首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
AIMS: To detect rate-limiting steps in the production of lactones by studying the combined effect of pH and aeration on their accumulation. METHODS AND RESULTS: A Doehlert experimental design was chosen to evaluate the accumulation of four lactones in the pH (3.5-7.3) and K(L)a (4.1 h(-1) to 26 h(-1)) experimental domain. The accumulation of gamma-decalactone was higher at pH around 5 and increased at low aeration reaching 496 mg l(-1) at pH 6.35 and K(L)a 4.5 h(-1). The specific accumulation increased at low aeration. The 3-hydroxy-gamma-decalactone accumulation was higher at low pH and high aeration conditions: 660 mg l(-1) at pH 4.4 and 26 h(-1). For dec-2-en-4-olide and dec-3-en-4-olide, lower amounts were reached (104 mg l(-1) and 66 mg l(-1), respectively). CONCLUSIONS: Although the accumulation of the four lactones should be related to catalytic steps requiring oxygen, the accumulation of gamma-decalactone was higher in low aeration conditions whereas the one of 3-hydroxy-gamma-decalactone was promoted for high aeration. Decenolides accumulate independently of pH or aeration. SIGNIFICANCE AND IMPACT OF THE STUDY: This study gives new insights into the catabolism of lipids, such as the role of co-factor regulation and the fact that the 3-hydroxylactone dehydration step is insensitive to pH or aeration.  相似文献   

5.
6.
The mechanism of the galactosyltransferase-catalyzed reaction was probed using positional isotope exchange, alpha-secondary deuterium isotope effects, and inhibition studies with potential transition state analogs. Incubation of [beta-18O2, alpha beta-18O]UDP-galactose and alpha-lactalbumin with galactosyltransferase from bovine milk did not result in any positional isotope exchange. The addition of 4-deoxy-4-fluoroglucose as a dead-end inhibitor did not induce any detectable positional isotope exchange. alpha-Secondary deuterium isotope effects of 1.21 +/- 0.04 on Vmax and 1.05 +/- 0.04 on Vmax/KM were observed for [1-2H]-UDP-galactose. D-Glucono-1,5-lactone, D-galactono-1,4-lactone, D-galactono-1,5-lactone, nojirimycin, and deoxynojirimycin, did not inhibit the galactosyl transfer reaction at concentrations less than 1.0 mM. The magnitude of the secondary deuterium isotope effect supports a mechanism in which the anomeric carbon of the galactosyl moiety has substantial sp2 character in the transition state. Therefore, the cleavage of the bond between the galactose and UDP moieties in the transition state has proceeded to a much greater extent than the formation of the bond between the galactose and the incoming glucose. The lack of a positional isotope exchange reaction indicates that the beta-phosphoryl group of the UDP is not free to rotate in the absence of an acceptor substrate.  相似文献   

7.
The functional significance of amino acid residues Lys-265, Asp-270, Lys-277, Asp-288, Asp-347, Glu-349, and Arg-351 of Bacillus kaustophilus leucine aminopeptidase was explored by site-directed mutagenesis. Variants with an apparent molecular mass of approximately 54 kDa were overexpressed in Escherichia coli and purified to homogeneity by nickel-chelate chromatography. The purified mutant enzymes had no LAP activity, implying that these residues are important for the catalytic reaction of the enzyme.  相似文献   

8.
Aminopeptidases catalyze the hydrolysis of amino acid residues from the amino terminus of peptide substrates. They are found in most cells and tissues, and their activity has been implicated in myriad fundamental biochemical and physiological processes. Nevertheless, little is known about the structure of the aminopeptidase active sites. Beef lens leucine aminopeptidase (blLAP) can be considered prototypical of many enzymes in this family of peptidases. Bestatin, [(2S,3R)-(3-amino-2-hydroxy-4-phenyl-butanoyl)-L-leucine] is a nonhydrolyzable substrate analogue of a peptide, PheLeu, which is rapidly cleaved by blLAP. Bestatin incorporates elements of the putative tetrahedral intermediate, and this results in a greater than 10(5)-fold enhancement of binding relative to analogous peptides. Bestatin is the most tightly bound inhibitor of many aminopeptidases. Bestatin was successively converted to nitrobestatin, p-aminobestatin, [3H]-p-aminobestatin, and finally [3H]-p-azidobestatin (pAB). Like bestatin, pAB is a slow binding inhibitor of LAP (Ki*, the dissociation constant for the final complex, = approximately 4 x 10(-9); Ki, the dissociation constant for the initial collision complex, = approximately 10(-8). The t1/2 for binding of 2 x 10(-8) M and 8 x 10(-8) M bestatin are approximately 60 min and approximately 38 min, respectively. pAB, nitrobestatin, bestatin, and physiological peptides appear to bind in the same site, the first three with similar avidity. In the dark, pAB and bestatin protect low concentrations of the enzyme against inactivation upon extensive dialysis. The t1/2 for photoactivation of pAB is approximately 3 s. Irradiation of blLAP for such short periods of time resulted in insignificant change in activity. blLAP which was placed in 254-nm light in the presence of pAB was inactivated significantly. Treatment of photolabeled blLAP with trypsin produces only two peptides. Autoradiography and scintillation counting indicate that the active site is in the peptide which includes residues 138-487. Treatment of the same blLAP with hydroxylamine produces two different peptides, with the active site in the peptide 323-487. This indicates that the active site is in the carboxyl-terminal one-third of the protomer. It is likely that this photoaffinity label will be useful in identifying active sites in other aminopeptidases as well.  相似文献   

9.
Prolonged incubation of zinc-zinc leucine aminopeptidase (bovine lens) (EC 3.4.1.1) with 0.05 M CoCl2 and M KCl in 0.2 M N-ethylmorpholine-HCl at pH 7.5 and 37 degrees yields an active enzyme in which 2 g atoms of Co2+ per 54,000 dalton subunit have replaced the Zn2+. Incubation of cobalt-cobalt leucine aminopeptidase with various AnCl2 concentrations or zinc-zinc leucine aminopeptidase with various CoCl2 concentrations in M KCl and 0.2 M N-ethylmorpholine-HCl at pH 7.5 and 37 degrees demonstrates that Co2+ and Zn2+ compete reversibly for two independent binding sites per subunit for which the ratio of the association constants for Zn2+ and Co2+ (1KZn:1KCo = 1KZn/Co; 2KZn:2KCo = 2KZn/Co) are 115 and 15.9 for sites 1 and 2, respectively. The specific activities of the various species of enzyme with 2 mM L-leucine p-nitroanilide as substrate in 0.2 M N-ethylmorpholine-HCl and 0.01 M NaHCO3 at pH 7.5 are estimated to be (in micromoles per min per mg) 0.043 for the zinc-zinc. 0.039 for the zinc-cobalt, 0.541 for the cobalt-zinc, and 0.536 for the cobalt-cobalt forms, which implies that activity is affected only when cobalt is substituted at site 1, the "activation site." The site, at which cobalt substitution has no effect on activity, is designated the "structural site." The value of Km for cobalt-cobalt leucine aminopeptidase with L-leucine p-nitroanilide as substrate in 0.2 M N-ethylmorpholine-HCl at pH 7.5 containing 0.01 M NaHCO3 at 30 degrees is 0.52 mM while Vmax is 0.90 mumol per min per mg. In the additional presence of 1 M KCl, Km is 0.19 mM while Vmax is 0.68 mumol per min per mg.  相似文献   

10.
Use of isotope effects to elucidate enzyme mechanisms   总被引:5,自引:0,他引:5  
The chemical bond breaking steps are normally not rate limiting for enzymatic reactions. However, comparison of deuterium and tritium isotope effects on the same reaction, especially when coupled with 13C isotope effects for the same step measured with deuterated as well as unlabeled substrates, allows calculation of the intrinsic isotope effects on the bond breaking steps and thus a determination of the commitments to catalysis for the reactants. The variation in observed isotope effects as a function of reactant concentration can be used to determine kinetic mechanisms, while the pH variation of isotope effects can determine the stickiness of the reactants and which portions of the reactant mechanism are pH dependent. Finally the size of primary and secondary intrinsic isotope effects can be used to determine transition state structure.  相似文献   

11.
12.
13.
S L Harbeson  D H Rich 《Biochemistry》1988,27(19):7301-7310
The synthesis and inhibition kinetics of a new, potent inhibitor of arginine aminopeptidase (aminopeptidase B; EC 3.4.11.6) are reported. The inhibitor is a reduced isostere of bestatin in which the amide carbonyl is replaced by the methylene (-CH2-) moiety. Analysis of the inhibition of arginine aminopeptidase by this inhibitor according to the method of Lineweaver and Burk yields an unusual noncompetitive double-reciprocal plot. The replot of the slopes versus [inhibitor] is linear (Kis = 66 nM), but the replot of the y intercepts (1/V) versus [inhibitor] is hyperbolic (Kii = 10 nM, Kid = 17 nM). These results provide evidence for a kinetic mechanism in which the inhibitor binds to the S1' and S2' subsites on the enzyme, not the S1 and S1' subsites occupied by dipeptide substrates. Furthermore, structure-activity data for a series of ketomethylene dipeptide isosteres in which the amide (-CONH-) of a dipeptide is replaced with the ketomethylene (-COCH2-) moiety show that the S1 and S1' subsites preferentially bind basic and aromatic side chains, respectively. These results are in agreement with the known substrate specificity of arginine aminopeptidase. The structure-activity data for several bestatin analogues, however, show that these compounds do not bind to the S1 and S1' sites of arginine aminopeptidase. A comparison of the data provides evidence that bestatin inhibits arginine aminopeptidase and possibly other aminopeptidases by binding to the S1' and S2' sites of the enzyme.  相似文献   

14.
Of 14 identified epitopes on human GCase (acid beta-glucosidase), monoclonal antibodies (MCABs) recognizing 3 produced inhibition and 1 resulted in activation of GCase. MCABs F1 and F2 completely, and MCAB 61 partially (approximately 70%), inhibited GCase activity. Substrates and active site-directed inhibitors (specific sphingolipid and 5-amino-5-deoxyglucose derivatives) protected the enzyme from inhibition by MCAB F1 and F2, but not that by MCAB 61. Conduritol B epoxide did not protect GCase from the inhibition by these MCABs when covalently bound to the active site. These results indicated highly specific binding requirements of MCABs F1 and F2 for residues in a complex active site. In comparison, kinetic analyses using GCase transition state analogues, N-alkyl-glucosylamines, and MCAB 61 demonstrated that this MCAB "freezes" the conformation of the enzyme and inhibits GCase by preventing formation of a conformer needed for maximal catalytic rates. The activating MCAB 122 mimicked the effects of saposin C and competed with this natural activator for residues on the enzyme. Interaction of saposin A and saposin C or MCAB 122 with GCase produced a synergistic effect leading to a marked sensitization of the enzyme to these activators. No such synergism or additivity was found for the maximal catalytic rate since it could be achieved by saturating amounts of any one or combinations of these activators. In the presence of MCAB 61, only 15 to 25% of the maximal activation of GCase was obtained by saposin C or MCAB 122, indicating that the major activation effects of these effectors derived from an induction of a GCase conformational change. These results demonstrate that saposins A and C mediate their activating effects by binding to distinct sites on GCase. Furthermore, major components of the mechanisms for catalysis and saposin C activation are due to conformational changes during the transition state. These findings have implications for understanding the perturbations of GCase function due to the missense mutations which cause Gaucher disease.  相似文献   

15.
Ralph EC  Fitzpatrick PF 《Biochemistry》2005,44(8):3074-3081
N-Methyltryptophan oxidase (MTOX), a flavoenzyme from Escherichia coli, catalyzes the oxidative demethylation of secondary amino acids such as N-methyltryptophan or N-methylglycine (sarcosine). MTOX is one of several flavin-dependent amine oxidases whose chemical mechanism is still debated. The kinetic properties of MTOX with the slow substrate sarcosine were determined. Initial rate data are well-described by the equation for a ping-pong kinetic mechanism, in that the V/K(O)()2 value is independent of the sarcosine concentration at all accessible concentrations of oxygen. The k(cat)/K(sarc) pH profile is bell-shaped, with pK(a) values of 8.8 and about 10; the latter value matches the pK(a) value of the substrate nitrogen. The k(cat) pH profile exhibits a single pK(a) value of 9.1 for a group that must be unprotonated for catalysis. There is no significant solvent isotope effect on the k(cat)/K(sarc) value. With N-methyl-(2)H(3)-glycine as the substrate, there is a pH-independent kinetic isotope effect on k(cat), k(cat)/K(sarc), and the rate constant for flavin reduction, with an average value of 7.2. Stopped-flow spectroscopy with both the protiated and deuterated substrate failed to detect any intermediates between the enzyme-substrate complex and the fully reduced enzyme. These results are used to evaluate proposed chemical mechanisms.  相似文献   

16.
17.
Polymorphonuclear leukocytes were isolated from the peripheral blood of rabbits by Ficoll-Hypaque centrifugation followed by dextran sedimentation. The granulocytes were homogenized in isotonic sucrose and subjected to analytical subcellular fractionation by sucrose density gradient centrifugation. Leucine aminopeptidase, when assayed with L-leucine-7-amido-4-methyl-coumarin as substrate, showed a similar distribution to N-acetyl-ß-glucosaminidase and thus is localized to the tertiary granules. There was no leucine aminopeptidase associated with the plasma membrane of these cells. Further experiments with purified plasma membranes and inhibitor studies using diazotized sulphanilic acid further confirmed that leucine aminopeptidase had a purely intracellular localization. Vitamin B-12 binding protein showed a similar localization to alkaline phosphatase indicating that, as in human polymorphonuclear leukocytes, vitamin B-12 binding protein is located to the specific granules.  相似文献   

18.
Laeverin/aminopeptidase Q (APQ) is a cell surface protein specifically expressed on human embryo-derived extravillous trophoblasts that invades the uterus during placentation. The cDNA cloning of Laeverin/APQ revealed that the sequence encodes a protein with 990 amino acid residues, and Laeverin/APQ contains the HEXXHX(18)E gluzincin motif, which is characteristic of the M1 family of aminopeptidases, although the exopeptidase motif of the family, GAMEN, is uniquely substituted for the HAMEN sequence. In this study, we expressed a recombinant human Laeverin/APQ using a baculovirus expression system, purified to homogeneity, and characterized its enzymatic properties. It was found that Laeverin/APQ had a broad substrate specificity toward synthetic substrate, although it showed a preference for Leu-4-methylcoumaryl-7-amide. Searching natural substrates, we found that Laeverin/APQ was able to cleave the N-terminal amino acid of several peptides such as angiotensin III, kisspeptin-10, and endokinin C, which are abundantly expressed in the placenta. In contrast to the case with other M1 aminopeptidases, bestatin inhibited the aminopeptidase activity of Laeverin/APQ much more effectively than other known aminopeptidase inhibitors. These results indicate that Laeverin/APQ is a novel bestatin-sensitive leucine aminopeptidase and suggest that the enzyme plays important roles in human placentation by regulating biological activity of key peptides at the embryo-maternal interface.  相似文献   

19.
  • 1.1. The types of haemocytes during larval development were studied.
  • 2.2. The developmental profile of leucine aminopeptidase and alkaline phosphatase was studied. The maximum LAP activity was found to be in early larval development, while the maximum alkaline phosphatase during the white pupal stage.
  • 3.3. These activities were compared with those determined in cell-free haemolymph.
  • 4.4. Both hydrolytic enzymes have been found histochemically in the prohaemocytes and in the plasmatocytes.
  • 5.5. In cultured haemocytes experiments it was found that 64% of the total LAP activity was secreted into the incubation medium, while electrophoretic analysis of released LAP activity demonstrated that only LAP A isozyme was secreted.
  • 6.6. Based on the above results we suggest that both hydrolytic enzymes are functionally important throughout larval development.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号