共查询到20条相似文献,搜索用时 0 毫秒
1.
We have established an automated soft agar colony formation assay that can be used as a potent tool in experimental tumor therapy studies as well as anticancer compound screening. It allows the direct and simultaneous comparison of the effects of a high number of anticancer compounds on the anchorage-independent growth of a variety of tumor cell lines. By making use of a commercially available automated pipetting system, the user gets results of excellent quality within 1 week and does not need special cell culture practice. 相似文献
2.
Pawel Listwan Thomas C. Terwilliger Geoffrey S. Waldo 《Journal of structural and functional genomics》2009,10(1):47-55
Overproduction of soluble and stable proteins for functional and structural studies is a major bottleneck for structural genomics programs and traditional biochemistry laboratories. Many high-payoff proteins that are important in various biological processes are “difficult to handle” as protein reagents in their native form. We have recently made several advances in enabling biochemical technologies for improving protein stability (), allowing stratagems for efficient protein domain trapping, solubility-improving mutations, and finding protein folding partners. In particular split-GFP protein tags are a very powerful tool for detection of stable protein domains. Soluble, stable proteins tagged with the 15 amino acid GFP fragment (amino acids 216–228) can be detected in vivo and in vitro using the engineered GFP 1–10 “detector” fragment (amino acids 1–215). If the small tag is accessible, the detector fragment spontaneously binds resulting in fluorescence. Here, we describe our current and on-going efforts to move this process from the bench (manual sample manipulation) to an automated, high-throughput, liquid-handling platform. We discuss optimization and validation of bacterial culture growth, lysis protocols, protein extraction, and assays of soluble and insoluble protein in multiple 96 well plate format. The optimized liquid-handling protocol can be used for rapid determination of the optimal, compact domains from single ORFS, collections of ORFS, or cDNA libraries. 相似文献
3.
4.
A standard operating procedure for assessing liquid handler performance in high-throughput screening
Taylor PB Ashman S Baddeley SM Bartram SL Battle CD Bond BC Clements YM Gaul NJ McAllister WE Mostacero JA Ramon F Wilson JM Hertzberg RP Pope AJ Macarron R 《Journal of biomolecular screening》2002,7(6):554-569
The thrust of early drug discovery in recent years has been toward the configuration of homogeneous miniaturized assays. This has allowed organizations to contain costs in the face of exponential increases in the number of screening assays that need to be run to remain competitive. Miniaturization brings with it an increasing dependence on instrumentation, which over the past several years has seen the development of nanodispensing capability and sophisticated detection strategies. To maintain confidence in the data generated from miniaturized assays, it is critical to ensure that both compounds and reagents have been delivered as expected to the target wells. The authors have developed a standard operating procedure for liquid-handling quality control that has enabled them to evaluate performance on 2 levels. The first level provides for routine daily testing on existing instrumentation, and the second allows for more rigorous testing of new dispensing technologies. The procedure has shown itself to be useful in identifying both method programming and instrumentation performance shortcomings and has provided a means to harmonizing instrumentation usage by assay development and screening groups. The goal is that this type of procedure be used for facilitating the exchange of liquid handler performance data across the industry. 相似文献
5.
Walker SL Ariga J Mathias JR Coothankandaswamy V Xie X Distel M Köster RW Parsons MJ Bhalla KN Saxena MT Mumm JS 《PloS one》2012,7(1):e29916
Reporter-based assays underlie many high-throughput screening (HTS) platforms, but most are limited to in vitro applications. Here, we report a simple whole-organism HTS method for quantifying changes in reporter intensity in individual zebrafish over time termed, Automated Reporter Quantification in vivo (ARQiv). ARQiv differs from current "high-content" (e.g., confocal imaging-based) whole-organism screening technologies by providing a purely quantitative data acquisition approach that affords marked improvements in throughput. ARQiv uses a fluorescence microplate reader with specific detection functionalities necessary for robust quantification of reporter signals in vivo. This approach is: 1) Rapid; achieving true HTS capacities (i.e., >50,000 units per day), 2) Reproducible; attaining HTS-compatible assay quality (i.e., Z'-factors of ≥0.5), and 3) Flexible; amenable to nearly any reporter-based assay in zebrafish embryos, larvae, or juveniles. ARQiv is used here to quantify changes in: 1) Cell number; loss and regeneration of two different fluorescently tagged cell types (pancreatic beta cells and rod photoreceptors), 2) Cell signaling; relative activity of a transgenic Notch-signaling reporter, and 3) Cell metabolism; accumulation of reactive oxygen species. In summary, ARQiv is a versatile and readily accessible approach facilitating evaluation of genetic and/or chemical manipulations in living zebrafish that complements current "high-content" whole-organism screening methods by providing a first-tier in vivo HTS drug discovery platform. 相似文献
6.
A high-throughput screening procedure for identifying mice with aberrant taste and oromotor function
Little is known about how specific genes influence taste function in mammals. One of the most promising ways to fill this void is to screen the progeny of chemically mutagenized (or genetically altered) mice for aberrant taste phenotypes and then identify the mutated gene(s) that is associated with each taste anomaly. To exploit this approach, a high-throughput and robust screening procedure is needed. We have attempted to meet this demand by developing an automated procedure that assesses taste responsiveness of individual mice to palatable and unpalatable taste stimuli. We focused on three taste stimuli (quinine hydrochloride, QHCl; sodium chloride, NaCl; and sucrose) and one mouse strain (C57BL/6). We used a commercially available gustometer system that both monitors the licking responses of mice and controls the presentation of each taste stimulus during successive 5 s trials. We describe a screening procedure that (after 2 days of simple training) can generate a concentration-response curve for NaCl or sucrose during a single 30 min test session, and for QHCl over three 30 min test sessions. A normative database based on the responses of 98 mice subjected to our screening procedure is also presented. We envision that investigators could use this normative database to assess taste function in the progeny of mutagenized (or genetically altered) mice. Any mouse that deviates significantly-e.g. three standard deviations (SD)-from the mean of the normative database would be flagged as having a potentially interesting mutation. We also developed an additional second screen for identifying mice with oromotor abnormalities. This latter screen is necessary because oromotor problems could lead to false positives or negatives in the screen for taste function, but is also useful for researchers interested in genes influencing oromotor circuitry. Throughout the development of the screening protocol, we sought to balance two conflicting demands: the need to maximize the screen's sensitivity and minimize its duration. This screen represents a significant improvement over the common two-bottle preference test because it assesses taste function more specifically and in a fraction of the time. 相似文献
7.
This paper presents a computer aided design method useful for simulation of a set of proteolytic cleavages upon target proteins obtained from the Brookhaven Data Bank. The method was developed by using algorithms that are able to interface themselves with other software environments, in order to assist computer analyses in the molecular modelling field, and allowing the generation of molecular libraries containing protein fragments produced by simulated proteolysis. These libraries include structures that differ for several amino acid deletions upon specified regions of the primary sequence. Target residues chosen for the simulation are compatible with enzymatic proteolysis methods used in conventional laboratory procedures. Furthermore, algorithms were able to identify a set of chemical-physical properties of the starting proteins, leading the simulation to find out the most suitable residues for proteolysis. The goal of these strategies is to generate fragments that are leaded to maintain the native-like condition of starting molecules, avoiding loss of conformational characteristics of the original tertiary structure. Proteins chosen for generating proteolytic libraries were represented by naphthalene 1,2 dioxygenase and Rigidoporus lignosus laccase. 相似文献
8.
9.
Assaying enzyme-catalyzed transformations in high-throughput is crucial to enzyme discovery, enzyme engineering and the drug discovery process. In enzyme assays, catalytic activity is detected using labelled substrates or indirect sensor systems that produce a detectable spectroscopic signal upon reaction. Recent advances in the development of high-throughput enzyme assays have identified new labels and chromophores to detect a wide range of enzymes activities. Enzyme activity profiling and fingerprinting have also been used as tools for identification and classification, while microarray formats have been devised to increase throughput. 相似文献
10.
11.
Chao-Guang Chen Louis J. Fabri Michael J. Wilson Con Panousis 《Nucleic acids research》2014,42(4):e26
We describe a novel cloning method, referred to as insert-tagged (InTag) positive selection, for the rapid one-step reformatting of phage-displayed antibody fragments to full-length immunoglobulin Gs (IgGs). InTag positive selection enables recombinant clones of interest to be directly selected without cloning background, bypassing the laborious process of plating out cultures and colony screening and enabling the cloning procedure to be automated and performed in a high-throughput format. This removes a significant bottleneck in the functional screening of phage-derived antibody candidates and enables a large number of clones to be directly reformatted into IgG without the intermediate step of Escherichia coli expression and testing of soluble antibody fragments. The use of InTag positive selection with the Dyax Fab-on-phage antibody library is demonstrated, and optimized methods for the small-scale transient expression of IgGs at high levels are described. InTag positive selection cloning has the potential for wide application in high-throughput DNA cloning involving multiple inserts, markedly improving the speed and quality of selections from protein libraries. 相似文献
12.
DNA microarrays have become an established tool for gene expression profiling. Construction of these microarrays using immobilized cDNAs is a common experimental strategy. However, this is extremely laborious, requiring the preparation of hundreds or thousands of cDNA probes. To minimize this initial bottleneck, we developed a comprehensive high-throughput robotic system to prepare DNA probes suitable for microarray analysis with minimal user intervention. We describe an automated system using the MultiPROBE Nucleic Acid Purification Workstation to provide the liquid handling and other functions needed to optimize this process. We were able to carry out fully automated plasmid cDNA isolation, PCR assay setup, and PCR purification and also to direct the characterization and tracking of DNA probes during processing. Protocols began with the initial preparation of a plasmid DNA archive of bacterial stocks in parallel 96-well plates (192 samples/run) and continued through to the dilution and reformatting of chip-ready DNA probes in 384-well format. These and other probe production procedures and additional instrument systems were used to process fully a set of mouse cDNA clones that were then validated by differential gene expression analysis. 相似文献
13.
Heat-inducible autolytic vector for high-throughput screening 总被引:1,自引:0,他引:1
In directed evolution, a high-throughput screening system is often a prerequisite for sampling the enzyme variants. When the target enzyme is expressed intracellularly, for example when Escherichia coli is used as the host, chemical or enzymatic disruption of cell membrane is often required in many cases, which can be tedious, time-consuming, and costly. In this study, a set of heat-inducible autolytic vectors were constructed to solve this problem, in which the SRRz lysis gene cassette from bacteriophage lambda was placed downstream of heat-inducible promoters, lambda cI857/pR promoter and its mutant, c1857/pR(M). The artificial autolytic units were inserted into the backbone of pUC18 (away from the multiple cloning sites). For the wild promoter; cI857/pR, the SRRz lysis cassette was expressed by temperature up-shift from 28 degrees to 38 degrees C, and the lysis efficiency of transformed bacterial cells was found to be consistent and could reach 96.3% as measured by the reporter beta3-galactosidase assay. In order to obtain a higher cell growth rate, the mutant promoter cI857/pR(M) was utilized to allow bacteria growth at 35 degrees C and lysis at 42 degrees C. However; this heat-inducible system showed significant inconsistency in terms of lysis efficiency. Bacillus subtilis 168 lipase A gene was further inserted into the multiple cloning sites of the autolytic vector containing cI857/pR, and 93.7% of the expressed lipase activity was found in the culture medium upon heat induction, demonstrating the utility of the vector for expression and rapid extracellular assay of heterologous enzymes. 相似文献
14.
Aptamers as reagents for high-throughput screening 总被引:1,自引:0,他引:1
The identification of new drug candidates from chemical libraries is a major component of discovery research in many pharmaceutical companies. Given the large size of many conventional and combinatorial libraries and the rapid increase in the number of possible therapeutic targets, the speed with which efficient high-throughput screening (HTS) assays can be developed can be a rate-limiting step in the discovery process. We show here that aptamers, nucleic acids that bind other molecules with high affinity, can be used as versatile reagents in competition binding HTS assays to identify and optimize small-molecule ligands to protein targets. To illustrate this application, we have used labeled aptamers to platelet-derived growth factor B-chain and wheat germ agglutinin to screen two sets of potential small-molecule ligands. In both cases, binding affinities of all ligands tested (small molecules and aptamers) were strongly correlated with their inhibitory potencies in functional assays. The major advantages of using aptamers in HTS assays are speed of aptamer identification, high affinity of aptamers for protein targets, relatively large aptamer-protein interaction surfaces, and compatibility with various labeling/detection strategies. Aptamers may be particularly useful in HTS assays with protein targets that have no known binding partners such as orphan receptors. Since aptamers that bind to proteins are often specific and potent antagonists of protein function, the use of aptamers for target validation can be coupled with their subsequent use in HTS. 相似文献
15.
New optical assay methods promise to accelerate the use of living cells in screens for drug discovery. Most of these methods employ either fluorescent or luminescent read-outs and allow cell-based assays for most targets, including receptors, ion channels and intracellular enzymes. Furthermore, genetically encoded probes offer the possibility of custom-engineered biosensors for intracellular biochemistry, specifically localized targets, and protein—protein interactions. 相似文献
16.
We recently developed an efficient bacterial expression system for phagemid-coded antigen-binding fragments of antibody (Fabs) without the use of a helper bacteriophage. This system is characterized by an unusually long cultivation at a low temperature and gentle induction of Fab expression without the addition of the inducer isopropyl-β-D-thiogalactopyranoside (IPTG). This method allows for a high yield production of Fabs fused with phage gene III coat protein, even when the protein is defective in its folding ability. With this cultivation procedure, we aimed here at improving the production and selection efficiency of filamentous bacteriophages displaying functional Fabs on their surface (Fab-phages) that have high affinity but low folding ability. The Fab components of the Fab-phages used were clonally related but differed in their affinity and folding ability. The production of the functional Fab-phages was quantitatively evaluated under various culture conditions. With conventional phage particle preparation, the production of functional Fab-phages was significantly biased according to the folding ability of the displayed Fabs, and affinity-based biopanning was therefore unsuccessful. In contrast, with the present procedure employing cultivation at 25 °C for 16 h without IPTG induction, functional Fab-phages were produced without any such dependence on folding ability. With this optimized library, affinity-based biopanning was successful. Especially noteworthy, bead-based biopanning accurately discriminated between high affinity Fab-phages and Fab-phages with low or middling affinity. In obtaining Fab-phages with high affinity but low folding ability, these optimized procedures for both cultivation and selection were essential. 相似文献
17.
《MABS-AUSTIN》2013,5(2):390-402
The current standard treatment for acute myeloid leukemia (AML) is chemotherapy based on cytarabine and daunorubicine (7 + 3), but it discriminates poorly between malignant and benign cells. Dose-limiting off?target effects and intrinsic drug resistance result in the inefficient eradication of leukemic blast cells and their survival beyond remission. This minimal residual disease is the major cause of relapse and is responsible for a 5-year survival rate of only 24%. More specific and efficient approaches are therefore required to eradicate malignant cells while leaving healthy cells unaffected. In this study, we generated scFv antibodies that bind specifically to the surface of AML blast cells and AML bone marrow biopsy specimens. We isolated the antibodies by phage display, using subtractive whole-cell panning with AML M2?derived Kasumi?1 cells. By selecting for internalizing scFv antibody fragments, we focused on potentially novel agents for intracellular drug delivery and tumor modulation. Two independent methods showed that 4 binders were internalized by Kasumi-1 cells. Furthermore, we observed the AML?selective inhibition of cell proliferation and the induction of apoptosis by a recombinant immunotoxin comprising one scFv fused to a truncated form of Pseudomonas exotoxin A (ETA'). This method may therefore be useful for the selection of novel disease-specific internalizing antibody fragments, providing a novel immunotherapeutic strategy for the treatment of AML patients. 相似文献
18.
Jenny Fitting Tobias Blume Andre ten Haaf Wolfgang Blau Stefan Gattenl?hner Mehmet Kemal Tur Stefan Barth 《MABS-AUSTIN》2015,7(2):390-402
The current standard treatment for acute myeloid leukemia (AML) is chemotherapy based on cytarabine and daunorubicine (7 + 3), but it discriminates poorly between malignant and benign cells. Dose-limiting off‑target effects and intrinsic drug resistance result in the inefficient eradication of leukemic blast cells and their survival beyond remission. This minimal residual disease is the major cause of relapse and is responsible for a 5-year survival rate of only 24%. More specific and efficient approaches are therefore required to eradicate malignant cells while leaving healthy cells unaffected. In this study, we generated scFv antibodies that bind specifically to the surface of AML blast cells and AML bone marrow biopsy specimens. We isolated the antibodies by phage display, using subtractive whole-cell panning with AML M2‑derived Kasumi‑1 cells. By selecting for internalizing scFv antibody fragments, we focused on potentially novel agents for intracellular drug delivery and tumor modulation. Two independent methods showed that 4 binders were internalized by Kasumi-1 cells. Furthermore, we observed the AML‑selective inhibition of cell proliferation and the induction of apoptosis by a recombinant immunotoxin comprising one scFv fused to a truncated form of Pseudomonas exotoxin A (ETA''). This method may therefore be useful for the selection of novel disease-specific internalizing antibody fragments, providing a novel immunotherapeutic strategy for the treatment of AML patients. 相似文献
19.
Krammer B Rumbold K Tschemmernegg M Pöchlauer P Schwab H 《Journal of biotechnology》2007,129(1):151-161
Hydroxynitrile lyases (Hnls) are important biocatalysts for the synthesis of optically pure cyanohydrins, which are used as precursors and building blocks for a wide range of high price fine chemicals. Although two Hnl enzymes, from the tropical rubber tree Hevea brasiliensis and from the almond tree Prunus amygdalus, are already used for large scale industrial applications, the enzymes still need to be improved and adapted to the special demands of industrial processes. In many cases directed evolution has been the method of choice to improve enzymes, which are applied as industrial biocatalysts. The screening procedure is the most crucial point in every directed evolution experiment. Herein, we describe the successful development of a novel screening assay for Hnls and its application in high-throughput screening of Escherichia coli mutant libraries. The new assay allows rapid screening of mutant libraries and facilitates the discovery of improved enzyme variants. Hnls catalyze the cleavage of cyanohydrins to hydrocyanic acid and the corresponding aldehyde or ketone. The enzyme assay is based on the detection of hydrocyanic acid produced, making it an all-purpose screening assay, without restriction to any kind of substrate. The gaseous HCN liberated within the Hnl reaction is detected by a visible colorimetric reaction. The facile, highly sensitive and reproducible screening method was validated by identifying new enzyme variants with novel substrate specificities. 相似文献
20.
Flow cytometry for high-throughput, high-content screening 总被引:5,自引:0,他引:5
Flow cytometry is a mature platform for quantitative multi-parameter measurement of cell fluorescence. Recent innovations allow up to 30-fold faster serial processing of bulk cell samples. Homogeneous discrimination of free and cell-bound fluorescent probe eliminates wash steps to streamline sample processing. Compound screening throughput may be further enhanced by multiplexing of assays on color-coded bead or cell suspension arrays and by integrating computational techniques to create smaller, focused compound libraries. Novel bead-based assay systems allow studies of real-time interactions between solubilized receptors, ligands and molecular signaling components that recapitulate and extend measurements in intact cells. These new developments, and its broad usage, position flow cytometry as an attractive analysis platform for high-throughput, high-content biological testing and drug discovery. 相似文献