首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Foxp3(+)CD25(+)CD4(+) regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-beta- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen. We find that CD8(+) DEC-205/CD205(+) DCs, but not the major fraction of CD8(-) DC inhibitory receptor-2 (DCIR2)(+) DCs, induce functional Foxp3(+) Treg from Foxp3(-) precursors in the presence of low doses of Ag but without added TGF-beta. CD8(+)CD205(+) DCs preferentially express TGF-beta, and the induction of Treg by these DCs in vitro is blocked by neutralizing Ab to TGF-beta. In contrast, CD8(-)DCIR2(+) DCs better induce Foxp3(+) Treg when exogenous TGF-beta is supplied. In vivo, CD8(+)CD205(+) DCs likewise preferentially induce Treg from adoptively transferred, Ag-specific DO11.10 RAG(-/-) Foxp3(-)CD4(+) T cells, whereas the CD8(-)DCIR2(+) DCs better stimulate natural Foxp3(+) Treg. These results indicate that a subset of DCs in spleen, a systemic lymphoid organ, is specialized to differentiate peripheral Foxp3(+) Treg, in part through the endogenous formation of TGF-beta. Targeting of Ag to these DCs might be useful for inducing Ag-specific Foxp3(+) Treg for treatment of autoimmune diseases, transplant rejection, and allergy.  相似文献   

3.
4.
RasGRP1 and Sos are two Ras-guanyl-nucleotide exchange factors that link TCR signal transduction to Ras and MAPK activation. Recent studies demonstrate positive selection of developing thymocytes is crucially dependent on RasGRP1, whereas negative selection of autoreactive thymocytes appears to be RasGRP1 independent. However, the role of RasGRP1 in T regulatory (Treg) cell development and function is unknown. In this study, we characterized the development and function of CD4(+)CD25(+)Foxp3(+) and CD8(+)CD44(high)CD122(+) Treg lineages in RasGRP1(-/-) mice. Despite impaired CD4 Treg cell development in the thymus, the periphery of RasGRP1(-/-) mice contained significantly increased frequencies of CD4(+)Foxp3(+) Treg cells that possessed a more activated cell surface phenotype. Furthermore, on a per cell basis, CD4(+)Foxp3(+) Treg cells from mutant mice are more suppressive than their wild-type counterparts. Our data also suggest that the lymphopenic environment in the mutant mice plays a dominant role of favored peripheral development of CD4 Treg cells. These studies suggest that whereas RasGRP1 is crucial for the intrathymic development of CD4 Treg cells, it is not required for their peripheral expansion and function. By contrast to CD4(+)CD25(+)Foxp3(+) T cells, intrathymic development of CD8(+)CD44(high)CD122(+) Treg cells is unaffected by the RasGRP1(-/-) mutation. Moreover, RasGRP1(-/-) mice contained greater numbers of CD8(+)CD44(high)CD122(+) T cells in the spleen, relative to wild-type mice. Activated CD8 Treg cells from RasGRP1(-/-) mice retained their ability to synthesize IL-10 and suppress the proliferation of wild-type CD8(+)CD122(-) T cells, albeit at a much lower efficiency than wild-type CD8 Treg cells.  相似文献   

5.
Keratinocyte growth factor (KGF) has been shown to reduce the incidence and severity of graft-versus-host disease by prevention of epithelial damage and by modulating alloreactivity. Since regulatory T cells (Treg) play a crucial role in immune modulation, we evaluated the effects of exogenous KGF on peripheral CD4(+)Foxp3(+) Treg and the generation of Treg in the thymus of normal mice. A 3-day course of KGF induced a rapid selective increase in the number of highly suppressive CD4(+)Foxp3(+) Treg. Blood Treg numbers remained elevated for >2 mo, but the frequency normalized after 2 wk due to a concomitant increase in CD4(+)Foxp3(-) T cells. Analysis of single joint TCR excision circles frequency and Ki-67 expression in peripheral blood Treg showed that the early selective increase of Treg was predominantly accounted for by peripheral expansion. Thymectomy before KGF administration did not affect the early selective increase of Treg but abrogated the late increase in CD4(+) T cell numbers, thereby showing its dependence on thymic output. Collectively, these results show that KGF induces an increase in blood CD4(+)Foxp3(+) Treg numbers via two independent mechanisms. First by selective peripheral expansion of Treg and thereafter by enhanced thymic output of newly developed Treg.  相似文献   

6.
7.
8.
9.
Peripheral CD103(+)Foxp3(+) regulatory T cells (Tregs) can develop both from conventional naive T cells upon cognate Ag delivery under tolerogenic conditions and from thymic-derived, expanded/differentiated natural Tregs. We here show that CD47 expression, a marker of self on hematopoietic cells, selectively regulated CD103(+)Foxp3(+) Treg homeostasis at the steady state. First, the proportion of effector/memory-like (CD44(high)CD62L(low)) CD103(+)Foxp3(+) Tregs rapidly augmented with age in CD47-deficient mice (CD47(-/-)) as compared with age-matched control littermates. Yet, the percentage of quiescent (CD44(low)CD62L(high)) CD103(-)Foxp3(+) Tregs remained stable. Second, the increased proliferation rate (BrdU incorporation) observed within the CD47(-/-)Foxp3(+) Treg subpopulation was restricted to those Tregs expressing CD103. Third, CD47(-/-) Tregs maintained a normal suppressive function in vitro and in vivo and their increased proportion in old mice led to a decline of Ag-specific T cell responses. Thus, sustained CD47 expression throughout life is critical to avoid an excessive expansion of CD103(+) Tregs that may overwhelmingly inhibit Ag-specific T cell responses.  相似文献   

10.
Indirubin, a traditional Chinese medicine, is used to treat autoimmune diseases in clinics. However, the effects of indirubin on the immunosuppressive CD4+CD25+Foxp3+ regulatory T cells (Treg) have not been addressed. Thus, we aimed to investigate the effects of indirubin on CD4+CD25+Treg cells in immune thrombocytopenia (ITP) CBA mice, which were established by immunization with Wistar rat platelets. 50 mg/kg indirubin treatment daily for 4 weeks significantly decreased anti-platelet antibody production and prevented the decrease of platelets caused by immunization in ITP mice. Consistently, indirubin significantly enhanced the percentage and cell number of CD4+CD25+Foxp3+Treg cells in the peripheral blood, spleen and lymph nodes. We also observed a significant increase of the frequency and cell number of CD4+CD25+Foxp3+Treg cells in the thymus upon indirubin treatment. Furthermore, CD4+CD25+Treg cells from indirubin-treated mice showed similar immunosuppression on T effector cells as compared to those from control mice. Altogether, indirubin ameliorates ITP by enhancing CD4+CD25+Foxp3+Treg cell level with preserving immunosuppressive function.  相似文献   

11.
The possibility that simultaneous expansion of T regulatory cells (Treg) and T effector cells early postinfection can confer some immunological benefits has not been studied. In this study, we tested the hypothesis that early, simultaneous cytokine expansion of Treg and T effector cells in a tissue infection site can allow these T cell populations to act in concert to control tissue inflammation/damage while containing infection. IL-2 treatments early after Mycobacterium tuberculosis infection of macaques induced simultaneous expansion of CD4(+)CD25(+)Foxp3(+) Treg, CD8(+)CD25(+)Foxp3(+) T cells, and CD4(+) T effector/CD8(+) T effector/Vγ2Vδ2 T effector populations producing anti-M. tuberculosis cytokines IFN-γ and perforin, and conferred resistance to severe TB inflammation and lesions. IL-2-expanded Foxp3(+) Treg readily accumulated in pulmonary compartment, but despite this, rapid pulmonary trafficking/accumulation of IL-2-activated T effector populations still occurred. Such simultaneous recruitments of IL-2-expanded Treg and T effector populations to pulmonary compartment during M. tuberculosis infection correlated with IL-2-induced resistance to TB lesions without causing Treg-associated increases in M. tuberculosis burdens. In vivo depletion of IL-2-expanded CD4(+)Foxp3(+) Treg and CD4(+) T effectors during IL-2 treatment of M. tuberculosis-infected macaques significantly reduced IL-2-induced resistance to TB lesions, suggesting that IL-2-expanded CD4(+) T effector cells and Treg contributed to anti-TB immunity. Thus, IL-2 can simultaneously activate and expand T effector cells and Foxp3(+) Treg populations and confer resistance to severe TB without enhancing M. tuberculosis infection.  相似文献   

12.
T cell activation is controlled by incompletely defined opposing stimulation and suppression signals that together sustain the balance between optimal host defense against infection and peripheral tolerance. In this article, we explore the impacts of Foxp3(+) regulatory T cell (Treg) suppression in priming Ag-specific T cell activation under conditions of noninfection and infection. We find the transient ablation of Foxp3(+) Tregs unleashes the robust expansion and activation of peptide-stimulated CD8(+) T cells that provide protection against Listeria monocytogenes infection in an Ag-specific fashion. By contrast, Treg ablation had nonsignificant impacts on the CD8(+) T cell response primed by infection with recombinant L. monocytogenes. Similarly, nonrecombinant L. monocytogenes administered with peptide stimulated the expansion and activation of CD8(+) T cells that paralleled the response primed by Treg ablation. Interestingly, these adjuvant properties of L. monocytogenes did not require CD8(+) T cell stimulation by IL-12 produced in response to infection, but instead were associated with sharp reductions in Foxp3(+) Treg suppressive potency. Therefore, Foxp3(+) Tregs impose critical barriers that, when overcome naturally during infection or artificially with ablation, allow the priming of protective Ag-specific CD8(+) T cells.  相似文献   

13.
CD4(+)CD25(+)Foxp3(+) T regulatory (Treg) cells, are known to regulate responses to infectious agents. Here we compared disease progression in BALB/c and C57BL/6(B6) mice infected perorally with Toxoplasma gondii for 7 days and examined the affect of partial depletion of Treg cells in these mice. BALB/c mice were seen to be resistant to peroral infection whereas B6 mice were susceptible in terms of mortality. Although the depletion of Treg cells before infection had no effect on the survival of B6 or BALB/c mice, it resulted in increased parasite burdens in BALB/c mice, especially in the lamina propria, but not in B6 mice. Pro-inflammatory cytokines were also increased in Treg cells depleted BALB/c mice as compared to B6 mice. In addition Treg cell depleted BALB/c mice displayed increased ileal histopathology compared to their non-treated counterparts. These findings provide evidence for the contribution of Treg cells, in the resistance of BALB/c mice against peroral T.?gondii infection.  相似文献   

14.
Studies in malaria patients indicate that higher frequencies of peripheral blood CD4(+) Foxp3(+) CD25(+) regulatory T (Treg) cells correlate with increased blood parasitemia. This observation implies that Treg cells impair pathogen clearance and thus may be detrimental to the host during infection. In C57BL/6 mice infected with Plasmodium berghei ANKA, depletion of Foxp3(+) cells did not improve parasite control or disease outcome. In contrast, elevating frequencies of natural Treg cells in vivo using IL-2/anti-IL-2 complexes resulted in complete protection against severe disease. This protection was entirely dependent upon Foxp3(+) cells and resulted in lower parasite biomass, impaired antigen-specific CD4(+) T and CD8(+) T cell responses that would normally promote parasite tissue sequestration in this model, and reduced recruitment of conventional T cells to the brain. Furthermore, Foxp3(+) cell-mediated protection was dependent upon CTLA-4 but not IL-10. These data show that T cell-mediated parasite tissue sequestration can be reduced by regulatory T cells in a mouse model of malaria, thereby limiting malaria-induced immune pathology.  相似文献   

15.
IL-10 is an immunoregulatory cytokine expressed by numerous cell types. Studies in mice confirm that different IL-10-expressing cell subsets contribute differentially to disease phenotypes. However, little is known about the relationship between cell- or tissue-specific IL-10 expression and disease susceptibility in humans. In this study, we used the previously described human (h)IL10BAC transgenic model to examine the role of hIL-10 in maintaining intestinal homeostasis. Genomically controlled hIL-10 expression rescued Il10(-/-) mice from Helicobacter-induced colitis and was associated with control of proinflammatory cytokine expression and Th17 cell accumulation in gut tissues. Resistance to colitis was associated with an accumulation of hIL-10-expressing CD4(+)Foxp3(+) regulatory T cells specifically within the lamina propria but not other secondary lymphoid tissues. Cotransfer of CD4(+)CD45RB(lo) cells from Il10(-/-)/hIL10BAC mice rescued Rag1(-/-) mice from colitis, further suggesting that CD4(+) T cells represent a protective source of hIL-10 in the colon. In concordance with an enhanced capacity to express IL-10, CD4(+)CD44(+) T cells isolated from the lamina propria exhibited lower levels of the repressive histone mark H3K27Me3 and higher levels of the permissive histone mark acetylated histone H3 in both the human and mouse IL10 locus compared with the spleen. These results provide experimental evidence verifying the importance of T cell-derived hIL-10 expression in controlling inflammation within the colonic mucosa. We also provide molecular evidence suggesting the tissue microenvironment influences IL-10 expression patterns and chromatin structure in the human (and mouse) IL10 locus.  相似文献   

16.
Naturally occurring CD4(+)CD25(+) regulatory T (Treg) cells are key players in immune tolerance and have therefore been suggested as potential therapeutic tools for autoimmune diseases. In myasthenia gravis (MG), reduced numbers or functionally impaired Treg cells have been reported. We have observed that PBL from myasthenic rats contain decreased numbers of CD4(+)CD25(high)Foxp3(+) cells as compared with PBL from healthy controls, and we have tested whether Treg cells from healthy donors can suppress experimental autoimmune MG in rats. Because the number of naturally occurring Treg cells is low, we used an approach for a large-scale ex vivo generation of functional Treg cells from CD4(+) splenocytes of healthy donor rats. Treg cells were generated ex vivo from CD4(+) cells by stimulation with anti-CD3 and anti-CD28 Abs in the presence of TGF-beta and IL-2. The obtained cells expressed high levels of CD25, CTLA-4, and Foxp3, and they were capable of suppressing in vitro proliferation of T cells from myasthenic rats in response to acetylcholine receptor, the major autoantigen in myasthenia. Administration of ex vivo-generated Treg cells to myasthenic rats inhibited the progression of experimental autoimmune MG and led to down-regulation of humoral acetylcholine receptor-specific responses, and to decreased IL-18 and IL-10 expression. The number of CD4(+)CD25(+) cells in the spleen of treated rats remained unchanged, but the subpopulation of CD4(+)CD25(+) cells expressing Foxp3 was significantly elevated. Our findings imply that Treg cells play a critical role in the control of myasthenia and could thus be considered as potential agents for the treatment of MG patients.  相似文献   

17.
BALB/c IL-4Ralpha(-/-) mice, despite the absence of IL-4/IL-13 signaling and potent Th2 responses, remain highly susceptible to Leishmania major substain LV39 due exclusively to residual levels of IL-10. To address the contribution of CD4(+)CD25(+) T regulatory (Treg) cells to IL-10-mediated susceptibility, we depleted CD4(+)CD25(+) cells in vivo and reconstituted IL-4Ralpha x RAG2 recipients with purified CD4(+)CD25(-) T cells. Although anti-CD25 mAb treatment significantly decreased parasite numbers in IL-4Ralpha(-/-) mice, treatment with anti-IL-10R mAb virtually eliminated L. major parasites in both footpad and dermal infection sites. In addition, IL-4Ralpha x RAG2 mice reconstituted with CD4(+) cells depleted of CD25(+) Treg cells remained highly susceptible to infection. Analysis of L. major-infected BALB/c and IL-4Ralpha(-/-) inflammatory sites revealed that the majority of IL-10 was secreted by the CD4(+)Foxp3(-) population, with a fraction of IL-10 coming from CD4(+)Foxp3(+) Treg cells. All T cell IFN-gamma production was also derived from the CD4(+)Foxp3(-) population. Nevertheless, the IL-4Ralpha(-/-)-infected ear dermis, but not draining lymph nodes, consistently displayed 1.5- to 2-fold greater percentages of CD4(+)CD25(+) and CD4(+)Foxp3(+) Treg cells compared with the BALB/c-infected dermis. Thus, CD4(+)Foxp3(-) T cells are a major source of IL-10 that disrupts IFN-gamma activity in L. major-susceptible BALB/c mice. However, the increase in CD4(+)Foxp3(+) T cells within the IL-4Ralpha(-/-) dermis implies a possible IL-10-independent role for Treg cells within the infection site, and may indicate a novel immune escape mechanism used by L. major parasites in the absence of IL-4/IL-13 signaling.  相似文献   

18.
CD4+CD25+Foxp3+ regulatory T cells (Tregs) contribute to the maintenance of peripheral tolerance by inhibiting the expansion and function of conventional T cells. Treg development and homeostasis are regulated by the Ag receptor, costimulatory receptors such as CD28 and CTLA-4, and cytokines such as IL-2, IL-10, and TGF-beta. Here we show that the proportions of Tregs in the spleen and lymph nodes of mice with inactive p110delta PI3K (p110deltaD910A/D910A) are reduced despite enhanced Treg selection in the thymus. p110deltaD910A/D910A CD4+CD25+Foxp3+ Tregs showed attenuated suppressor function in vitro and failed to secrete IL-10. In adoptive transfer experiments, p110deltaD910A/D910A T cells failed to protect against experimental colitis. The identification of p110delta as an intracellular signaling protein that regulates the activity of CD4+CD25+Foxp3+ Tregs may facilitate the further elucidation of the molecular mechanisms responsible for Treg-mediated suppression.  相似文献   

19.
Defects in the Bcl-2-regulated apoptotic pathway inhibit the deletion of self-reactive T cells. What is unresolved, however, is the nature and fate of such self-reactive T cells escaping deletion. In this study, we report that mice with such defects contained increased numbers of CD25(low)Foxp3(+) cells in the thymus and peripheral lymph tissues. The increased CD25(low)Foxp3(+) population contained a large fraction of cells bearing self-reactive TCRs, evident from a prominent increase in self-superantigen-specific Foxp3(+)Vβ5(+)CD4(+) T cells in BALB/c Bim(-/-) mice compared with control animals. The survival rate of the expanded CD25(low)Foxp3(+) cells was similar to that of CD25(high)Foxp3(+) CD4 T cells in vitro and in vivo. IL-2R stimulation, but not TCR ligation, upregulated CD25 on CD25(low)Foxp3(+)CD4(+) T cells in vitro and in vivo. The expanded CD25(low)Foxp3(+)CD4(+) T cells from Bim(-/-) mice were anergic but also had weaker regulatory function than CD25(high)Foxp3(+) CD4(+) T cells from the same mice. Analysis of Bim(-/-) mice that also lacked Fas showed that the peripheral homeostasis of this expanded population was in part regulated by this death receptor. In conclusion, these results show that self-reactive T cell escapes from thymic deletion in mice defective in the Bcl-2-regulated apoptotic pathway upregulate Foxp3 and become unresponsive upon encountering self-Ag without necessarily gaining potent regulatory function. This clonal functional diversion may help to curtail autoaggressiveness of escaped self-reactive CD4(+) T cells and thereby safeguard immunological tolerance.  相似文献   

20.
The ability of dendritic cells (DC) to regulate Ag-specific immune responses via their influence on T regulatory cells (Treg) may be key to their potential as therapeutic tools or targets for the promotion/restoration of tolerance. In this report, we describe the ability of maturation-resistant, rapamycin (RAPA)-conditioned DC, which are markedly impaired in Foxp3(-) T cell allostimulatory capacity, to favor the stimulation of murine alloantigen-specific CD4(+)CD25(+)Foxp3(+) Treg. This was distinct from control DC, especially following CD40 ligation, which potently expanded non-Treg. RAPA-DC-stimulated Treg were superior alloantigen-specific suppressors of T effector responses compared with those stimulated by control DC. Supporting the ability of RAPA to target effector T and B cells, but permit the proliferation and suppressive function of Treg, an infusion of recipient-derived alloantigen-pulsed RAPA-DC followed by a short postoperative course of low-dose RAPA promoted indefinite (>100 day) heart graft survival. This was associated with graft infiltration by CD4(+)Foxp3(+) Treg and the absence of transplant vasculopathy. The adoptive transfer of CD4(+) T cells from animals with long-surviving grafts conferred resistance to rejection. These novel findings demonstrate that, whereas maturation resistance does not impair the capacity of RAPA-DC to modulate Treg, it profoundly impairs their ability to expand T effector cells. A demonstration of this mechanism endorses their potential as tolerance-promoting cellular vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号