitted the previous amino acid analysis results well (Takagi et al. (1984) J. Biochem. 96, 545-552). These results indicate that aspartase of P. fluorescens consists of four identical subunits with a molecular weight of 50,859, composed of 472 amino acid residues. The coding sequence of the gene was preceded by a potential Shine-Dalgarno sequence and by a few promoter-like structures. Following the stop codon there was a structure which is reminiscent of the Escherichia coli rho-independent terminator. The G + C content of the coding sequence was found to be 62.3%. Inspection of the codon usage for the aspA gene revealed as high as 80.0% preference for G or C at the third codon position. The deduced amino acid sequence was 56.3% homologous with that of the enzyme of E. coli W (Takagi et al. (1985) Nucl. Acids Res. 13, 2063-2074). Cys-140 and Cys-430 of the E. coli enzyme, which had been assigned as functionally essential (Ida & Tokushige (1985) J. Biochem. 98, 793-797), were substituted by Ala-140 and Ala-431, respectively, in the P. fluorescens enzyme.  相似文献   

6.
An 11,450-base DNA fragment containing the gene for the extracellular active-site serine DD-peptidase of Streptomyces R61 was cloned in Streptomyces lividans using the high-copy-number plasmid pIJ702 as vector. Amplified expression of the excreted enzyme was observed. Producing clones were identified with the help of a specific antiserum directed against the pure DD-peptidase. The coding sequence of the gene was then located by hybridization with a specific nucleotide probe and sub-fragments were obtained from which the nucleotide sequence of the structural gene and the putative promoter and terminator regions were determined. The sequence suggests that the gene codes for a 406-amino-acid protein precursor. When compared with the excreted, mature DD-peptidase, this precursor possesses a cleavable 31-amino-acid N-terminal extension which has the characteristics of a signal peptide, and a cleavable 26-amino-acid C-terminal extension. On the basis of the data of Joris et al. (following paper in this journal), the open reading frame coding for the synthesis of the DD-peptidase was established. Comparison of the primary structure of the Streptomyces R61 DD-peptidase with those of several active-site serine beta-lactamases and penicillin-binding proteins of Escherichia coli shows homology in those sequences that comprise the active-site serine residue. When the comparison is broadened to the complete amino acid sequences, significant homology is observed only for the pair Streptomyces R61 DD-peptidase/Escherichia coli ampC beta-lactamase (class C). Since the Streptomyces R61 DD-peptidase and beta-lactamases of class A have very similar three-dimensional structures [Kelly et al. (1986) Science (Wash. DC) 231, 1429-1431; Samraoui et al. (1986) Nature (Lond.) 320, 378-380], it is concluded that these tertiary features are probably also shared by the beta-lactamases of class C, i.e. that the Streptomyces R61 DD-peptidase and the beta-lactamases of classes A and C are related in an evolutionary sense.  相似文献   

7.
8.
The gene coding for the lipase of Pseudomonas fragi was cloned into Escherichia coli JM83 by inserting Sau3A-generated DNA fragments into the BamH I site of pUC9. The plasmid isolated, pKKO, was restriction mapped and the position of the lipase gene on the 2.0 kb insert was pinpointed by subcloning. DNA sequencing revealed that the open reading frame comprises 405 nucleotides and gives a preprotein of 135 amino acids with a predicted Mr of 14643. By comparing the putative lipase amino acid sequence with porcine pancreatic, rat lingual and Staphylococcus hyicus lipases the amino acid sequence around the reactive serine was found to be common among the types of lipase which have been reported.  相似文献   

9.
DNA obtained from the Sheila Smith strain of Rickettsia rickettsii was digested to completion with the restriction endonucleases BamHI and SalI and ligated with the plasmid vector pUC19. The ligation mixture was used to transform Escherichia coli. A total of 465 bacterial clones were screened for antigen production with hyperimmune rabbit serum. One of the reactive clones, containing a recombinant plasmid designated pSS124, was solubilized and subjected to immunoblot analysis and revealed expression of a 17-kilodalton protein reactive with anti-R. rickettsii serum that comigrated with an antigen from R. rickettsii. A 1.6-kilobase PstI-BamHI fragment from pSS124 was subcloned and continued to direct synthesis of the 17-kilodalton antigen. The nucleotide sequence was determined for this 1.6-kilobase subclone, which encompassed the gene encoding the polypeptide as well as flanking regions containing potential regulatory sequences. The open reading frame consisted of 477 nucleotides that specified a 159-amino-acid protein with a calculated molecular weight of 16,840. The deduced amino acid sequence contained a hydrophobic sequence near the amino terminus that resembled signal peptides described for E. coli. The carboxy terminus was hydrophilic in nature and probably contained the exposed epitopes.  相似文献   

10.
A lukF gene encoding F-component of Staphylococcal leukocidin from methicillin resistant Staphylococcus aureus (MRSA) was cloned. The nucleotide sequence of lukF gene was determined. The sequence data have revealed an open reading frame, which encodes a polypeptide with 323 amino acid residues. Inspection of the amino acid sequence deduced from nucleotide sequence of lukF and that from F-component of leukocidin from S. aureus V8 clarified that pre-matured F-component contains a typical signal peptide at the NH2 terminus and ATG starting codon for pre-matured F-component was present one base downstream to the TGA which is translation termination codon for S-component of leukocidin [A. Rahman et al. (1991) Biochem. Biophys. Res. Commun. 181, 138-144]. The nucleotide sequence of 5'-flanking region of lukF showed the presence of the consensus sequence of ribosome binding site in the internal region of the structural gene of S-component. The lukF was transcribed in the same direction as that of lukS. No Pribnow box can be discerned in the intercistronic region between the lukS and lukF genes. The amino acid sequence homology between S- and F-components was 31%. F-component was expressed in Escherichia coli DH5 alpha harboring plasmid pFRK92 which contained lukF gene.  相似文献   

11.
The ilvE gene of the Escherichia coli K-12 ilvGEDA operon, which encodes branched-chain amino acid aminotransferase [EC 2.6.1.42], was cloned. The nucleotide sequence of 1.5 kilobase pairs containing the gene was determined. The coding region of the ilvE gene contained 927 nucleotide residues and could encode 309 amino acid residues. The predicted molecular weight, amino acid composition and the sequence of the N-terminal 15 residues agreed with the enzyme data reported previously (Lee-Peng, F.-C., et al. (1979) J. Bacteriol. 139, 339-345). From the deduced amino acid sequence, the secondary structure was predicted.  相似文献   

12.
The gene encoding the dihydrolipoyltransacetylase component (E2) of the pyruvate dehydrogenase complex from Azotobacter vinelandii has been cloned in Escherichia coli. A plasmid containing a 2.8-kbp insert of A. vinelandii chromosomal DNA was obtained and its nucleotide sequence determined. The gene comprises 1911 base pairs, 637 codons excluding the initiation codon GUG and stop codon UGA. It is preceded by the gene encoding the pyruvate dehydrogenase component (E1) of pyruvate dehydrogenase complex and by an intercistronic region of 11 base pairs containing a good ribosome binding site. The gene is followed downstream by a strong terminating sequence. The relative molecular mass (64913), amino acid composition and N-terminal sequence are in good agreement with information obtained from studies on the purified enzyme. Approximately the first half of the gene codes for the lipoyl domain. Three very homologous sequences are present, which are translated in three almost identical units, alternated with non-homologous regions which are very rich in alanyl and prolyl residues. The N-terminus of the catalytic domain is sited at residue 381. Between the lipoyl domain and the catalytic domain, a region of about 50 residues is found containing many charged amino acid residues. This region is characterized as a hinge region and is involved in the binding of the pyruvate dehydrogenase and lipoamide dehydrogenase components. The homology with the dihydrolipoyltransacetylase from E. coli is high: 50% amino acid residues are identical.  相似文献   

13.
An extensive screening among microorganisms for the presence of post-proline-specific endopeptidase activity was performed. This activity was found among ordinary bacteria from soil samples but not among fungi and actinomycetes. This result is in contrast to the previous notion that this activity is confined to the genus Flavobacterium. A proline endopeptidase was isolated from a Xanthomonas sp. and characterized with respect to physicochemical and enzymatic properties. The enzyme is composed of a single peptide chain with a molecular weight of 75,000. The isoelectric point is 6.2. It is inhibited by diisopropylfluorophosphate and may therefore be classified as a serine endopeptidase. The activity profile is bell shaped with an optimum at pH 7.5. By using synthetic peptide substrates and intramolecular fluorescence quenching it was possible to study the influence of substrate structure on the rate of hydrolysis. The enzyme specifically hydrolyzed Pro-X peptide bonds. With Glu at position X, low rates of hydrolysis were observed; otherwise the enzyme exhibited little preference for particular amino acid residues at position X. A similar substrate preference was observed with respect to the amino acid residue preceding the prolyl residue in the substrate. The enzyme required a minimum of two amino acid residues toward the N terminus from the scissile bond, but further elongation of the peptide chain by up to six amino acid residues caused only a threefold increase in the rate of hydrolysis. Attempts to cleave at the prolyl residues in oxidized RNase failed, indicating that the enzyme does not hydrolyze long peptides, a peculiar property it shares with other proline-specific endopeptidases.  相似文献   

14.
We have isolated a cDNA encoding UDP-glucose pyrophosphorylase from a cDNA library of immature potato tuber using oligonucleotide probes synthesized on the basis of partial amino acid sequences of the enzyme. The cDNA clone contained a 1,758-base-pair insert including the complete message for UDP-glucose pyrophosphorylase with 1,431 base pairs. The amino acid sequence of the enzyme inferred from the nucleotide sequence consists of 477 amino acid residues. All the partial amino acid sequences determined protein-chemically [Nakano et al. (1989) J. Biochem. 106, 528-532] confirmed the primary structure of the enzyme. An N-terminal-blocked peptide was isolated from the proteolytic digest of the enzyme protein, and the blocking group was deduced to be an acetyl group by fast atom bombardment-mass spectrometry. On the basis of the predicted amino acid sequence (477 residues minus the N-terminal Met plus an acetyl group), the molecular weight of the enzyme monomer is calculated to be 51,783, which agrees well with the value determined by polyacrylamide gel electrophoresis. In the cDNA structure, the open-reading frame is preceded by a 125-base-pair noncoding region, which contains a sequence being homologous with the consensus sequence for plant genes, and is followed by a 174-base-pair noncoding sequence including a polyadenylation signal. Amino acid sequence comparisons revealed that the potato UDP-glucose pyrophosphorylase is homologous to the enzyme from slime mold, Dictyostelium discoideum, but not to ADP-glucose pyrophosphorylases from rice seed and Escherichia coli.  相似文献   

15.
In vitro translation of poly(A)+ RNA from the uropygial glands of mallard ducks (Anas platyrhynchos) generated a 29-kDa protein which cross-reacted with rabbit antibodies prepared against S-acyl fatty acid synthase thioesterase (Kolattukudy, P. E., Rogers, L., and Flurkey, W. (1985) J. Biol. Chem., 260, 10789-10793). A poly(A)+ RNA fraction enriched in this thioesterase mRNA, isolated by sucrose density gradient centrifugation, was used to prepare cDNA which was cloned in Escherichia coli using the plasmid pUC9. Using hybrid-selected translation and colony hybridization, 17 clones were selected which contained the cDNA for S-acyl fatty acid synthase thioesterase. Northern blot analysis showed that the mature mRNA for this thioesterase contained 1350 nucleotides whereas the cloned cDNA inserts contained 1150-1200 base pairs. Five of the 6 clones tested for 5'-sequence had identical sequences, and the three tested for 3'-end showed the same sequence with poly(A) tails. Two clones, pTE1 and pTE3, representing nearly the full length of mRNA, were selected for sequencing. Maxam-Gilbert and Sanger dideoxy chain termination methods were used on the cloned cDNA and on restriction fragments subcloned in M13 in order to determine the complete nucleotide sequence of the cloned cDNA. The nucleotide sequence showed an open reading frame coding for a peptide of 28.8 kDa. Two peptides isolated from the tryptic digest of the thioesterase purified from the gland showed amino acid sequences which matched with two segments of the sequence deduced from the nucleotide sequence. Another segment containing a serine residue showed an amino acid sequence homologous to the active serine-containing segment of the thioesterase domain of fatty acid synthase. Thus, the clones represent cDNA for S-acyl fatty acid synthase thioesterase. The present results constitute the first case of a complete sequence of a thioesterase.  相似文献   

16.
The asd gene of escherichia coli encodes aspartic semialdehyde dehydrogenase, an enzyme involved in lysine, threonine, and methionine biosynthesis; its synthesis is controlled by a multivalent repression mechanism. It was cloned in plasmid pBR322 and its complete nucleotide sequence determined. The sequence predicts a polypeptide chain of 367 amino acids, in good agreement with results obtained for the purified protein ( Biellmann et al., 1980a ). Our data indicate a Cys residue instead of a His residue, which was proposed after covalent labeling of the active center of the enzyme; this is more in line with the catalytic site of glyceraldehyde-3-phosphate dehydrogenase, an enzyme which carries out a similar reaction. The nucleotide sequence that precedes the translational start does not display any of the characteristic features of an attenuation signal. Hence the expression of the asd gene is probably not controlled in the same way as other multivalently repressed operons such as ilva and thr.  相似文献   

17.
A prolyl endopeptidase was purified from Flavobacterium meningosepticum. It was digested with trypsin. Two oligonucleotides, based on tryptic peptide sequences and used in PCR experiments, amplified a 300-base pair (bp) fragment. A 2.4-kilobase EcoRI fragment that hybridized to the 300-bp probe was cloned in lambda ZAP and sequenced from both strands. It contains a reading frame of 2115 bp, encoding the complete protein sequence of 705 amino acids. Ion-spray mass spectrometry experiments demonstrated the presence of an NH2-terminal signal peptide: the periplasmic mature protease is 685 residues in length for a molecular mass of 76784 Da. The prolyl endopeptidase showed no general sequence homology with known protein sequences except with that of porcine brain prolyl endopeptidase. In order to identify the active-site serine, the prolyl endopeptidase was labeled with [3H]diisopropyl fluorophosphate. One labeled peptide was purified and sequenced. The active-site serine was located in position 536 within the sequence GRSNGG. This sequence is different from the active-site sequence of the trypsin (GDSGGP) and subtilisin (GTSMAS) families.  相似文献   

18.
The 7 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.159) gene from Escherichia coli HB101 was cloned and expressed in E. coli DH1. The hybrid plasmid pSD1, with a 2.8-kbp insert of chromosomal DNA at the BamHI site of pBR322, was subcloned into pUC19 to construct plasmid pSD3. The entire nucleotide sequence of an inserted PstI-BamHI fragment of plasmid pSD3 was determined by the dideoxy chain-termination method. Within this sequence, the mature enzyme protein-encoding sequence was found to start at a GTG initiation codon and to comprise 765 bp, as judged by comparison with the protein sequence. The deduced amino acid sequence of the enzyme indicated that the molecular weight is 26,778. The transformant of E. coli DH1 harboring pSD3 with a 1.8-kbp fragment showed about 200-fold-higher enzyme activity than the host. The enzyme was purified by a single chromatography step on DEAE-Toyopearl and obtained as crystals, with an activity yield of 39%. The purified enzyme was homogeneous, as judged by sodium dodecyl sulfate gel electrophoresis. The enzyme was most active at pH 8.5 and stable between pH 8 and 9. The enzyme was NAD+ dependent and had a pI of 4.3. The molecular mass was estimated to be 120 kDa by the gel filtration method and 28 kDa by electrophoresis, indicating that the enzyme exists in a tetrameric form.  相似文献   

19.
A plasmid pAPP1 with a 4 kbp insert at the PstI site of pBR322, encoding aminopeptidase P gene of Escherichia coli HB101 (Yoshimoto et al. (1988) J. Biochem. 104, 730-734), was subcloned into pUC18 and pUC19. The transformant of E. coli JM83 harboring pAPP4 with a 1.9 kbp fragment showed more than 50-fold higher enzyme activity than that of the host, after cultivation at 37 degrees C for 40 h in LB-medium containing ampicillin. When the gene DNA was inserted reversely in pAPP4, the enzyme productivity decreased markedly. The whole nucleotide sequence of the inserted fragment of plasmid pAPP4 was clarified by the dideoxy chain-terminating method. Within this sequence, the mature enzyme protein-encoding sequence was found to start just after an ATG codon, as judged by comparison with amino-terminal protein sequencing. Eleven bases upstream from the proposed initiation codon was an AGGAGA sequence which seemed to be a ribosome binding site. Thirty-four bases upstream from the proposed start codon was the 6-base sequence TACAAA, the so-called -10 region or Pribnow box. Further, the 6-base sequence TTTACT around 77 bases upstream from the start codon was deduced to be a putative -35 region consensus sequence. The inverted repeat at 1334 was tentatively assumed to be a terminator. The molecular weight of the enzyme was estimated to be 49,650 from the nucleotide sequence. The purified enzyme contained 0.2 gram atom of zinc per subunit. The enzyme activity was inhibited by EDTA and activated 5-fold by Mn2+.  相似文献   

20.
The sequence of a 1,693-base-pair plasmid DNA fragment from Flavobacterium sp. strain ATCC 27551 containing the parathion hydrolase gene (opd) was determined. Within this sequence, there is only one open reading frame large enough to encode the 35,000-dalton membrane-associated hydrolase protein purified from Flavobacterium extracts. Amino-terminal sequence analysis of the purified Flavobacterium hydrolase demonstrated that serine is the amino-terminal residue of the hydrolase protein. The amino-terminal serine corresponds to a TCG codon located 87 base pairs downstream of the presumptive ATG initiation codon in the nucleotide sequence. The amino acid composition of the purified protein agrees well with that predicted from the nucleotide sequence, using serine as the amino-terminal residue. These data suggest that the parathion hydrolase protein is processed at its amino terminus in Flavobacterium sp. Construction in Escherichia coli of a lacZ-opd gene fusion in which the first 33 amino-terminal residues of opd were replaced by the first 5 residues of lacZ resulted in the production of an active hydrolase identical in molecular mass to the hydrolase isolated from Flavobacterium sp. E. coli cells containing the lacZ-opd fusion showed higher levels of hydrolase activity than did cells containing the parent plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号