首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxicological risk assessment for chemicals is still mainly based on highly standardised protocols for animal experimentation and exposure assessment. However, developments in our knowledge of general physiology, in chemicobiological interactions and in (computer-supported) modelling, have resulted in a tremendous change in our understanding of the molecular mechanisms underlying the toxicity of chemicals. This permits the development of biologically based models, in which the biokinetics as well as the toxicodynamics of compounds can be described. In this paper, the possibilities are discussed of developing systems in which the systemic (acute and chronic) toxicities of chemicals can be quantified without the heavy reliance on animal experiments. By integrating data derived from different sources, predictions of toxicity can be made. Key elements in this integrated approach are the evaluation of chemical functionalities representing structural alerts for toxic actions, the construction of biokinetic models on the basis of non-animal data (for example, tissue-blood partition coefficients, in vitro biotransformation parameters), tests or batteries of tests for determining basal cytotoxicity, and more-specific tests for evaluating tissue or organ toxicity. It is concluded that this approach is a useful tool for various steps in toxicological hazard and risk assessment, especially for those forms of toxicity for which validated in vitro and other non-animal tests have already been developed.  相似文献   

2.
Mechanisms of toxicity continue to be important in developing rational strategies to deal with chemicals present in the environment. Understanding and predicting toxicity have also become a critical step in the process of drug development. Covalent binding of chemicals to macromolecules is one aspect of toxicity, and the principles and outcomes of the process are considered. Two examples of chemicals for which several aspects of metabolism and reactions are understood are aflatoxin B(1) and polyhalogenated olefins. Ethylene dibromide is a compound that is activated to genotoxic half-mustards by conjugation with glutathione or the DNA repair protein O(6)-alkylguanine DNA alkyltransferase (AGT). The AGT reaction is unusual, in that crosslinking of the protein to DNA increases mutagenicity. One of the involved mechanisms is formation of N(7)-guanyl crosslinks and depurination to produce G-->T transversions; other reactions appear to yield the additional mutagenic events. The phenomenon of thiol conjugation to increase mutagenicity is widespread among bis-electrophiles.  相似文献   

3.
In pharmaceutical research, in vitro toxicity tests, for assessing the potential toxicity of new chemical entities are necessary in the early stages of the developmental process, when no information is available about the metabolism or even the target organ toxicity of the compounds to be tested. In vitro specific organ toxicity tests, such as the granulocyte-macrophage colony-forming unit (CFU-GM) clonogenic assay, are useful tools for predicting the adverse effects of new compounds on the blood-forming system, provided that some reference points are available, e.g., toxicological information about compounds belonging to the same chemical class and structure-activity relationship data. Furthermore, when no information is available about metabolism, the in vitro system should cover as many possibilities as possible, to avoid false positive or false negative results. In fact, while many compounds are metabolized to a variety of inactive chemical species, some undergo bioactivation to form more active metabolites. The addition of a metabolic activation system to the CFU-GM assay enables assessment of direct and metabolism-mediated toxicity. The regulatory agencies and industry value the concept of assays performed with and without metabolic activation, since they often have to take decisions about compounds with unknown mechanisms of action. CFU-GM assay, designed in this way, is an example of such a mechanism-naive assay. It has been suggested that, for new compounds, metabolites should be generated and tested both in the presence and in the absence of the parent compound itself, to identify the possible contribution of metabolites to the hematotoxicity observed, and to determine whether there is any synergistic or antagonistic effect between metabolites and the parent compound that might affect hematotoxicity in vivo. Various approaches can be used to obtain such information.  相似文献   

4.
Biokinetic data from the administration of radiopharmaceuticals is essential in nuclear medicine dosimetry. It has particular significance in children, as their metabolism is very different from adults. Biokinetic models for paediatric patients could therefore need to be adapted to better reflect their absorption, retention and excretion functions, when compared to adults. Obtaining quality in vivo infant or paediatric biokinetic data is then essential to improve the available reference models, which in turn can lead to the optimization of paediatric procedures and protocols in clinical practice.This study analyses the biokinetic behaviour of 99mTc-dimercaptosuccinic acid (DMSA), in 8 infants aged 4 months to 2 years old, through an imaging study using a gamma camera, and compares the obtained values with those obtained with the reference ICRP biokinetic model. The in vivo data was treated using an adapted methodology from the MIRD 16 pamphlet. Activity curves for the liver, the kidney and the whole body, were built, and new effective absorption, retention and excretion half-lives were estimated, and compared with the reference biokinetic parameters of ICRP 128. The obtained residence time in the kidneys of 2.56 h, has a deviation of 30.8% to the ICRP 128 value of 3.70 h. The obtained maximum uptake in the kidneys was of 0.22/A0, which compares to the value of 0.31/A0 for ICRP.The obtained biokinetic parameters were used to estimate the absorbed dose. The obtained dose values are smaller than the reference ICRP 128 ones by 32.1% in the kidneys, and 18.4% in the liver.  相似文献   

5.
Currently, no fast and accurate methods exist for measuring extant biokinetic parameters for biofilm systems. This article presents a new approach to measure extant biokinetic parameters of biofilms and examines the numerical feasibility of such a method. A completely mixed attached growth bioreactor is subjected to a pulse of substrate, and oxygen consumption is monitored by on-line measurement of dissolved oxygen concentration in the bulk liquid. The oxygen concentration profile is then fit with a mechanistic mathematical model for the biofilm to estimate biokinetic parameters. In this study a transient biofilm model is developed and solved to generate dissolved oxygen profiles in the bulk liquid. Sensitivity analysis of the model reveals that the dissolved oxygen profiles are sufficiently sensitive to the biokinetic parameters-the maximum specific growth rate coefficient (insertion markμ) and the half-saturation coefficient (Ks)-to support parameter estimation if accurate estimates of other model parameters can be obtained. Monte Carlo simulations are conducted with the model to add typical measurement error to the generated dissolved oxygen profiles. Even with measurement error in the dissolved oxygen profile, a pair of biokinetic parameters is always retrievable. The geometric mean of the parameter estimates from the Monte Carlo simulations prove to be an accurate estimator for the true biokinetic values. Higher precision is obtained for insertion markμ estimates than for Ks estimates. In summary, this theoretical analysis reveals that an on-line respirometric assay holds promise for measuring extant biofilm kinetic parameters. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

6.
Standard evaluations for characterizing selective developmental toxicity are traditionally undertaken in vivo. These studies incur significant cost in animal use, labor and compound, ultimately limiting the selection of compounds that can be evaluated in vivo. Such limitations hinder the ability to address questions regarding whether teratogenic outcome was caused by intended pharmacology or attributed to off-target effects associated with the structure of the small molecule. Ascertaining a better understanding of the published literature can enhance interpretation of existing in vivo datasets and hypotheses regarding critical windows of sensitivity and underlying mechanisms of teratogenicity. Thoughtful execution of investigative in vivo and in vitro studies can test and further define the underlying mechanism of teratogenicity. Skeletal variations and malformations are frequently encountered in in vivo studies and can be difficult to interpret in context of defining hazard assessment and mechanisms of abnormal development. This commentary reviews how investigative approaches can be integrated to better understand teratogenic mechanism as it pertains compounds that produce skeletal abnormalities. Approaches are discussed in context of how they could be used to study a compound that has been found to produce fused and wavy ribs in rat fetuses. An investigative approach is described that utilizes three strategies: 1) maximizing the data available from in vivo studies; 2) performing critical window studies in vivo; and 3) performing mechanism of action evaluations using gene expression studies and developmental model systems.  相似文献   

7.
Hepatotoxins can be classified as intrinsic when they exert their effects on all individuals in a dose-dependent manner, and as idiosyncratic when their effects are the consequence of an abnormal metabolism of the drug by susceptible individuals (metabolic idiosyncrasy) or of an immune-mediated injury to hepatocytes (allergic hepatitis). Some xenobiotics are electrophilic, and others are biotransformed by the liver into highly reactive metabolites that are usually more toxic than the parent compound. This activation process is the key to many hepatotoxic phenomena. Mitochondria are a frequent target of hepatotoxic drugs, and the alteration of their function has immediate effects on the energy balance of cells (depletion of ATP). Lipid peroxidation, oxidative stress, alteration of Ca(2+) homeostasis, and covalent binding to cell macromolecules are the molecular mechanisms that are frequently involved in the toxicity of xenobiotics. Against these potential hazards, cells have their own defence mechanisms (for example, glutathione, DNA repair, suicide inactivation). Ultimately, toxicity is the balance between bioactivation and detoxification, which determines whether a reactive metabolite elicits a toxic effect. The ultimate goal of in vitro experiments is to generate the type of scientific information needed to identify compounds that are potentially toxic to man. For this purpose, both the design of the experiments and the interpretation of the results are critical.]  相似文献   

8.
A pyrimido-pyrimidine compound (RA433) was found in vitro to be a significantly more potent inhibitor of platelet behaviour than the previously available pyrimido-pyrimidine compound RA8—dipyridamole. In a turbidimetric system RA433 inhibits platelet aggregation induced by adenosine diphosphate, collagen, and noradrenaline; further, in a glass-bead-column technique it is a powerful inhiitor of platelet adhesiveness.  相似文献   

9.
Tracer kinetics in healthy human volunteers was studied applying stable isotopes of cerium citrate to obtain biokinetic human data for the urinary excretion of cerium. These data were then used to compare and validate the biokinetic model for lanthanides (cerium) proposed by Taylor and Leggett (Radiat Prot Dosim 105:193–198, 2003), which is substantially improved and more realistic than the biokinetic model currently recommended by the International Commission on Radiological Protection (ICRP Publication 67, 1993); both models are primarily based on animal data. In the present study, 16 adults were investigated and two cerium tracers were simultaneously administered, both intravenously and/or orally. The cerium concentrations in urine were determined by inductively coupled plasma mass spectrometry. Ingested cerium citrate was poorly absorbed, and its low excretion was similar to the prediction of the biokinetic model of Taylor and Leggett. In contrast, after injection of cerium citrate its urinary excretion was rapidly increased, and the model underestimated the experimental results. These results suggest that urinary excretion of cerium may be dependent on the administered chemical form of cerium (speciation).  相似文献   

10.
Cu,Zn-superoxide dismutase (SOD1) has been shown to be effective in several free radical mediated diseases, although some studies have pointed toward SOD1 toxicity at a high concentrations. In the present study, the balance between prevention and induction of damage by SOD1 has been investigated both in vitro and in vivo. In vitro superoxide was generated using xanthine/xanthine oxidase. In vivo superoxide was generated using the redox cycling compound doxorubicin. Furthermore, we determined the pharmacokinetics of lecithinized SOD1 (PC-SOD) in order to compare the results obtained in vivo with those obtained in vitro. It was found that in vitro high concentrations of SOD1 induce hydroxylation of coumarin 3-carboxylic acid (3-CCA). This could be caused by a peroxidative action of SOD1 or formation of the highly reactive hydroxyl radicals. Any signs of toxicity are absent in vivo because these concentrations are not reached. It can be concluded that SOD1 possesses a large therapeutic window and application of SOD1 or its derivatives for strengthening the body's defenses against oxidative stress in a variety of pathologies seems safe.  相似文献   

11.
In its White Paper, Strategy for a Future Chemicals Policy, published in 2001, the European Commission (EC) proposed the REACH (Registration, Evaluation and Authorisation of CHemicals) system to deal with both existing and new chemical substances. This system is based on a top-down approach to toxicity testing, in which the degree of toxicity information required is dictated primarily by production volume (tonnage). If testing is to be based on traditional methods, very large numbers of laboratory animals could be needed in response to the REACH system, causing ethical, scientific and logistical problems that would be incompatible with the time-schedule envisaged for testing. The EC has emphasised the need to minimise animal use, but has failed to produce a comprehensive strategy for doing so. The present document provides an overall scheme for predictive toxicity testing, whereby the non-animal methods identified and discussed in a recent and comprehensive ECVAM document, could be used in a tiered approach to provide a rapid and scientifically justified basis for the risk assessment of chemicals for their toxic effects in humans. The scheme starts with a preliminary risk assessment process (involving available information on hazard and exposure), followed by testing, based on physicochemical properties and (Q)SAR approaches. (Q)SAR analyses are used in conjunction with expert system and biokinetic modelling, and information on metabolism and identification of the principal metabolites in humans. The resulting information is then combined with production levels and patterns of use to assess potential human exposure. The nature and extent of any further testing should be based strictly on the need to fill essential information gaps in order to generate adequate risk assessments, and should rely on non-animal methods, as far as possible. The scheme also includes a feedback loop, so that new information is used to improve the predictivity of computational expert systems. Several recommendations are made, the most important of which is that the European Union (EU) should actively promote the improvement and validation of (Q)SAR models and expert systems, and computer-based methods for biokinetic modelling, since these offer the most realistic and most economical solution to the need to test large numbers of chemicals.  相似文献   

12.
In a previous publication, Fowler et al. [4] demonstrated that the seemingly high rate of false or misleading positive results obtained in in vitro cytogenesis assays for genotoxicity - when compared with in vivo genotoxicity or rodent carcinogenicity data - was greater when rodent cell lines were used that were also reported to have mutant or non-functional p53. As part of a larger project for improvement of in vitro mammalian cell assays, we have investigated the impact of different toxicity measures, commonly used in in vitro cytogenetic assays, on the occurrence of misleading positive results. From a list of 19 chemicals that produce "false" positive results in in vitro mammalian cell assays [10], six substances that had given positive responses in CHO, CHL and TK6 cells [4], were evaluated for micronucleus induction in vitro, with different measures of toxicity for selection of the top concentration. The data show that estimating toxicity by relative cell count (RCC) or replication index (RI) consistently underestimates the toxicity observed by other measures (Relative Population Doubling, RPD, or Relative Increase in Cell Count, RICC). RCC and RI are more likely to lead to selection of concentrations for micronucleus scoring that are highly cytotoxic and thus could potentially lead to artefacts of toxicity being scored (elevated levels of apoptosis and necrosis), generating misleading positive results. These results suggest that a further reduction in the frequency of misleading positive results in in vitro cytogenetic assays can be achieved with this set of chemicals, by avoiding the use of toxicity measures that underestimate the level of toxicity induced.  相似文献   

13.
The toxicities of 20 analogues of deoxyadenosine or adenosine were tested in vitro against the intraerythrocytic parasite Babesia bovis. IC37 values (the concentration of compound required to reduce cell survival to 37%) were determined for each compound. Tubercidin (7-deaza-adenosine), 2-bromo-adenosine, 8-bromo-3-ribosyl adenine and 6-phenylamino-deoxyadenosine were shown to be the most toxic towards B. bovis. Comparison of the toxicity results for these compounds in B. bovis with those in human melanoma cell lines indicated a differential toxicity, in that many of the compounds were toxic towards B. bovis but were relatively non-toxic towards human melanoma cell lines and vice versa. These results suggest that the mechanism of toxicity of the deoxyadenosine and adenosine analogues, whose normal metabolism involves transport, metabolism and incorporation into nucleic acids, may vary significantly between B. bovis and mammalian cells, allowing such drugs to be considered for parasite chemotherapy.  相似文献   

14.
Bioaccessibility measurements have the potential to improve the accuracy of risk assessments and reduce the potential costs of remediation when they reveal that the solubility of chemicals in a matrix (e.g., soil) differs markedly from that in the critical toxicity study (i.e., the key study from which a toxicological or toxicity reference value is derived). We aimed to apply this approach to a brownfield site contaminated with chromium, and found that the speciation was CrIII, using a combination of alkaline digestion/diphenylcarbazide complexation and X-ray absorption near edge structure analysis. The bioaccessibility of Cr2O3, the compound on which a reference dose for CrIII is based, was substantially lower (<0.1%) than that of the CrIII in the soils, which was a maximum of 9%, giving relative bioaccessibility values of 13,000% in soil. This shows that the reference dose is based on essentially an insoluble compound, and thus we suggest that other compounds be considered for toxicity testing and derivation of reference dose. Two possibilities are CrCl3·6H2O and KCr(SO4)2·12H2O, which have been used for derivation of ecological toxicity reference values and are soluble at a range of dosing levels in our bioaccessibility tests.  相似文献   

15.
In its White Paper, "Strategy for a Future Chemicals Policy," published in 2001, the European Commission (EC) proposed the REACH (Registration, Evaluation and Authorisation of CHemicals) system to deal with both existing and new chemical substances. This system is based on a top-down approach to toxicity testing, in which the degree of toxicity information required is dictated primarily by production volume (tonnage). If testing is to be based on traditional methods, very large numbers of laboratory animals could be needed in response to the REACH system, causing ethical, scientific and logistical problems that would be incompatible with the time-schedule envisaged for testing. The EC has emphasised the need to minimise animal use, but has failed to produce a comprehensive strategy for doing so. The present document provides an overall scheme for predictive toxicity testing, whereby the non-animal methods identified and discussed in a recent and comprehensive ECVAM document, could be used in a tiered approach to provide a rapid and scientifically justified basis for the risk assessment of chemicals for their toxic effects in humans. The scheme starts with a preliminary risk assessment process (involving available information on hazard and exposure), followed by testing, based on physicochemical properties and (Q)SAR approaches. (Q)SAR analyses are used in conjunction with expert system and biokinetic modelling, and information on metabolism and identification of the principal metabolites in humans. The resulting information is then combined with production levels and patterns of use to assess potential human exposure. The nature and extent of any further testing should be based strictly on the need to fill essential information gaps in order to generate adequate risk assessments, and should rely on non-animal methods, as far as possible. The scheme also includes a feedback loop, so that new information is used to improve the predictivity of computational expert systems. Several recommendations are made, the most important of which is that the European Union (EU) should actively promote the improvement and validation of (Q)SAR models and expert systems, and computer-based methods for biokinetic modelling, since these offer the most realistic and most economical solution to the need to test large numbers of chemicals.  相似文献   

16.
3-O-Methylfunicone (OMF), a secondary metabolite produced by Penicillium pinophilum, inhibits the in vitro growth of plant pathogenic fungi. This specific property suggested that the compound could be used against other fungal pathogenic activities, including dermatological ones. However, for such applications, toxicological side-effects should be taken into account, in order to prevent other types of risk to mammalian cells. Therefore, investigations were made of the basic toxicity of OMF toward a human tumour cell line. The compound was found to have a cytostatic effect, which represents a counter-indication to its use as a therapeutic agent in dermatology, but suggests that it may have potential as an anti-tumour agent. This study confirmed the validity of in vitro systems for preliminary assays on new compounds, in order to avoid the use of animals in toxicological studies.  相似文献   

17.
2',3'-Dideoxycytidine (ddC) is a potent inhibitor of human immunodeficiency virus replication in vitro and shows beneficial effects in AIDS therapy. The compound inhibits mitochondrial DNA (mtDNA) synthesis at a clinically relevant concentration, which could be responsible for the side effects of ddC observed in the clinic. Thymidine (dThd), one of the substrates of mitochondrial deoxypyrimidine kinase (dPyd kinase), was not able to reverse the mitochondrial toxicity of ddC in CEM cells. Furthermore, the cytoplasmic deoxycytidine kinase (dCyd kinase)-deficient CEM cells were highly resistant to the mitochondrial toxicity of ddC. These data suggest a critical role for cytoplasmic dCyd kinase in the mitochondrial toxicity of ddC. The metabolites of ddC, but not ddC itself, were able to inhibit mtDNA synthesis in isolated mitochondria. The potency of the inhibitory effect was in the order of ddCTP greater than ddCDP greater than ddCMP greater than ddC. The lack of inhibition by ddC of mtDNA synthesis could be due to the inefficient ddC phosphorylation in mitochondria. Although the mitochondrial dPyd kinase was reported to phosphorylate ddC, the phosphorylation of ddC in isolated mitochondria was not detectable. The data suggest that ddC is phosphorylated to ddCTP in the cytoplasm and then transported into mitochondria to exert its inhibitory effect on mtDNA synthesis.  相似文献   

18.
According to the new chemicals policy of the European Union (EU), most chemicals, i.e. the 20,000 chemicals manufactured or imported at 1-10 tons annually, should be tested primarily by using in vitro methods. Also, for other chemicals, the use of in vitro methods is encouraged in the testing strategies given in the draft EU legislation. However, the validation and international acceptance of in vitro tests has been slow. Only recently has the OECD approved four new in vitro test methods, validated by the European Centre for the Validation of Alternative Methods. An analysis of ten randomly selected risk assessment reports of the EU Existing Chemicals Risk Assessment Programme showed that in vitro studies, for example, on cytotoxicity to different cell cultures, cell transformation, metabolism and skin penetration (a total of 115 studies) were used for the assessments. Key metabolic pathways and mechanisms of toxicity have been elucidated, for some chemicals, by using in vitro methods. On the other hand, the results of in vitro studies were regarded as secondary or unreliable in some cases. For several toxic endpoints, in vitro methods will probably serve as screening tools and for mechanistic studies, while target organ toxicity or physiologically regulated adverse effects caused by long-term exposure are difficult to observe without the use of animal models.  相似文献   

19.
Internal dosimetry after incorporation of radionuclides requires standardized biokinetic and dosimetric models. The aim of the present work was to identify the parameters and the components of the models which contribute most to dosimetric uncertainty. For this a method was developed allowing for the calculation of the uncertainties of the absorbed dose coefficients. More specifically, the sampling-based regression method and the variance-based method were used to develop and apply a global method of sensitivity analysis. This method was then used to quantify the impact of various biokinetic and dosimetric parameters on the uncertainty of internal doses associated with the incorporation of seven common radiopharmaceuticals. It turned out that the correlation between biokinetic parameters and time-integrated activity or calculated absorbed dose is strongest when the source and target organ are identical, in accordance with the ICRP and the MIRD approach. According to the ICRP approach, the parameter Fs which describes the fractional distribution of any incorporated radioactivity to organ S, has the greatest correlation with the time-integrated activity in the corresponding source organ or with the calculated dose in the corresponding target organ. In contrast, the MIRD approach suggested several biokinetic parameters with similar correlation. The dosimetric parameters usually contribute more to uncertainty in the calculated dose coefficients than the biokinetic parameters, in both approaches. The results obtained are helpful for the revision of biokinetic models for radiopharmaceuticals, because the most important parameters in clinical applications can now be identified and investigated in future studies.  相似文献   

20.
Peroxisome proliferators comprise a structurally diverse class of chemicals. Some of the members of this class show evidence of genetic toxicity (most evidently the in vitro clastogen Wyeth 14,643, WY), while others do not (most evidently methyl clofenapate, MCP). When attempting to understand the mechanism of rodent hepatocarcinogenesis of this class of chemicals the possible role of genetic toxicity should be assessed on a class-wide basis, i.e., if just one peroxisome proliferator is shown to be unequivocally inactive as a genetic toxin, genetic toxicity cannot be implicated in the carcinogenic activity of peroxisome proliferators as a class. In an earlier paper, we established MCP as inactive in a range of in vitro and in vivo genetic toxicity assays. However, the top dose level of MCP that could be tested for induction of chromosome aberrations (clastogenicity) in human lymphocytes and CHO cells was limited by the relative insolubility of the test agent in the assay medium. Methyl clofenapate was not toxic up to a dose that produced precipitate, so cannot be directly compared with WY, which induced aberrations only at toxic dose levels. In the present paper, we have evaluated the clastogenicity of the carcinogenic peroxisome proliferator nafenopin (NAF) at dose levels up to those that are toxic to CHO cells, and found no evidence of chromosome aberration induction. These data isolate further the genetic toxicity of WY from other peroxisome proliferators, and increase confidence in the proposal that genetic toxicity does not play a critical role in the hepatocarcinogenicity of peroxisome proliferators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号