首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of maturation of certain exported proteins were analysed in Escherichia coli strains that also concomitantly overproduce either a periplasmic protein or the leader peptidase. The results led to three conclusions. Overproduction of leader peptidase has no effect on the rate of maturation of at least two exported proteins, one periplasmic (TEM beta-lactamase), one outer membrane (PhoE); therefore, the quantity of leader peptidase is not rate-limiting for normal export. Overproduction of PhoS reduces the rate of maturation of two other periplasmic proteins (beta-lactamase and PhoA) and itself, presumably by competing for the rate-limiting component of the export apparatus. Overproduction of leader peptidase in a strain overproducing PhoS has no effect on the retarded maturation of PhoS. Therefore even in these conditions, leader peptidase is not rate limiting.  相似文献   

2.
Using strains with or without the PhoE porin or different components of the phosphate regulon, we determined that maintenance of the culturability of Escherichia coli in seawater depended significantly on the presence of structures allowing access of phosphate ions to the periplasm, then to the cytoplasm of cells. Cells totally deprived of the two main phosphate transport systems (Pit, Pst) exhibited the highest loss of culturability. Most of this effect resulted from the loss of the high-affinity Pst system, and more specifically that of the periplasmic phosphate-binding protein PhoS. Survival was enhanced in seawater supplemented with phosphate (0.5 mm), whether or not these structures were present. From an ecological point of view, it is assumed that the presence of phosphate ions, even at low concentrations, can influence the behavior of E. coli cells in seawater. Offprint requests to: M.J. Gauthier  相似文献   

3.
Escherichia coli is a widely used host for the heterologous expression of proteins of therapeutic and commercial interest. The scale and speed at which it can be cultured can result in the rapid generation of large quantities of product. However, to achieve low costs of production a simple and robust purification process is also required. The general factors that impact on the cost of a purification process are the scale at which a process can be performed, the cost of the purification matrix, and the number and complexity of the chromatographic steps employed. Purification of Fab' fragments of antibodies from the periplasm of E. coli using ion exchange chromatography can result in the co-purification of E. coli host proteins having similar functional pI: such as the periplasmic phosphate binding protein, PhoS/PstS. In such circumstances, an additional chromatographic step is required to separate Fab' from PhoS. Here, we change the functional pI of the chromosomally encoded PhoS/PstS to effect its non-purification with Fab' fragments, enabling the removal of an entire chromatographic step. This exemplifies the strategy of the modification of host proteins with the aim of simplifying the production of heterologous proteins.  相似文献   

4.
Abstract It has previously been demonstrated that the precursor form of the phosphate-binding protein (pre-PhoS) is accumulated in both the cytoplasmic membrane and the cytoplasm under conditions of phosphate-binding protein (PhoS) hyperproduction in Escherichia coli [11]. In this study, the trypsin accessibility of these 2 pre-PhoS pools has been investigated in spheroplasts. The results demonstrate that the membrane-associated pre-PhoS is not accessible to trypsin, and thus has not been translocated. The sensitivity to trypsin of mature PhoS, membrane-associated pre-PhoS and cytoplasmic pre-PhoS was compared. The results suggest a difference in conformation between membrane-associated and cytoplasmic pre-PhoS since the former is more trypsin-sensitive than the latter. Mature PhoS is resistant to trypsin. The significance of these results with regard to the export mechanism for periplasmic proteins is discussed.  相似文献   

5.
The periseptal annulus in Escherichia coli   总被引:3,自引:0,他引:3  
Evidence is presented that two circumferential zones of cell envelope differentiation, the periseptal annuli, exist in E. coli as previously observed in S. typhimurium. The periseptal annulus is located at the division site of cells. A strain overproducing a periplasmic protein, PhoS (phosphate-binding protein) has been used to provide a landmark for the periseptal compartment. The zone of adhesion does not involve inner-outer membrane fusion. This zone does not provide a strong physical barrier to protein diffusion in the periplasmic space, at least under conditions of plasmolysis.  相似文献   

6.
The Pho84 high-affinity phosphate permease is the primary phosphate transporter in the yeast Saccharomyces cerevisiae under phosphate-limiting conditions. The soluble G protein, Gtr1, has previously been suggested to be involved in the derepressible Pho84 phosphate uptake function. This idea was based on a displayed deletion phenotype of Deltagtr1 similar to the Deltapho84 phenotype. As of yet, the mode of interaction has not been described. The consequences of a deletion of gtr1 on in vivo Pho84 expression, trafficking and activity, and extracellular phosphatase activity were analyzed in strains synthesizing either Pho84-green fluorescent protein or Pho84-myc chimeras. The studies revealed a delayed response in Pho84-mediated phosphate uptake and extracellular phosphatase activity under phosphate-limiting conditions. EPR spectroscopic studies verified that the N-terminal G binding domain (residues 1-185) harbors the nucleotide responsive elements. In contrast, the spectra obtained for the C-terminal part (residues 186-310) displayed no evidence of conformational changes upon GTP addition.  相似文献   

7.
The oprP gene encoding the Pseudomonas aeruginosa phosphate-specific outer membrane porin protein OprP was sequenced. Comparison of the derived amino acid sequence with the known sequences of other bacterial porins demonstrated that OprP could be no better aligned to these porin sequences than it could to the periplasmic phosphate-binding protein PhoS of Escherichia coli. Southern hybridization and restriction mapping of the oprP gene in 37 clinical isolates and the 17 serotype strains of P. aeruginosa revealed that restriction sites in the vicinity of the oprP gene were highly conserved. Several species from the Pseudomonas fluorescens rRNA homology group contained DNA that hybridized to an oprP gene probe.  相似文献   

8.
Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunological techniques, we have compared the synthesis of the phoA protein (alkaline phosphatase) and the phoS protein (phosphate-binding protein) in response to the level of phosphate in the medium in different genetic backgrounds containing the known alkaline phosphatase control mutations. Both proteins are produced in excess phosphate media in a phoR1a- strain, whereas neither protein is produced in a phoB- strain even under derepression conditions. In four different phoR1c- strains, however, the phoA product cannot be detected in extracts of cells obtained from any growth condition, whereas the phoS product is produced in both excess and limiting phosphate media. It is not yet known if phoR1c- mutants are a special class of mutations within the phoB gene or whether they occur in a separate cistron involved in alkaline phosphatase regulation. From these results we conclude that the expression of the phoA gene is not always co-regulated with expression of the phoS gene product. We have determined that the phoS protein is a component of periplasmic protein band P4 described by Morris et al. (1974). The phoS product lacks sulfur-containing amino acids and is extractable by treatment with polymyxin sulfate. The other component of band P4 contains methionine and/or cysteine and is not extracted by polymyxin sulfate treatment. Like the phoS and phoA proteins, its synthesis is sensitive to the concentration of phosphate in the growth medium. In addition, the existence of a new class of periplasmic proteins synthesized at maximum rate in high phosphate media is demonstrated.  相似文献   

9.
phoS is the structural gene for the phosphate-binding protein, which is localized in periplasm and involved in active transport of phosphate in Escherichia coli. It is also a negative regulatory gene for the pho regulon, and the gene expression is inducible by phosphate starvation. The complete nucleotide sequence of the phoS gene was determined by the method of Maxam and Gilbert (A. M. Maxam and W. Gilbert, Methods Enzymol. 65:499-560, 1980). The amino acid sequences at the amino termini of the pre-PhoS and PhoS proteins and at the carboxy terminus of the PhoS protein were determined by using the purified proteins. Furthermore, the amino acid sequence of enzymatically digested peptide fragments of the PhoS protein was determined. The combined data established the nucleotide sequence of the coding region and the amino acid sequence of the pre-PhoS and the PhoS proteins. The pre-PhoS protein contains an extension of peptide composed of 25 amino acid residues at the amino terminus of the PhoS protein, which has the general characteristics of a signal peptide. The mature PhoS protein is composed of 321 amino acid residues, with a calculated molecular weight of 34,422, and lacks the disulfide bond and methionine. The regulatory region of phoS contains a characteristic Shine-Dalgarno sequence at an appropriate position preceding the translational initiation site, as well as three possible Pribnow boxes and one -35 sequence. the nucleotide sequence of the regulatory region of phoS was compared with those of phoA and phoE, the genes constituting the pho regulon.  相似文献   

10.
Inducible hybrid genes encoding two large domains, a periplasmic domain consisting of the PhoS sequence and an outer membrane domain corresponding to various lengths of the OmpF mature sequence were constructed. The synthesized hybrid polypeptides are correctly processed during the early times of induction, their precursor forms being accumulated at later times. These hybrids restore sensitivity toward colicin A to ompF E coli B strain which suggests an outer membrane location. At least 2 of them are indeed localized in the outer membrane after immunogold labelling on ultrathin cryosections. Insertion of a hydrophobic sequence between PhoS and OmpF improves the trimerization and the assembly of the OmpF part. Only the hybrids presenting the last C-terminal 29 residues of OmpF are able to promote the colicin N killing action and to exhibit a trimeric conformation which is recognized by specific antibodies. Moreover, the deletion of the C-terminal region impairs the functional insertion of the OmpF domain; this indicates that the last membrane-spanning region of OmpF is necessary for the correct folding and orientation of the protein in the outer membrane.  相似文献   

11.
We have studied the synthesis, processing and export of human growth-hormone-releasing factor (hGRF) in Escherichia coli transformed with a plasmid constructed for the expression of hGRF as a hybrid protein. A DNA fragment containing the entire sequence of phosphate-binding protein gene (phoS) is fused to a modified hGRF-coding sequence (phoS-mhGRF). The hybrid protein, PhoS-mhGRF, was recovered in the supernatant fluid after spheroplasting treatment indicating correct export to the periplasmic space. Pulse-chase experiments demonstrated that the hybrid protein was similarly processed as the PhoS precursor.  相似文献   

12.
The genome sequence of Pseudomonas aeruginosa strain PAO1 has been determined to facilitate postgenomic studies aimed at understanding the capacity of adaptation of this ubiquitous opportunistic pathogen. P. aeruginosa produces toxins and hydrolytic enzymes that are secreted via the type II secretory pathway using the Xcp machinery or 'secreton'. In this study, we characterized a novel gene cluster, called hxc for homologous to xcp. Characterization of an hxcR mutant, grown in phosphate-limiting medium, revealed the absence of a 40 kDa protein found in the culture supernatant of wild-type or xcp derivative mutant strains. The protein corresponded to the alkaline phosphatase L-AP, renamed LapA, which is secreted in an xcp-independent but hxc-dependent manner. Finally, we showed that expression of the hxc gene cluster is under phosphate regulation. This is the first report of the existence of two functional type II secretory pathways within the same organism, which could be related to the high adaptation potential of P. aeruginosa.  相似文献   

13.
lky mutants of Escherichia coli K12 spontaneously released alkaline phosphatase (APase) into the extracellular medium to give up to 300 units ml-1. APase is a phosphate repressible periplasmic enzyme encoded by the gene phoA. With a view to establishing a method of easy purification, we have analysed APase synthesis and release patterns of isogenic lky strains containing either a constitutive pho regulatory mutation, or a hybrid plasmid carrying the structural gene phoA+ and pho regulatory genes, or a transducing phi 80 phoA+ phage. In the presence of the phoS2333 mutation, F- lky strains lysogenized with phi 80 phoBin phoA+ phage and grown in high phosphate medium were able to release eight times more APase activity (2300 units ml-1) than haploid strain 2336 (phoS+ lky) grown in low phosphate medium. Neither protein synthesis, the cell export machinery nor leakage mechanisms were limiting for APase release. Sufficient APase was released into the medium to facilitate its purification.  相似文献   

14.
Escherichia coli has a PhoR-PhoB two-component regulatory system to detect and respond to the changes of environmental phosphate concentration. For the E. coli W3110 strain growing under phosphate-limiting condition, the changes of global gene expression levels were investigated by using DNA microarray analysis. The expression levels of some genes that are involved in phosphate metabolism were increased as phosphate became limited, whereas those of the genes involved in ribosomal protein or amino acid metabolism were decreased, owing to the stationary phase response. The upregulated genes could be divided into temporarily and permanently inducible genes by phosphate starvation. At the peak point showing the highest expression levels of the phoB and phoR genes under phosphate-limiting condition, the phoB- and/or phoR-dependent regulatory mechanisms were investigated in detail by comparing the gene expression levels among the wild-type and phoB and/or phoR mutant strains. Overall, the phoB mutation was epistatic over the phoR mutation. It was found that PhoBR and PhoB were responsible for the upregulation of the phosphonate or glycerol phosphate metabolism and high-affinity phosphate transport system, respectively. These results show the complex regulation by the PhoR-PhoB two-component regulatory system in E. coli.  相似文献   

15.
The gene for a pectate lyase of E. chrysanthemi ENA49 cloned in a recombinant plasmid pPTL1 (a derivative of RSF1010) was transferred into E. carotovora. The pectate lyase determined by the cloned gene was secreted into the cultural medium from the cells of E. crysanthemi EC16. Partial secretion of the enzyme was registered for E. carotovora cells. The major part of EC1 E. chrysanthemi pectate lyase synthesized by E. carotovora cells is accumulated in periplasmic and cytoplasmic fractions. The obtained results suggest the different specificity or efficiency of pectate lyase secretion systems in the studied Erwinia strains.  相似文献   

16.
Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essential in B. subtilis; however, it is widely believed that teichoic acids are dispensable under phosphate-limiting conditions. In the work reported here, we carefully studied the dispensability of teichoic acid under phosphate-limiting conditions by constructing three new mutants. These strains, having precise deletions in tagB, tagF, and tarD, were dependent on xylose-inducible complementation from a distal locus (amyE) for growth. The tarD deletion interrupted poly(ribitol phosphate) synthesis in B. subtilis and represents a unique deletion of a tar gene. When teichoic acid biosynthetic proteins were depleted, the mutants showed a coccoid morphology and cell wall thickening. The new wall teichoic acid biogenesis mutants generated in this work and a previously reported tagD mutant were not viable under phosphate-limiting conditions in the absence of complementation. Cell wall analysis of B. subtilis grown under phosphate-limited conditions showed that teichoic acid contributed approximately one-third of the wall anionic content. These data suggest that wall teichoic acid has an essential function in B. subtilis that cannot be replaced by teichuronic acid.  相似文献   

17.
Escherichia coli strains carrying the protease III structural gene (ptr) on a plasmid secreted the protein into the growth medium. Plasmid-encoded beta-lactamase and chloramphenicol acetyl transferase, which served as periplasmic and cytoplasmic markers during cell fractionation, were not released into the growth medium. There appeared to be some strain dependence on the proficiency of the secretion system. Protease III was not detectably processed upon export through the outer cell membrane.  相似文献   

18.
The ompF gene codes for a major outer membrane protein of Escherichia coli. A plasmid was constructed in which the structural gene for human beta-endorphin is preceded by the upstream region of the ompF gene consisting of the promoter region and the coding regions for the signal peptide and the N terminus of the OmpF protein. When the plasmid was introduced into E. coli N99, and OmpF-beta-endorphin fused peptide was synthesized and secreted into the culture medium through both the cytoplasmic and outer membranes. The OmpF signal peptide was cleaved correctly during the secretion, indicating that the export of the fused protein across the cytoplasmic membrane was dependent on the signal peptide. The secretion into the culture medium was apparently selective. Neither beta-lactamase nor alkaline phosphatase (both are periplasmic proteins) appeared in the culture medium in significant amounts. The mode of passage of the fused peptide across the outer membrane is discussed.  相似文献   

19.
An Escherichia coli periplasmic protein (GlpT) related to sn-glycerol-3-phosphate transport was synthesized in a cell-free system directed by hybrid plasmic ColE1-glpT DNA. The in vitro product cross-reacted with antisera against the purified protein. The ColE1-glpT DNA-directed cell-free system was induced by sn-glycerol-3-phosphate and phosphonomycin and was dependent on cyclic AMP. The in vitro-synthesized protein showed the characteristics of a multimeric protein, as did the purified periplasmic protein. The main proportion of the newly synthesized product had a higher molecular weight than the mature protein found in the periplasm of cells and showed a more positive charge in two-dimensional gel electrophoresis. Thus, a proportion of this protein is presumed to be synthesized in vitro as a precursor. The cell-free system yielded a second protein that is likely to be also coded for by the glpT operon. This protein had a molecular weight of approximately 33,000 in sodium dodecyl sulfate-acrylamide gel electrophoresis and behaved like an intrinsic membrane protein.  相似文献   

20.
E. coli is one of the most commonly used host strains for recombinant protein production. However, recombinant proteins are usually found intracellularly, in either cytoplasm or periplasmic space. Inadequate secretion to the extracellular environment is one of its limitations. This study addresses the outer membrane barrier for the translocation of recombinant protein directed to the periplasmic space. Specifically, using recombinant maltose binding protein (MalE), xylanase, and cellulase as model proteins, we investigated whether the lpp deletion could render the outer membrane permeable enough to allow extracellular protein production. In each case, significantly higher excretion of recombinant protein was observed with the lpp deletion mutant. Up to 90% of the recombinant xylanase activity and 70% of recombinant cellulase activity were found in the culture medium with the deletion mutant, whereas only 40-50% of the xylanase and cellulase activities were extracellular for the control strain. Despite the weakened outer membrane in the mutant strain, cell lysis did not occur, and increased excretion of periplasmic protein was not due to cell lysis. The lpp deletion is a simple method to generate an E. coli strain to effect significant extracellular protein production. The phenotype of extracellular protein production without cell lysis is useful in many biotechnological applications, such as bioremediation and plant biomass conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号