首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zhang Z  Wang Y  Wang L  Gao P 《PloS one》2010,5(12):e14316

Background

In the process of protein evolution, sequence variations within protein families can cause changes in protein structures and functions. However, structures tend to be more conserved than sequences and functions. This leads to an intriguing question: what is the evolutionary mechanism by which sequence variations produce structural changes? To investigate this question, we focused on the most common types of sequence variations: amino acid substitutions and insertions/deletions (indels). Here their combined effects on protein structure evolution within protein families are studied.

Results

Sequence-structure correlation analysis on 75 homologous structure families (from SCOP) that contain 20 or more non-redundant structures shows that in most of these families there is, statistically, a bilinear correlation between the amount of substitutions and indels versus the degree of structure variations. Bilinear regression of percent sequence non-identity (PNI) and standardized number of gaps (SNG) versus RMSD was performed. The coefficients from the regression analysis could be used to estimate the structure changes caused by each unit of substitution (structural substitution sensitivity, SSS) and by each unit of indel (structural indel sensitivity, SIDS). An analysis on 52 families with high bilinear fitting multiple correlation coefficients and statistically significant regression coefficients showed that SSS is mainly constrained by disulfide bonds, which almost have no effects on SIDS.

Conclusions

Structural changes in homologous protein families could be rationally explained by a bilinear model combining amino acid substitutions and indels. These results may further improve our understanding of the evolutionary mechanisms of protein structures.  相似文献   

3.
Our aim is to explore the similarities in structural fluctuations of homologous kinases. Gaussian Network Model based Normal Mode Analysis was performed on 73 active conformation structures in Ser/Thr/Tyr kinase superfamily. Categories of kinases with progressive evolutionary divergence, viz. (i) Same kinase with many crystal structures, (ii) Within‐Subfamily, (iii) Within‐Family, (iv) Within‐Group, and (v) Across‐Group, were analyzed. We identified a flexibility signature conserved in all kinases involving residues in and around the catalytic loop with consistent low‐magnitude fluctuations. However, the overall structural fluctuation profiles are conserved better in closely related kinases (Within‐Subfamily and Within‐family) than in distant ones (Within‐Group and Across‐Group). A substantial 65.4% of variation in flexibility was not accounted by variation in sequences or structures. Interestingly, we identified substructural residue‐wise fluctuation patterns characteristic of kinases of different categories. Specifically, we recognized statistically significant fluctuations unique to families of protein kinase A, cyclin‐dependent kinases, and nonreceptor tyrosine kinases. These fluctuation signatures localized to sites known to participate in protein‐protein interactions typical of these kinase families. We report for the first time that residues characterized by fluctuations unique to the group/family are involved in interactions specific to the group/family. As highlighted for Src family, local regions with differential fluctuations are proposed as attractive targets for drug design. Overall, our study underscores the importance of consideration of fluctuations, over and above sequence and structural features, in understanding the roles of sites characteristic of kinases. Proteins 2016; 84:957–978. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
An analysis is presented on how structural cores change shape within protein families, and whether or not there is a relationship between these structural changes and the vibrational modes that proteins experiment due to topological constraints. A set of 13 representative and well-populated protein families are studied. The evolutionary directions of deformation are obtained by applying a new multiple structural alignment technique to superimpose the structures and extract a conserved core, together with Principal Components Analysis (PCA) to extract the main deformation modes. A low-resolution Normal Mode Analysis (NMA) technique is used in parallel to study the properties of the mechanical core plasticity of the same proteins. We find that the evolutionary deformations span a low dimensional space. A statistically significant correspondence exists between these principal deformations and the vibrational modes accessible to a particular topology. We conclude that, to a significant extent, the structures of evolving proteins seem to respond to sequence changes by collective deformations along combinations of low-frequency modes. The findings have implications in structure prediction by homology modeling.  相似文献   

5.
A key concept in template‐based modeling (TBM) is the high correlation between sequence and structural divergence, with the practical consequence that homologous proteins that are similar at the sequence level will also be similar at the structural level. However, conformational diversity of the native state will reduce the correlation between structural and sequence divergence, because structural variation can appear without sequence diversity. In this work, we explore the impact that conformational diversity has on the relationship between structural and sequence divergence. We find that the extent of conformational diversity can be as high as the maximum structural divergence among families. Also, as expected, conformational diversity impairs the well‐established correlation between sequence and structural divergence, which is nosier than previously suggested. However, we found that this noise can be resolved using a priori information coming from the structure‐function relationship. We show that protein families with low conformational diversity show a well‐correlated relationship between sequence and structural divergence, which is severely reduced in proteins with larger conformational diversity. This lack of correlation could impair TBM results in highly dynamical proteins. Finally, we also find that the presence of order/disorder can provide useful beforehand information for better TBM performance.  相似文献   

6.
Evolution of protein sequences and structures.   总被引:9,自引:0,他引:9  
The relationship between sequence similarity and structural similarity has been examined in 36 protein families with five or more diverse members whose structures are known. The structural similarity within a family (as determined with the DALI structure comparison program) is linearly related to sequence similarity (as determined by a Smith-Waterman search of the protein sequences in the structure database). The correlation between structural similarity and sequence similarity is very high; 18 of the 36 families had linear correlation coefficients r>/=0.878, and only nine had correlation coefficients r相似文献   

7.
It is commonly believed that similarities between the sequences of two proteins infer similarities between their structures. Sequence alignments reliably recognize pairs of protein of similar structures provided that the percentage sequence identity between their two sequences is sufficiently high. This distinction, however, is statistically less reliable when the percentage sequence identity is lower than 30% and little is known then about the detailed relationship between the two measures of similarity. Here, we investigate the inverse correlation between structural similarity and sequence similarity on 12 protein structure families. We define the structure similarity between two proteins as the cRMS distance between their structures. The sequence similarity for a pair of proteins is measured as the mean distance between the sequences in the subsets of sequence space compatible with their structures. We obtain an approximation of the sequence space compatible with a protein by designing a collection of protein sequences both stable and specific to the structure of that protein. Using these measures of sequence and structure similarities, we find that structural changes within a protein family are linearly related to changes in sequence similarity.  相似文献   

8.
An analysis is presented on how structural cores modify their shape across homologous proteins, and whether or not a relationship exists between these structural changes and the vibrational normal modes that proteins experience as a result of the topological constraints imposed by the fold. A set of 35 representative, well-populated protein families is studied. The evolutionary directions of deformation are obtained by using multiple structural alignments to superimpose the structures and extract a conserved core, together with principal components analysis to extract the main deformation modes from the three-dimensional superimposition. In parallel, a low-resolution normal mode analysis technique is employed to study the properties of the mechanical core plasticity of these same families. We show that the evolutionary deformations span a low dimensional space of 4-5 dimensions on average. A statistically significant correspondence exists between these principal deformations and the approximately 20 slowest vibrational modes accessible to a particular topology. We conclude that, to a significant extent, the structural response of a protein topology to sequence changes takes place by means of collective deformations along combinations of a small number of low-frequency modes. The findings have implications in structure prediction by homology modeling.  相似文献   

9.
As modeling of changes in backbone conformation still lacks a computationally efficient solution, we developed a discretisation of the conformational states accessible to the protein backbone similar to the successful rotamer approach in side chains. The BriX fragment database, consisting of fragments from 4 to 14 residues long, was realized through identification of recurrent backbone fragments from a non-redundant set of high-resolution protein structures. BriX contains an alphabet of more than 1,000 frequently observed conformations per peptide length for 6 different variation levels. Analysis of the performance of BriX revealed an average structural coverage of protein structures of more than 99% within a root mean square distance (RMSD) of 1 Angstrom. Globally, we are able to reconstruct protein structures with an average accuracy of 0.48 Angstrom RMSD. As expected, regular structures are well covered, but, interestingly, many loop regions that appear irregular at first glance are also found to form a recurrent structural motif, albeit with lower frequency of occurrence than regular secondary structures. Larger loop regions could be completely reconstructed from smaller recurrent elements, between 4 and 8 residues long. Finally, we observed that a significant amount of short sequences tend to display strong structural ambiguity between alpha helix and extended conformations. When the sequence length increases, this so-called sequence plasticity is no longer observed, illustrating the context dependency of polypeptide structures.  相似文献   

10.
Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational variations in a protein and conformational differences in its homologues of known structure is still unclear. In this study, we have used a structural alphabet called Protein Blocks (PBs). PBs are used to perform abstraction of protein 3-D structures into a 1-D strings of 16 alphabets (ap) based on dihedral angles of overlapping pentapeptides. We have analyzed the variations in local conformations in terms of PBs represented in the ensembles of 801 protein structures determined using NMR spectroscopy. In the analysis of concatenated data over all the residues in all the NMR ensembles, we observe that the overall nature of inherent local structural variations in NMR ensembles is similar to the nature of local structural differences in homologous proteins with a high correlation coefficient of .94. High correlation at the alignment positions corresponding to helical and β-sheet regions is only expected. However, the correlation coefficient by considering only the loop regions is also quite high (.91). Surprisingly, segregated position-wise analysis shows that this high correlation does not hold true to loop regions at the structurally equivalent positions in NMR ensembles and their homologues of known structure. This suggests that the general nature of local structural changes is unique; however most of the local structural variations in loop regions of NMR ensembles do not correlate to their local structural differences at structurally equivalent positions in homologues.  相似文献   

11.
The database PALI (Phylogeny and ALIgnment of homologous protein structures) consists of families of protein domains of known three-dimensional (3D) structure. In a PALI family, every member has been structurally aligned with every other member (pairwise) and also simultaneous superposition (multiple) of all the members has been performed. The database also contains 3D structure-based and structure-dependent sequence similarity-based phylogenetic dendrograms for all the families. The PALI release used in the present analysis comprises 225 families derived largely from the HOMSTRAD and SCOP databases. The quality of the multiple rigid-body structural alignments in PALI was compared with that obtained from COMPARER, which encodes a procedure based on properties and relationships. The alignments from the two procedures agreed very well and variations are seen only in the low sequence similarity cases often in the loop regions. A validation of Direct Pairwise Alignment (DPA) between two proteins is provided by comparing it with Pairwise alignment extracted from Multiple Alignment of all the members in the family (PMA). In general, DPA and PMA are found to vary rarely. The ready availability of pairwise alignments allows the analysis of variations in structural distances as a function of sequence similarities and number of topologically equivalent Calpha atoms. The structural distance metric used in the analysis combines root mean square deviation (r.m.s.d.) and number of equivalences, and is shown to vary similarly to r.m.s.d. The correlation between sequence similarity and structural similarity is poor in pairs with low sequence similarities. A comparison of sequence and 3D structure-based phylogenies for all the families suggests that only a few families have a radical difference in the two kinds of dendrograms. The difference could occur when the sequence similarity among the homologues is low or when the structures are subjected to evolutionary pressure for the retention of function. The PALI database is expected to be useful in furthering our understanding of the relationship between sequences and structures of homologous proteins and their evolution.  相似文献   

12.
G protein-coupled receptors have a common structural motif of seven transmembrane alpha-helices and are classified into different families showing no sequence similarity. Extensive studies have been conducted on the structure-function relationship in family 1 receptors, but those in other families have not been well studied. In this study, to investigate the molecular basis leading to the G protein activation by metabotropic glutamate receptor (mGluR), the member of family 3, we searched for the amino acid residues responsible for the G protein activation in the second cytoplasmic loop, which was thought to be the main G protein binding region. Analyses of the systematical mutations of Gi/Go-coupled mGluR8 revealed the presence of a constitutively active mutation in the C-terminal region of the second loop. The corresponding mutation in the second loop of Gq-coupled mGluR1 also exhibited high agonist-independent activity. These results indicate that there is a common constitutive active mutation site regardless of mGluR subtypes, suggesting that the structural change of the junction between the second cytoplasmic loop and helix IV is strongly linked to the formation of the active state.  相似文献   

13.
Shih CH  Chang CM  Lin YS  Lo WC  Hwang JK 《Proteins》2012,80(6):1647-1657
The knowledge of conserved sequences in proteins is valuable in identifying functionally or structurally important residues. Generating the conservation profile of a sequence requires aligning families of homologous sequences and having knowledge of their evolutionary relationships. Here, we report that the conservation profile at the residue level can be quantitatively derived from a single protein structure with only backbone information. We found that the reciprocal packing density profiles of protein structures closely resemble their sequence conservation profiles. For a set of 554 nonhomologous enzymes, 74% (408/554) of the proteins have a correlation coefficient > 0.5 between these two profiles. Our results indicate that the three-dimensional structure, instead of being a mere scaffold for positioning amino acid residues, exerts such strong evolutionary constraints on the residues of the protein that its profile of sequence conservation essentially reflects that of its structural characteristics.  相似文献   

14.
La D  Silver M  Edgar RC  Livesay DR 《Biochemistry》2003,42(30):8988-8998
Protein motifs represent highly conserved regions within protein families and are generally accepted to describe critical regions required for protein stability and/or function. In this comprehensive analysis, we present a robust, unique approach to identify and compare corresponding mesophilic and thermophilic sequence motifs between all orthologous proteins within 44 microbial genomes. Motif similarity is determined through global sequence alignment of mesophilic and thermophilic motif pairs, which are identified by a greedy algorithm. Our results reveal only modest correlation between motif and overall sequence similarity, highlighting the rationale of motif-based approaches in comprehensive multigenome comparisons. Conserved mutations reflect previously suggested physiochemical principles for conferring thermostability. Additionally, comparisons between corresponding mesophilic and thermophilic motif pairs provide key biochemical insights related to thermostability and can be used to test the evolutionary robustness of individual structural comparisons. We demonstrate the ability of our unique approach to provide key insights in two examples: the TATA-box binding protein and glutamate dehydrogenase families. In the latter example, conserved mutations hint at novel origins leading to structural stability differences within the hexamer structures. Additionally, we present amino acid composition data and average protein length comparisons for all 44 microbial genomes.  相似文献   

15.
Functional sites determine the activity and interactions of proteins and as such constitute the targets of most drugs. However, the exponential growth of sequence and structure data far exceeds the ability of experimental techniques to identify their locations and key amino acids. To fill this gap we developed a computational Evolutionary Trace method that ranks the evolutionary importance of amino acids in protein sequences. Studies show that the best-ranked residues form fewer and larger structural clusters than expected by chance and overlap with functional sites, but until now the significance of this overlap has remained qualitative. Here, we use 86 diverse protein structures, including 20 determined by the structural genomics initiative, to show that this overlap is a recurrent and statistically significant feature. An automated ET correctly identifies seven of ten functional sites by the least favorable statistical measure, and nine of ten by the most favorable one. These results quantitatively demonstrate that a large fraction of functional sites in the proteome may be accurately identified from sequence and structure. This should help focus structure-function studies, rational drug design, protein engineering, and functional annotation to the relevant regions of a protein.  相似文献   

16.
Several recent works have shown that protein structure can predict site-specific evolutionary sequence variation. In particular, sites that are buried and/or have many contacts with other sites in a structure have been shown to evolve more slowly, on average, than surface sites with few contacts. Here, we present a comprehensive study of the extent to which numerous structural properties can predict sequence variation. The quantities we considered include buriedness (as measured by relative solvent accessibility), packing density (as measured by contact number), structural flexibility (as measured by B factors, root-mean-square fluctuations, and variation in dihedral angles), and variability in designed structures. We obtained structural flexibility measures both from molecular dynamics simulations performed on nine non-homologous viral protein structures and from variation in homologous variants of those proteins, where they were available. We obtained measures of variability in designed structures from flexible-backbone design in the Rosetta software. We found that most of the structural properties correlate with site variation in the majority of structures, though the correlations are generally weak (correlation coefficients of 0.1–0.4). Moreover, we found that buriedness and packing density were better predictors of evolutionary variation than structural flexibility. Finally, variability in designed structures was a weaker predictor of evolutionary variability than buriedness or packing density, but it was comparable in its predictive power to the best structural flexibility measures. We conclude that simple measures of buriedness and packing density are better predictors of evolutionary variation than the more complicated predictors obtained from dynamic simulations, ensembles of homologous structures, or computational protein design.  相似文献   

17.
Two recent studies demonstrated a positive correlation between divergence in gene expression and protein sequence in Drosophila. This correlation could be driven by positive selection or variation in functional constraint. To distinguish between these alternatives, we compared patterns of molecular evolution for 1,862 genes with two previously reported estimates of expression divergence in Drosophila. We found a slight negative trend (nonsignificant) between positive selection on protein sequence and divergence in expression levels between Drosophila melanogaster and Drosophila simulans. Conversely, shifts in expression patterns during Drosophila development showed a positive association with adaptive protein evolution, though as before the relationship was weak and not significant. Overall, we found no strong evidence for an increase in the incidence of positive selection on protein-coding regions in genes with divergent expression in Drosophila, suggesting that the previously reported positive association between protein and regulatory divergence primarily reflects variation in functional constraint.  相似文献   

18.
Jia M  Luo L  Liu C 《Biopolymers》2004,73(1):16-26
A new integrated sequence-structure database, called IADE (Integrated ASTRAL-DSSP-EMBL), incorporating matching mRNA sequence, amino acid sequence, and protein secondary structural data, is constructed. It includes 648 protein domains. Based on the IADE database, we studied the relation between RNA stem-loop frequencies and protein secondary structure. It was found that the alpha-helices and beta-strands on proteins tend to be preferably "coded" by mRNA stem region, while the coils on proteins tend to be preferably "coded" by mRNA loop region. These tendencies are more obvious if we observe the structural words (SWs). An SW is defined by a four-amino-acid-fragment that shows the pronounced secondary structural (alpha-helix or beta-strand) propensity. It is demonstrated that the deduced correlation between protein and mRNA structure can hardly be explained as the stochastic fluctuation effect.  相似文献   

19.
Abstract Protein structures are much more conserved than sequences during evolution. Based on this observation, we investigate the consequences of structural conservation on protein evolution. We study seven of the most studied protein folds, determining that an extended neutral network in sequence space is associated with each of them. Within our model, neutral evolution leads to a non-Poissonian substitution process, due to the broad distribution of connectivities in neutral networks. The observation that the substitution process has non-Poissonian statistics has been used to argue against the original Kimura neutral theory, while our model shows that this is a generic property of neutral evolution with structural conservation. Our model also predicts that the substitution rate can strongly fluctuate from one branch to another of the evolutionary tree. The average sequence similarity within a neutral network is close to the threshold of randomness, as observed for families of sequences sharing the same fold. Nevertheless, some positions are more difficult to mutate than others. We compare such structurally conserved positions to positions conserved in protein evolution, suggesting that our model can be a valuable tool to distinguish structural from functional conservation in databases of protein families. These results indicate that a synergy between database analysis and structurally based computational studies can increase our understanding of protein evolution.  相似文献   

20.
We address the question of whether or not the positions of protein-binding sites on homologous protein structures are conserved irrespective of the identities of their binding partners. First, for each domain family in the Structural Classification of Proteins (SCOP), protein-binding sites are extracted from our comprehensive database of structurally defined binary domain interactions (PIBASE). Second, the binding sites within each family are superposed using a structural alignment of its members. Finally, the degree of localization of binding sites within each family is quantified by comparing it with localization expected by chance. We found that 72% of the 1847 SCOP domain families in PIBASE have binding sites with localization values greater than expected by chance. Moreover, 554 (30%) of these families have localizations that are statistically significant (i.e., more than four standard deviations away from the mean expected by chance). In contrast, only 144 (8%) families have significantly low localization. The absence of a significant correlation of the binding site localization with the average sequence and structural conservations in a family suggests that localization can be helpful for describing the functional diversity of protein-protein interactions, complementing measures of sequence and structural conservation. Consideration of the binding site localization may also result in spatial restraints for the modeling of protein assembly structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号