首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aromatic amines represent one of the most important classes of industrial and environmental chemicals: many of them have been reported to be powerful carcinogens and mutagens, and/or hemotoxicants. Their toxicity has been studied also with quantitative structure-activity relationship (QSAR) methods: these studies are potentially suitable for investigating mechanisms of action and for estimating the toxicity of compounds lacking experimental determinations. In this paper, we first summarized the QSAR models for the rodent carcinogenicity of the aromatic amines. The gradation of potency of the carcinogenic amines depended firstly on their hydrophobicity, and secondly on electronic (reactivity, propensity to be metabolically transformed) and steric properties. On the contrary, the difference between carcinogenic and non-carcinogenic aromatic amines depended mainly on electronic and steric properties. These QSARs can be used directly for estimating the carcinogenicity of aromatic amines. A two-step prediction is possible: (1) estimation of yes/no activity; (2) if the answer from step 1 is yes, then prediction of the degree of potency. The QSARs for rodent carcinogenicity were put in a wider context by comparing them with those for: (a) Salmonella mutagenicity; (b) general toxicity; (c) enzymatic reactions; (d) physical-chemical reactions. This comparative QSAR exercise generated a coherent global picture of the action mechanisms of the aromatic amines. The QSARs for carcinogenicity were similar to those for Salmonella mutagenicity, thus pointing to a similar mechanism of action. On the contrary, the general toxicity QSARs (both in vitro and in vivo systems) were mostly based on hydrophobicity, pointing to an aspecific mechanism of action much simpler than that for carcinogenicity and mutagenicity. The oxidation of the amines (first step in the main metabolic pathway leading to carcinogenic and mutagenic species) had identical QSARs in both enzymatic and physical-chemical systems, thus providing evidence for the link between simple chemical reactions and those in biological systems. The results show that it is possible to generate mechanistically and statistically sound QSAR models for rodent carcinogenicity, and indirectly that the rodent bioassay is a reliable source of good quality data.  相似文献   

2.
3.
This paper introduces the basic concepts of quantitative structure-activity relationship (QSAR), expert system and integrated testing strategy, and explains how the analogy between QSARs and prediction models leads naturally to criteria for the validation of QSARs. ECVAM's in-house research programme on QSAR modelling and integrated testing is summarised, along with plans for the validation of QSAR models and expert system rulebases at the European Union level.  相似文献   

4.
Liverpool John Moores University and FRAME conducted a research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This paper focuses on the prospects for the use of alternative methods (both in vitro and in silico) in developmental and reproductive toxicity testing. It considers many tests based on primary cells and cell lines, and the available expert systems and QSARs for developmental and reproductive toxicity, and also covers tests for endocrine disruption. Ways in which reduction and refinement measures can be used are also discussed, particularly the use of an enhanced one-generation reproductive study, which could potentially replace the two-generation study, and therefore considerably reduce the number of animals required in reproductive toxicity. Decision-tree style integrated testing strategies are also proposed for developmental and reproductive toxicity and for endocrine disruption, followed by a number of recommendations for the future facilitation of developmental and reproductive toxicity testing, with respect to human risk assessment.  相似文献   

5.
Methacrylic acid esters or methacrylates (with C1 to 8 alkyl side-chains) are a group of compounds used in the manufacture of resins and plastics. Releases to the atmosphere, surface waters, or soil can come about during manufacturing, use, transport, and storage activities. Given the potential for environmental exposures, an examination into factors that control the distribution, fate, and toxicity of methacrylates is warranted. Methacrylates are relatively volatile compounds that are easily and rapidly degraded in the atmosphere and in oxic surface waters and sediments, and so are not considered persistent. Aquatic organisms are also able to metabolize methacrylates as demonstrated by estimated bioconcentration factors of < 45 for the acid and the C1-4 esters, and a measured bioconcentration factor (BCF) for 2-EHMA. Thus, the methacrylates are not considered bioaccumulative. Acute and chronic aquatic toxicity data for the methacrylates were assembled. Quantitative structure–activity relationships (QSARs) were developed with the acute and chronic fish, invertebrate, and algal datasets to support the toxicity assessment of the methacrylates (with log octanol-water partition coefficients used as surrogates for structures). The data show the methacrylates to be of low to moderate toxicity with all acute LC/EC50 values and chronic no observed effect concentrations ranging from about 2 to 170 mg/l for the acid and C1-4 esters, and 0.1 mg/l up to the aqueous solubility limit (about 2 mg/l) for the C8 ester. The measured toxicity data and the data estimated from the QSARs were used to develop predicted no effect concentrations in water and sediment for methacrylic acid and the C1-C8 esters.  相似文献   

6.
Goal Scope Background  The main focus in OMNIITOX is on characterisation models for toxicological impacts in a life cycle assessment (LCA) context. The OMNIITOX information system (OMNIITOX IS) is being developed primarily to facilitate characterisation modelling and calculation of characterisation factors to provide users with information necessary for environmental management and control of industrial systems. The modelling and implementation of operational characterisation models on eco and human toxic impacts requires the use of data and modelling approaches often originating from regulatory chemical risk assessment (RA) related disciplines. Hence, there is a need for a concept model for the data and modelling approaches that can be interchanged between these different contexts of natural system model approaches. Methods. The concept modelling methodology applied in the OMNIITOX project is built on database design principles and ontological principles in a consensus based and iterative process by participants from the LCA, RA and environmental informatics disciplines. Results. The developed OMNIITOX concept model focuses on the core concepts of substance, nature framework, load, indicator, and mechanism, with supplementary concepts to support these core concepts. They refer to the modelled cause, effect, and the relation between them, which are aspects inherent in all models used in the disciplines within the scope of OMNIITOX. This structure provides a possibility to compare the models on a fundamental level and a language to communicate information between the disciplines and to assess the possibility of transparently reusing data and modelling approaches of various levels of detail and complexity. Conclusions  The current experiences from applying the concept model show that the OMNIITOX concept model increases the structuring of all information needed to describe characterisation models transparently. From a user perspective the OMNIITOX concept model aids in understanding the applicability, use of a characterisation model and how to interpret model outputs. Recommendations and Outlook  The concept model provides a tool for structured characterisation modelling, model comparison, model implementation, model quality management, and model usage. Moreover, it could be used for the structuring of any natural environment cause-effect model concerning other impact categories than toxicity.  相似文献   

7.
Quantitative structure-activity relationships (QSARs) have been established based on narcotic mechanism of action and toxicity data to Vibrio fischeri using molecular connectivity indices. The results obtained suggest that both, the degree of branching and electronic characteristic of the compounds have dominant role in the exhibition of toxicity. The information obtained in the present study will be useful in designing more potent compounds.  相似文献   

8.
Statistical methods for the validation of toxicological in vitro test assays are developed and applied. Validation is performed either in comparison with in vivo assays or in comparison with other in vitro assays of established validity. Biostatistical methods are presented which are of potential use and benefit for the validation of alternative methods for the risk assessment of chemicals, providing at least an equivalent level of protection through in vitro toxicity testing to that obtained through the use of current in vivo methods. Characteristic indices are developed and determined. Qualitative outcomes are characterised by the rates of false-positive and false-negative predictions, sensitivity and specificity, and predictive values. Quantitative outcomes are characterised by regression coefficients derived from predictive models. The receiver operating characteristics (ROC) technique, applicable when a continuum of cut-off values is considered, is discussed in detail, in relation to its use for statistical modelling and statistical inference. The methods presented are examined for their use for the proof of safety and for toxicity detection and testing. We emphasise that the final validation of toxicity testing is human toxicity, and that the in vivo test itself is only a predictor with an inherent uncertainty. Therefore, the validation of the in vitro test has to account for the vagueness and uncertainty of the "gold standard" in vivo test. We address model selection and model validation, and a four-step scheme is proposed for the conduct of validation studies. Gaps and research needs are formulated to improve the validation of alternative methods for in vitro toxicity testing.  相似文献   

9.
10.
The therapeutic, antibiotic potential of antimicrobial peptides can be prohibitively diminished because of the cytotoxicity and hemolytic profiles they exhibit. Quantifying and predicting antimicrobial peptide toxicity against host cells is thus an important goal of AMP related research. In this work, we present quantitative structure activity relationships for toxicity of protegrin-like antimicrobial peptides against human cells (epithelial and red blood cells) based on physicochemical properties, such as interaction energies and radius of gyration, calculated from molecular dynamics simulations of the peptides in aqueous solvent. The hypothesis is that physicochemical properties of peptides, as manifest by their structure and interactions in a solvent and as captured by atomistic simulations, are responsible for their toxicity against human cells. Protegrins are beta-hairpin peptides with high activity against a wide variety of microbial species, but in their native state are toxic to human cells. Sixty peptides with experimentally determined toxicities were used to develop the models. We test the resulting relationships to determine their ability to predict the toxicity of several protegrin-like peptides. The developed QSARs provide insight into the mechanism of cytotoxic action of antimicrobial peptides. In a subsequent blind test, the QSAR correctly ranked four of five protegrin analogues newly synthesized and tested for toxicity.  相似文献   

11.
Liverpool John Moores University and FRAME conducted a joint research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for acute systemic toxicity and toxicokinetic testing. The paper reviews in vitro tests based on basal cytotoxicity and target organ toxicity, along with QSAR models and expert systems available for this endpoint. The use of PBPK modelling for the prediction of ADME properties is also discussed. These tests are then incorporated into a decision-tree style, integrated testing strategy, which also includes the use of refined in vivo acute toxicity tests, as a last resort. The implementation of the strategy is intended to minimise the use of animals in the testing of acute systemic toxicity and toxicokinetics, whilst satisfying the scientific and logistical demands of the EU REACH legislation.  相似文献   

12.
13.
14.
Halobenzenes are ubiquitous environmental contaminants, which are hepatotoxic in both rodents and humans. The molecular mechanism of halobenzene hepatotoxicity was investigated using Quantitative structure-activity relationships (QSAR) and accelerated cytotoxicity mechanism screening (ACMS) techniques in rat and human hepatocytes. The usefulness of isolated hepatocytes for prediciting in vivo xenobiotic toxicity was reassessed by correlating the LC(50) of 12 halobenzene congeners in phenobarbital (PB) induced rat hepatocytes in vitro determined by ACMS to the hepatotoxicities reported in vivo in PB-induced male Sprague-Dawely (SD) rats. A high correlation (r(2)=0.90) confirmed the application of hepatocytes as a "gold standard" for toxicity testing in vitro. QSARs were derived to determine the physico-chemcial variables that govern halobenzene toxicity in PB-induced rat, normal rat and human hepatocytes. We found that toxicity in normal rat and normal human hepatocytes both strongly correlate with hydrophobicity (logP), ease of oxidation (E(HOMO), energy of the highest molecular orbital) and on the asymmetric charge distribution according to arrangement of halogen substituents (dipole moment, mu). This suggests that halobenzene interaction with cytochrome P450 for oxidation is the metabolic activating path for toxicity and is similar in both species. In PB-induced rat hepatocytes the QSAR derivation is changed, where halobenzene toxicity strongly correlates to logP and dipole moment, but not E(HOMO). The changed QSAR suggests that oxidation is no longer the rate-limiting step in the cytotoxic mechanism when CYP2B/3A levels are increased, confirming CYP450 oxidation as the metabolic activating step under normal conditions.  相似文献   

15.
A study of our database of 7,000 QSARs involving chemical-biological interaction uncovered 11 examples where the QSARs all contain inverted parabolas based on molecular refractivity. That is, biological activity first decreases with increase in MR and then increases. Two of the examples are for enzymes: cyclooxygenase and trypsin. The others are for various receptors. The results seem to be best rationalized by the larger compounds inducing a change in a receptor unit that allows for a new mode of interaction.  相似文献   

16.
The results of homology modelling of the human glucorticoid receptor (hGR) ligand-binding domain (LBD) based on the ligand-bound domain of the human estrogen receptor alpha (hERalpha) are reported. It is shown that known hGR ligands which induce the human cytochrome P450 enzyme CYP3A4 are able to fit the putative ligand-binding site of the nuclear hormone receptor and form hydrogen bonds with key amino acid residues within the binding pocket. Quantitative structure-activity relationships (QSARs) have been derived for hGR-mediated CYP3A4 induction which involve certain molecular structural and physicochemical properties of the ligand themselves, yielding good correlations (R=0.96-0.98) with fold induction of CYP3A4 known to be mediated via hGR involvement.  相似文献   

17.
Cholinesterase inhibitors are, so far, the only successful strategy for the symptomatic treatment of Alzheimer's disease. Tacrine (THA) is a potent acetylcholinesterase inhibitor that was used in the treatment of Alzheimer's disease for a long time. However, the clinical use of THA was hampered by its low therapeutic index, short half-life and liver toxicity. 7-Methoxytacrine (7-MEOTA) is equally pharmacological active compound with lower toxicity compared to THA. In this Letter, the synthesis, biological activity and molecular modelling of elimination by-product isolated during synthesis of 7-MEOTA based bis-alkylene linked compound is described.  相似文献   

18.
The conventional method for assessing acute oral toxicity (OECD Test Guideline 401) was designed to identify the median lethal dose (LD50), using the death of animals as an endpoint. Introduced as an alternative method (OECD Test Guideline 420), the Fixed Dose Procedure (FDP) relies on the observation of clear signs of toxicity, uses fewer animals and causes less suffering. More recently, the Acute Toxic Class method and the Up-and-Down Procedure have also been adopted as OECD test guidelines. Both of these methods also use fewer animals than the conventional method, although they still use death as an endpoint. Each of the three new methods incorporates a sequential dosing procedure, which results in increased efficiency. In 1999, with a view to replacing OECD Test Guideline 401, the OECD requested that the three new test guidelines be updated. This was to bring them in line with the regulatory needs of all OECD Member Countries, provide further reductions in the number of animals used, and introduce refinements to reduce the pain and distress experienced by the animals. This paper describes a statistical modelling approach for the evaluation of acute oral toxicity tests, by using the revised FDP for illustration. Opportunities for further design improvements are discussed.  相似文献   

19.
20.
Computational modelling of whole biological systems from cells to organs is gaining momentum in cell biology and disease studies. This pathway is essential for the derivation of explanatory frameworks that will facilitate the development of a predictive capacity for estimating outcomes or risk associated with particular disease processes and therapeutic or stressful treatments. This article introduces a series of invited papers covering a hierarchy of issues and modelling problems, ranging from crucial conceptual considerations of the validity of cellular modelling through to multi-scale modelling up to organ level. The challenges and approaches in cellular modelling are described, including the potential of in silico modelling applications for receptor–ligand interactions in cell signalling, simulated organ dysfunction (i.e., heart), human and environmental toxicity and the progress of the IUPS Physiome Project. A major challenge now facing biologists is how to translate the wealth of reductionist detail about cells and tissues into a real understanding of how these systems function and are perturbed in disease processes. In biomedicine, simulation models of biological systems now contain sufficient detail, not only to reconstruct normal functions, but also, to reconstruct major disease states. More widely, simulation modelling will aid the targeting of current knowledge gaps and how to fill them; and also provide a research tool for selecting critical factors from multiple simulated experiments for real experimental design. The envisaged longer-term end- product is the creation of simulation models for predicting drug interactions and harmful side-effects; and their use in therapeutic and environmental health risk management. Finally, we take a speculative look at possible future scenarios in cellular modelling, where it is envisioned that integrative biology will move from being largely qualitative and instead become a highly quantitative, computer-intensive discipline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号