首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new transport model that may be useful for many kinds of transepithelial transport experiments. The model permits estimation of a pump Km and pump activity solely on the basis of transepithelial tracer fluxes. We apply the model to studies of a multidrug efflux pump, P-glycoprotein, which is normally located in the apical plasma membrane of certain transporting epithelia such as kidney proximal tubule cells. To determine the functional properties of this multidrug transporter in an epithelium, we studied the transepithelial transport of the chemotherapeutic drug, vinblastine, in epithelia formed by the kidney cell lines MDCK, LLC-PK1, and OK. We have previously shown that basal to apical flux of 100 nM vinblastine was about five times higher than apical to basal flux in MDCK epithelia, indicating that there is a net transepithelial transport of vinblastine across MDCK epithelia. Addition of unlabeled vinblastine reduced basal to apical flux of tracer and increased apical to basal flux of tracer in a concentration-dependent manner, a pattern expected if there is a saturable pump that extrudes vinblastine at the apical plasma membrane. The model permits estimation of a pump Km and pump activity solely on the basis of transepithelial tracer fluxes. According to the transport model the apical membrane pump has Michaelis-Menten kinetics with an apparent Km = 1.1 microM. Net basal to apical transport of vinblastine was also observed in LLC-PK1 cells and OK cells which are other kidney-derived cell lines. The order of potency of the transport is LLC-PK1 greater than MDCK greater than OK cells. The organic cation transporter is not involved in this vinblastine transport because vinblastine transport in MDCK cells was not affected by 3 mM tetramethyl- or tetraethylammonium. Inhibitors of vinblastine transport in MDCK cells was not affected by potency, were verapamil greater than vincristine greater than actinomycin D greater than daunomycin. The transport pattern we observed is that predicted to result from the function of the multidrug transporter in the apical plasma membrane.  相似文献   

2.
This study analyzes the differential characteristics of the Na(+)-H+ antiport systems observed in several epithelial and non-epithelial renal cell lines. Confluent monolayers of LLC-PK1A cells have a Na(+)-H+ antiport system located in the apical membrane of the cell. This system, however, is not expressed during cell proliferation or after incubation in the presence of different mitogenic agents. In contrast, confluent monolayers of MDCK4 express minimal Na(+)-H+ antiport activity in the confluent monolayer state but reach maximal antiport activity during cell proliferation or after activation of the cells by different mitogenic agents. Similar results were obtained with the renal fibroblastic cell line BHK. The system present in MDCK4 cells is localized in the basolateral membrane of the epithelial cell. In LLC-PK1A cells, an increase in the extracellular Na+ concentration produces a hyperbolic increase in the activity of the Na(+)-H+ antiporter. In MDCK4 and BHK cells, however, an increase in external Na+ produces a sigmoid activation of the system. Maximal activation of the system occur at a pHo 7.5 in LLC-PK1A cells and pHo 7.0 in MDCK4 cells. The Na(+)-H+ antiporter of LLC-PK1A cells is more sensitive to the inhibitory effect of amiloride (Ki 1.8 x 10(-7) M) than is the antiporter of MDCK4 cells (Ki 7.0 x 10(-6) M). Moreover, 5-(N-methyl-N-isobutyl)amiloride is the most effective inhibitor of Na(+)-H+ exchange in LLC-PK1A cells, but the least effective inhibitor in MDCK4 cells. Conversely, the analog, 5-(N,N-dimethyl)amiloride, is the most effective inhibitor of Na(+)-H+ exchange in MDCK4 cells, but is the least effective inhibitor in LLC-PK1A cells. These results support the hypothesis that Na(+)-H+ exchange observed in LLC-PK1A and other cell lines may represent the activity of different Na(+)-H+ antiporters.  相似文献   

3.
The role of protein kinase C (PKC) in the regulation of the cytoskeleton of epithelial cells with tightly sealed contacts, poor contacts, and without contacts were investigated by incubating them with a protein kinase C activator phorbol myristoyl acetate (PMA). The morphology and organization of the membrane skeleton and stress fibers as well as the localization of an actin-bundling PKC substrate MARCKS in confluent MDCK cells originating from the distal tubulus of dog kidney, LLC-PK1 cells originating from the proximal tubulus of pig kidney, src-transformed MDCK cells, epidermoid carcinoma A431 cells, and MDCK cells grown in low calcium medium (LC medium) in low density were visualized with phase contrast and immunofluorescence microscopy. Four different responses to the PMA-treatment in actin-based structures of cultured epithelial cells were observed: 1) disintegration of the membrane skeleton in confluent MDCK cells; 2) depolymerization of the stress fibers in confluent MDCK and LLC-PK1 cells; 3) formation of the membrane skeleton in A431 cells, and 4) formation of the stress fibers and membrane skeleton in LC-MDCK cells. Thus, it seems that in fully confluent tightly sealed epithelium, activation of PKC has a deleterious effect on actin-based structures, whereas in cells without contacts or loose contacts, activation of PKC by PMA results in improvement of actin-based cytoskeletal structures. The main difference between the two kidney cell lines used is their selectivity to ion transport: the monolayer of LLC-PK1 cells is anion selective and MDCK cells cation selective. We propose a model where alterations in the ionic milieu within the MDCK cells by means of cation channels affect the disintegration of the membrane skeleton. The distribution of MARCKS followed the distribution of fodrin in both cell lines upon PMA-treatment, suggesting that phosphorylation of MARCKS by PKC may contribute in the regulation of the integrity of the membrane skeleton. J. Cell. Physiol. 181:83–95, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

4.
Nonsteroidal anti-inflammatory drugs can cause serious side-effects such as tubulo-interstitial nephritis. Mesalazine (5-ASA, 5-aminosalicylic acid) is used for the treatment of colitis ulcerosa, Crohn disease, and other diseases; it has been found to induce necrosis of both proximal convoluted tubules and renal papillaries. The comparative cytotoxicity of 3-, 4-, and 5- aminosalicylic acid, acetylsalicylic acid (AcSA), and the parent compound salicylic acid (SA) was investigated for the free acids and for their sodium salts. The interaction with endogenous glutathione (GSH) was also investigated. Four established cell lines were used: MDCK, LLC-PK1, NRK as renal cells, and HepG2 as hepatic cells. The free acid compounds were less toxic than their corresponding salts. Acidic 5-ASA was the most toxic of the three isomers in MDCK and LLC-PK1 cells, while NRK and HepG2 were more susceptible to acidic 3-ASA. Addition of NaOH modified the relative toxicity of 3-ASA and 5-ASA. The LLC-PK1 and HepG2 cells were more sensitive to the test chemicals as their salts than were the NRK and MDCK cells. SA and 5-ASA decreased the GSH content in renal cells and increased it in HepG2. GSH depletion with l-buthionine-(S,R)-sulfoximine enhanced the toxicity only for SA in NRK and for 5-ASA and AcSA in HepG2. No correlation between endogenous GSH and the susceptibility of MDCK and LLC-PK1 to the test compounds was observed. The results suggest that no typical nephrotoxic effect occurred. No explanation could be found for the tubulo-interstitial nephritis caused by 5-ASA therapy.  相似文献   

5.
Several signaling pathways that regulate tight junction and adherens junction assembly are being characterized. Calpeptin activates stress fiber assembly in fibroblasts by inhibiting SH2-containing phosphatase-2 (SHP-2), thereby activating Rho-GTPase signaling. Here, we have examined the effects of calpeptin on stress fiber and junctional complex assembly in Madin-Darby canine kidney (MDCK) and LLC-PK epithelial cells. Calpeptin induced disassembly of stress fibers and inhibition of Rho GTPase activity in MDCK cells. Interestingly, calpeptin augmented stress fiber formation in LLC-PK epithelial cells. Calpeptin treatment of MDCK cells resulted in a displacement of zonula occludens-1 (ZO-1) and occludin from cell-cell junctions and a loss of phosphotyrosine on ZO-1 and ZO-2, without any detectable effect on tight junction permeability. Surprisingly, calpeptin increased paracellular permeability in LLC-PK cells even though it did not affect tight junction assembly. Calpeptin also modulated adherens junction assembly in MDCK cells but not in LLC-PK cells. Calpeptin treatment of MDCK cells induced redistribution of E-cadherin and -catenin from intercellular junctions and reduced the association of p120ctn with the E-cadherin/catenin complex. Together, our studies demonstrate that calpeptin differentially regulates stress fiber and junctional complex assembly in MDCK and LLC-PK epithelial cells, indicating that these pathways may be regulated in a cell line-specific manner. calpeptin; tight junctions; adherens junctions; Rho; cadherin; p120ctn  相似文献   

6.
Renal damage caused by therapeutic treatment with cyclosporine A has been well documented. Clinical experiences have shown that cyclosporine A nephrotoxicity is determined by interstitial fibrosis with tubular atrophy. However, the exact mechanism by which this drug causes nephrotoxicity has not yet been clarified. This study used an in vitro model in an attempt to identify the cellular mechanisms underlying kidney cyclosporine A damage. We used two cell lines with the characteristics of proximal and distal tubule cells (pig kidney proximal tubular epithelial cell line [LLC-PK1] and Madin–Darby canine kidney cell line [MDCK]. The cell lines were treated with cyclosporine A for 24h. After the treatment, the cells were stained with Trypan Blue to estimate cell viability and processed by histochemical reactions to evaluate their cellular metabolism. Four enzymes (acid phosphatase, alkaline phosphatase, lactate dehydrogenase and succinate dehydrogenase) were considered. The cell viability assay showed that the LLC-PK1 cell line was more sensitive to cyclosporine A than MDCK. Remarkably, the LLC-PK1 cells disappeared with cyclosporine A treatment. As for the hydrolytic enzymes, only acid phosphatases showed an increased positivity in the treated LLC-PK1 cells. Similarly, lactate dehydrogenase showed a different activity histochemically. No statistically significant alterations were observed in the succinate dehydrogenase reaction.The cyclosporine A-treated MDCK cell lines did not show any difference in either their hydrolytic or succinate dehydrogenase enzyme positivity with respect to the control line. In contrast, there was a significant increase in lactate dehydrogenase activity. This study allowed the possible mechanism of cyclosporine A-induced damage in renal tubular cells to be evaluated. The enzymatic changes happened rapidly (during the 24h of treatment), suggesting that this alteration was one of the steps by which cyclosporine A induced toxicity. Moreover, since acid phosphatase is a marker of protein catabolism, the variation in the activity of this enzyme, in the LLC-PK1 line only, showed that cyclosporine can induce alterations leading to cellular toxicity. The modifications in lactate dehydrogenase activity, in both lines, suggested that this drug caused cell stress, inducing the production of lactic acid from glucose in the presence of oxygen. In conclusion, cyclosporine A treatment may force LLC-PK1 and MDCK cells to use anaerobic glycolysis preferentially. Further, these enzyme alterations may represent an epiphenomenon or a consequence of cyclosporine A toxicity.  相似文献   

7.
Summary Taurine transport was measured in cultured epithelial cells-LLC-PK1 and MDCK-grown on permeable membrane supports. Taurine transport by LLC-PK1 cells was greater on the apical surface compared to the basolateral surface. MDCK cells exhibited greater taurine uptake from the basolateral side. Transepithelial taurine flux was in the direction of apical to basolateral in the LLC-PK1 monolayers. There was no net transepithelial movement of taurine in the MDCK monolayers. Efflux of taurine from the apical and the basolateral membrane surfaces of LLC-PK1 cell monolayers was stimulated by external-alanine but not L-alanine. Efflux of taurine from MDCK cell monolayers was stimulated by-alanine on the basolateral surface. While the competitive inhibitor guainidinoeithane sulfonate (GES) competitively inhibited taurine uptake to a similar degree on the apical and basolateral surface of LLC-PK1 cell monolayers, GES had a more potent inhibitory effect on the basolateral taurine uptake in MDCK cells when compared to its inhibition of apical taurine transport. We conclude that there are characteristic differences in transport of taurine by apical and basolateral surfaces of LLC-PK1 and MDCK cells which may be the consequence of asymmetric distribution or unique structural properties of the taurine transporter.Supported by a grant from the National Institutes of Health (DK 37223), the American Heart Association (92-004470).  相似文献   

8.
A dynamic equilibrium between multiple sorting pathways maintains polarized distribution of plasma membrane proteins in epithelia. To identify sorting pathways for plasma membrane delivery of the gastric H,K-ATPase beta subunit in polarized cells, the protein was expressed as a yellow fluorescent protein N-terminal construct in Madin-Darby canine kidney (MDCK) and LLC-PK1 cells. Confocal microscopy and surface-selective biotinylation showed that 80% of the surface amount of the beta subunit was present on the apical membrane in LLC-PK1 cells, but only 40% was present in MDCK cells. Nondenaturing gel electrophoresis of the isolated membranes showed that a significant fraction of the H,K-ATPase beta subunits associate with the endogenous Na,K-ATPase alpha(1) subunits in MDCK but not in LLC-PK cells. Hence, co-sorting of the H,K-ATPase beta subunit with the Na,K-ATPase alpha(1) subunit to the basolateral membrane in MDCK cells may determine the differential distribution of the beta subunit in these two cell types. The major fraction of unassociated monomeric H,K-ATPase beta subunits is detected in the apical membrane. Quantitative analysis showed that half of the apical pool of the beta subunit originates directly from the trans-Golgi network and the other half from transcytosis via the basolateral membrane in MDCK cells. A minor fraction of monomeric beta subunits detected in the basolateral membrane represents a transient pool of the protein that undergoes transcytosis to the apical membrane. Hence, the steady state distribution of the H,K-ATPase beta subunit in polarized cells depends on the balance between (a) direct sorting from the trans-Golgi network, (b) secondary associative sorting with a partner protein, and (c) transcytosis.  相似文献   

9.
A route of accumulation and elimination of therapeutic engineered nanoparticles (NPs) may be the kidney. Therefore, the interactions of different solid-core inorganic NPs (titanium-, silica-, and iron oxide-based NPs) were studied in vitro with the MDCK and LLC-PK epithelial cells as representative cells of the renal epithelia. Following cell exposure to the NPs, observations include cytotoxicity for oleic acid-coated iron oxide NPs, the production of reactive oxygen species for titanium dioxide NPs, and cell depletion of thiols for uncoated iron oxide NPs, whereas for silica NPs an apparent rapid and short-lived increase of thiol levels in both cell lines was observed. Following cell exposure to metallic NPs, the expression of the tranferrin receptor/CD71 was decreased in both cells by iron oxide NPs, but only in MDCK cells by titanium dioxide NPs. The tight association, then subsequent release of NPs by MDCK and LLC-PK kidney epithelial cells, showed that following exposure to the NPs, only MDCK cells could release iron oxide NPs, whereas both cells released titanium dioxide NPs. No transfer of any solid-core NPs across the cell layers was observed.  相似文献   

10.
ICln is a multifunctional protein that is essential for cell volume regulation. It can be found in the cytosol and is associated with the cell membrane. Besides its role in the splicing process, ICln is critically involved in the generation of ion currents activated during regulatory volume decrease after cell swelling (RVDC). If reconstituted in artificial bilayers, ICln can form ion channels with biophysical properties related to RVDC. We investigated (i) the cytosol versus cell membrane distribution of ICln in rat kidney tubules, NIH 3T3 fibroblasts, Madin-Darby canine kidney (MDCK) cells, and LLC-PK1 epithelial cells, (ii) fluorescence resonance energy transfer (FRET) in living fibroblasts between fluorescently tagged ICln and fluorochromes in the cell membrane, and (iii) possible functional consequences of an enhanced ICln presence at the cell membrane. We demonstrate that ICln distribution in rat kidneys depends on the parenchymal localization and functional state of the tubules and that cell swelling causes ICln redistribution from the cytosol to the cell membrane in NIH 3T3 fibroblasts and LLC-PK1 cells. The addition of purified ICln protein to the extracellular solution or overexpression of farnesylated ICln leads to an increased anion permeability in NIH 3T3 fibroblasts. The swelling-induced redistribution of ICln correlates to altered kinetics of RVDC in NIH 3T3 fibroblasts, LLC-PK1 cells, and MDCK cells. In these cells, RVDC develops more rapidly, and in MDCK cells the rate of swelling-induced depolarization is accelerated if cells are swollen for a second time. This coincides with an enhanced ICln association with the cell membrane.  相似文献   

11.
The cytoplasmic tail of the H,K-ATPase beta-subunit contains a putative tyrosine-based motif that directs the beta-subunit's basolateral sorting when it is expressed in Madin-Darby Canine Kidney (MDCK) cells. When expressed in LLC-PK(1) cells, however, the beta-subunit is localized to the apical membrane. Several proteins that contain tyrosine-based motifs, including the low-density lipoprotein and transferrin receptors, show a similar sorting 'defect' when expressed in LLC-PK(1) cells. For low-density lipoprotein and transferrin receptors, this behavior is due to the differential expression of the mu 1B subunit of the AP-1B clathrin adaptor complex. mu 1B is expressed by MDCK cells, but not LLC-PK(1) cells, and transfection of mu 1B into LLC-PK(1) cells restores basolateral localization of low-density lipoprotein and transferrin receptors. For the beta-subunit, however, mu B expression in LLC-PK(1) cells does not induce its basolateral expression. We found that the beta-subunit interacts with both mu 1B and mu 1A in vitro and in vivo. The capacity to participate in a mu 1B interaction therefore is not sufficient to program the beta-subunit's basolateral localization in MDCK cells. Our data suggest that the H,K-ATPase beta-subunit's basolateral sorting signal is either masked in certain epithelial cells, or requires an interaction with sorting machinery other than AP-1B for delivery to the basolateral plasma membrane.  相似文献   

12.
The type of junctions present in the membranes of the two renal epithelial cell lines, LLC-PK1 and MDCK, and of subcultured porcine aortic endothelial (PAE) cells have been studied by freeze-fracture. No gap junctions were observed in the two renal cell lines, while they were numerous in the endothelial cells. Tight junctions were abundant in LLC-PK1 and MDCK cells and varied in numbers of ridges from one to ten. ONly a few simple tight junctions unconnected with gap junctions were observed in PAE cells. The occurrence of gap junctions in these cells correlates with their ability to form intercellular communicating channels.  相似文献   

13.
The sat-1 transporter mediates sulfate/bicarbonate/oxalate anion exchange in vivo at the basolateral membrane of the kidney proximal tubule. In the present study, we show two renal cell lines [Madin-Darby canine kidney (MDCK) and porcine proximal tubular kidney (LLC-PK1) cells] that similarly target sat-1 exclusively to the basolateral membrane. To identify possible sorting determinants, we generated truncations of the sat-1 cytoplasmic COOH terminus, fused to enhanced green fluorescence protein (EGFP) or the human IL-2 receptor -chain (Tac) protein, and both fusion constructs were transiently transfected into MDCK cells. Confocal microscopy revealed that removal of the last three residues on the sat-1 COOH terminus, a putative PDZ domain, had no effect on basolateral sorting in MDCK cells or on sulfate transport in Xenopus oocytes. Removal of the last 30 residues led to an intracellular expression for the GFP fusion protein and an apical expression for the Tac fusion protein, suggesting that a possible sorting motif lies between the last 3 and 30 residues of the sat-1 COOH terminus. Elimination of a dileucine motif at position 677/678 resulted in the loss of basolateral sorting, suggesting that this motif is required for sat-1 targeting to the basolateral membrane. This posttranslational mechanism may be important for the regulation of sulfate reabsorption and oxalate secretion by sat-1 in the kidney proximal tubule. enhanced green fluorescence protein; Tac; polarized cells; sorting; transport  相似文献   

14.
The claudin family is a set of integral membrane proteins found at cell-cell interactions in tight junctions. To identify proteins that interact with claudin-8, we used the yeast two-hybrid system to search for binding partners. Using the C-terminal 37 amino acids of claudin-8 as bait, we screened a human kidney cDNA library and identified multi-PDZ domain protein 1 (MUPP1) as a claudin-8 binding protein. MUPP1 contains 13 PDZ domains and binds to claudin-8 though its PDZ9 domain. When MDCK cells were transfected with epitope-tagged claudin-8 or MUPP1, both molecules were concentrated at cell-cell junctions. The interaction of claudin-8 and MUPP1 in vivo was confirmed by co-immunolocalization and co-immunoprecipitation in MDCK cells. Expression of claudin-8-myc increased transepithelial electrical resistance (TER) and reduced paracellular flux using FITC-dextran as a tracer. Over-expression of FLAG-MUPP1 in MDCK cells also reduced the epithelial paracelhular conductance. Our results indicate that claudin-8 and MUPP1 interact in tight junctions of epithelial cells and are involved in the tight junction barrier function.  相似文献   

15.
The reduced-folate carrier (Rfc-1), previously also called methotrexate carrier-1 (MTX-1), was recently identified as accounting for approximately 30% of the methotrexate (Mtx) uptake into rat kidney slices. The localization of the carrier and its contribution to secretory or reabsorptive flux of the drug was therefore evaluated in polarized epithelial layers of Madin Darby canine kidney (MDCK) cells. Confocal laser scanning microscopy revealed that the HA-epitope-tagged protein was sorted to the basolateral side. In flux assays, the basolateral-to-apical transport of fluoresceinated methotrexate (FMTX) was two-fold higher than in the apical-to-basolateral direction across rat Rfc-1 transfected, but not mock-transfected, monolayers. The same observation was made for unlabeled Mtx. This secretory transport of FMTX was inhibited by an excess of 1 mM Mtx and was saturable and temperature-dependent. No differences in directional flux were observed for the pure fluorescein label. Removal of sodium resulted in a marked decrease of directional FMTX flux. The pH profile of the active transport component showed a trough around 6.5 and a maximum at acidic pH, as reported for uptake into Rfc-1-expressing cells. Thus, rat Rfc-1 is sorted to the basolateral side in polarized MDCK epithelial cells and mediates the secretion of Mtx, probably in co-operation with efflux proteins, such as multidrug resistance associated proteins, which are also expressed in these cells. This study was supported by the Deutsche Forschungsgemeinschaft (HO2103/1-2) and HO2512/1-1 (Kerstin U. Honscha).  相似文献   

16.
Sodium-dependent dicarboxylate transporters (NaDC) include low-affinity NaDC1 and high-affinity NaDC3. Despite high similarities structurally and functionally, both are localized to opposite surfaces of renal tubular cells. The molecular mechanisms and localization signals leading to this polarized distribution remain unknown. In this study, distribution of NaDC3 in human kidney tissue was firstly observed by immunohistochemistry and immunofluorescence. Then, EGFP-fused wild-type, NH2- and COOH-terminal deletion and point mutants of NaDC3, and chimera between NaDC3 and NaDC1, were generated and transfected into polarized renal cells lines, LLC-PK1 and MDCK. Their subcellular localizations were analyzed by laser confocal microscopy. Immunolocalization results revealed that NaDC3 was expressed at basolateral membrane of human renal proximal tubular epithelia. Confocal examinations showed that wild-type NaDC3 was targeted to the basolateral membrane of MDCK and LLC-PK1. Deletion mutations indicated that the basolateral targeting signal of NaDC3 located within a short sequence AKKVWSARR of its amino-terminal cytoplasmic domain. Addition of this sequence could redirect apical NaDC1 to the basolateral membrane of LLC-PK1. Point mutagenesis revealed that mutation of either of two hydrophobic amino acids V and W in this short sequence largely redirected NaDC3 to both apical and basolateral surfaces of LLC-PK, indicating that the two hydrophobic amino acids are critical for the basolateral targeting of NaDC3. Our studies provide direct evidence of the localization of NaDC3 at the basolateral membrane of human renal proximal tubule cells and identify a di-hydrophobic amino acid motif VW as basolateral localization signal in the N-terminal cytoplasmic domain of NaDC3.  相似文献   

17.
We have evaluated transient transfection of MDCK cells by the DEAE-dextran/chloroquine method as a rapid method for study of heterologous plasma membrane protein polarity. Transiently transfected cells reseeded onto permeable supports formed confluent monolayers with normal tight junctions and normal distribution of endogenous apical and basolateral surface markers. Transfected monolayers reseeded onto opaque polycarbonate filters attained cell heights 3 times greater than on transparent filters. Conventional and confocal immunofluorescence microscopy were used to assess polarity of transient expression of heterologous proteins previously defined in stably transfected cell lines as apical (DAF-CD55), basolateral (VSV-G), and nonpolarized (CD7) in distribution. Through each transiently expressed protein exhibited a polarity phenotype in most cells which resembled the stable phenotype, consistency of polarized localization was less than in stably transfected cells. Similar results were obtained by lipofection. We conclude that transient transfection of MDCK cells may be useful as a rapid screen, but is not sufficiently reliable for definitive assessment of heterologous membrane proein polarity.Abbreviations CD55-DAF CD55-Decay-accelearating factor - DMSO Dimethylsulfoxide - FBS Fetal bovine serum - FITC Fluorescein isothiocyanate - MDCK Madin Darby canine kidney cells - PBS Phosphate-buffered saline - TER Transepithelial resistance - VSVG Vesicular stomatis virus G protein  相似文献   

18.
Apical membranes of renal epithelial cells were shown to be more rigid than other plasma membranes, due in part to the abundance of sphingomyelin among their constituent phospholipids. Tight junctions play a key role in maintaining differences between the apical and the basolateral domains of the plasma membrane with respect to their lipid composition and fluidity. To evaluate the influence of alterations of membrane fluidity on the activity of two apically located transport systems, we compared the effect of opening of tight junctions, by a preincubation period in calcium-deprived medium and of increasing fluidity, with benzyl alcohol, on Na-dependent uptakes of Pi and alpha-methyl-D-glucopyranoside (MGP) in intact, confluent LLC-PK1 cells and MDCK cells. Benzyl alcohol, at 10 mM, increased the Vmax of Pi uptake by 55 and 42% in LLC-PK1 cells and MDCK cells, respectively, but decreased the Vmax of MGP uptake in LLC -PK1 cells by 23%. Similarly to 10 mM benzyl alcohol, opening of tight junctions also increased the Vmax of Pi uptake by 45 and 46% in LLC-PK1 cells and MDCK cells, respectively, and depressed MGP uptake in LLC-PK1 cells by inducing a 15% decrease of the Vmax. None of the two maneuvers (i.e. addition of benzyl alcohol or opening of tight junctions) affected the Km values of the transport systems. From these results it is concluded that (i) the increase in membrane fluidity, achieved either by benzyl alcohol or by opening of tight junctions, affects Na-Pi and Na-glucose cotransports differently, reflecting differences in the lipid environments of the two transport systems, and (ii) membrane fluidity might play a physiological role in the modulation of the activity of transport systems.  相似文献   

19.
Study of claudin function by RNA interference   总被引:12,自引:0,他引:12  
Claudins are tight junction proteins that play a key selectivity role in the paracellular conductance of ions. Numerous studies of claudin function have been carried out using the overexpression strategy to add new claudin channels to an existing paracellular protein background. Here, we report the systematic knockdown of endogenous claudin gene expression in Madin-Darby canine kidney (MDCK) cells and in LLC-PK1 cells using small interfering RNA against claudins 1-4 and 7. In MDCK cells (showing cation selectivity), claudins 2, 4, and 7 are powerful effectors of paracellular Na+ permeation. Removal of claudin-2 depressed the permeation of Na+ and resulted in the loss of cation selectivity. Loss of claudin-4 or -7 expression elevated the permeation of Na+ and enhanced the proclivity of the tight junction for cations. On the other hand, LLC-PK1 cells express little endogenous claudin-2 and show anion selectivity. In LLC-PK1 cells, claudin-4 and -7 are powerful effectors of paracellular Cl- permeation. Knockdown of claudin-4 or -7 expression depressed the permeation of Cl- and caused the tight junction to lose the anion selectivity. In conclusion, claudin-2 functions as a paracellular channel to Na+ to increase the cation selectivity of the tight junction; claudin-4 and -7 function either as paracellular barriers to Na+ or as paracellular channels to Cl-, depending upon the cellular background, to decrease the cation selectivity of the tight junction.  相似文献   

20.
LLC-PK1 and MDCK cells take up cationic amino acids (lysine and arginine) by a specific sodium independent transport system. Uptake is inhibited by ornithine in LLC-PK1 and MDCK cells either in the presence or absence of sodium and by glutamine or homoserine in MDCK cells in the presence of sodium. Trans-stimulation of uptake occurs in the presence of intracellular cationic amino acids. Experiments with valinomycin or with different extracellular potassium concentrations suggest that uptake is dependent on the membrane potential of these cells. These transport features are similar to those previously ascribed to a transport system denominated y+ in other cells. Further experiments suggested that this carrier system is localised to the basolateral membrane in each cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号