共查询到20条相似文献,搜索用时 15 毫秒
1.
Action understanding: how, what and why 总被引:2,自引:0,他引:2
The mirror neuron system may help us understand how others act and what they do. A recent study has shown that consciously reflecting on their intentions additionally recruits mentalizing areas. 相似文献
2.
3.
Geographic patterns: how to identify them and why 总被引:11,自引:0,他引:11
Barbujani G 《Human biology; an international record of research》2000,72(1):133-153
Geographic patterns of genetic diversity allow us to make inferences about population histories and the evolution of inherited disease. The statistical methods describing genetic variation in space, such as estimation of genetic variances, mapping of allele frequencies, and principal components analysis, have opened up the possibility to reconstruct demographic processes whose effects have been tested by a variety of approaches, including spatial autocorrelation, cladistic analyses, and simulations. These studies have significantly contributed to our understanding of human genetic variation; however, the molecular data that have accumulated since the mid-1980s have also created new complications. Reasons include the generally limited sample sizes, but, more generally, it is the nature of molecular variation itself that makes it necessary to develop and apply specific models and methods for the treatment of DNA data. The foreseeable diffusion of laboratory techniques for the rapid typing of many DNA markers will force us to change our approach to the study of human variation anyway, moving from the gene level toward the genome level. Because extensive variation among loci is the rule rather than the exception, an important practical tip is to be skeptical of inferences based on single-locus diversity. 相似文献
4.
5.
Rosario Rizzuto Saverio Marchi Paola Aguiari Diego De Stefani Sara Leo Roberta Siviero Erika Zecchini Paolo Pinton 《BBA》2009,1787(11):1342-1351
The heterogenous subcellular distribution of a wide array of channels, pumps and exchangers allows extracellular stimuli to induce increases in cytoplasmic Ca2+ concentration ([Ca2+]c) with highly defined spatial and temporal patterns, that in turn induce specific cellular responses (e.g. contraction, secretion, proliferation or cell death). In this extreme complexity, the role of mitochondria was considered marginal, till the direct measurement with targeted indicators allowed to appreciate that rapid and large increases of the [Ca2+] in the mitochondrial matrix ([Ca2+]m) invariably follow the cytosolic rises. Given the low affinity of the mitochondrial Ca2+ transporters, the close proximity to the endoplasmic reticulum (ER) Ca2+-releasing channels was shown to be responsible for the prompt responsiveness of mitochondria. In this review, we will summarize the current knowledge of: i) the mitochondrial and ER Ca2+ channels mediating the ion transfer, ii) the structural and molecular foundations of the signaling contacts between the two organelles, iii) the functional consequences of the [Ca2+]m increases, and iv) the effects of oncogene-mediated signals on mitochondrial Ca2+ homeostasis. Despite the rapid progress carried out in the latest years, a deeper molecular understanding is still needed to unlock the secrets of Ca2+ signaling machinery. 相似文献
6.
Plastid endosymbiosis was accompanied by the appearance of a novel type of semi-cristalline storage polysaccharide (starch). Interestingly, starch is found in the cytoplasm of Rhodophyceae and Glaucophyta but is localized to the chloroplast stroma of Chloroplastida. The pathway is presumed to have been cytosolic in the common ancestor of the three Archaeplastida lineages. The means by which in green plants and algae an entire suite of nuclear-encoded starch-metabolism genes could have had their protein products rewired simultaneously to plastids are unclear. This opinion article reviews the timing and the possible reasons underlying this rewiring and proposes a hypothesis that explains its mechanism. The consequences of this mechanism on the complexity of starch metabolism in Chloroplastida are discussed. 相似文献
7.
We are grateful to the commentators for taking the time to respond to our article. Too many interesting and important points have been raised for us to tackle them all in this response, and so in the below we have sought to draw out the major themes. These include problems with both the term ‘ultimate causation’ and the proximate-ultimate causation dichotomy more generally, clarification of the meaning of reciprocal causation, discussion of issues related to the nature of development and phenotypic plasticity and their roles in evolution, and consideration of the need for an extended evolutionary synthesis. 相似文献
8.
9.
Pseudouridine (5-ribosyluracil) is a ubiquitous yet enigmatic constituent of structural RNAs (transfer, ribosomal, small nuclear, and small nucleolar). Although pseudouridine (psi) was the first modified nucleoside to be discovered in RNA, and is the most abundant, its biosynthesis and biological roles have remained poorly understood since its identification as a fifth nucleoside in RNA. Recently, a combination of biochemical, biophysical, and genetic approaches has helped to illuminate the structural consequences of psi in polyribonucleotides, the biochemical mechanism of U-->psi isomerization in RNA, and the role of modification enzymes (psi synthases) and box H/ACA snoRNAs, a class of eukaryotic small nucleolar RNAs, in the site-specific biosynthesis of psi. Through its unique ability to coordinate a structural water molecule via its free N1-H, psi exerts a subtle but significant rigidifying influence on the nearby sugar-phosphate backbone and also enhances base stacking. These effects may underlie the biological role of most (but perhaps not all) of the psi residues in RNA. Certain genetic mutants lacking specific psi residues in tRNA or rRNA exhibit difficulties in translation, display slow growth rates, and fail to compete effectively with wild-type strains in mixed culture. In particular, normal growth is severely compromised in an Escherichia coli mutant deficient in a pseudouridine synthase responsible for the formation of three closely spaced psi residues in the mRNA decoding region of the 23S rRNA. Such studies demonstrate that pseudouridylation of RNA confers an important selective advantage in a natural biological context. 相似文献
10.
In recent years, a number of studies have been performed to evaluate the possible health benefits of an increased intake of folic acid (FA) on human health. However, the only well-documented benefit emerging from randomized controlled trials, nonrandomized interventions trials, and observational studies is the risk reduction of neural tube defects (NTDs). NTDs are congenital malformations that include anencephaly, encephalocele, and spina bifida caused by the failure of fusion of the neural tube that normally closes between 22nd and 28th day since conception (on an average 40-42th day after the first day of last menstrual period). The occurrence of NTDs varies among population between 0.8 and 3 per 1,000, and it is estimated that 324,000 pregnancies are affected every year worldwide. More FA can decrease the NTDs risk up to 0.6 per 1,000 births. Other malformations as congenital heart defects, cleft lip, and limb deficiencies can be most probably also reduced. To decrease the NTDs risk, it is recommended that all women capable of becoming pregnant should have more FA. The goal is that every woman could start her pregnancy with an optimal folate status, estimated today to be as more than 906 nmol/L of red blood cell folate concentration. More FA can be obtained through a strict Mediterranean pattern of nutrition and healthy life style, fortified food, supplements. Women and health authorities can choose the most appropriate strategy. Monitoring folate status of women during the periconceptional period is an essential way to evaluate the success of the preferred strategy. 相似文献
11.
Isoprene emission from plants: why and how 总被引:4,自引:0,他引:4
BACKGROUND: Some, but not all, plants emit isoprene. Emission of the related monoterpenes is more universal among plants, but the amount of isoprene emitted from plants dominates the biosphere-atmosphere hydrocarbon exchange. SCOPE: The emission of isoprene from plants affects atmospheric chemistry. Isoprene reacts very rapidly with hydroxyl radicals in the atmosphere making hydroperoxides that can enhance ozone formation. Aerosol formation in the atmosphere may also be influenced by biogenic isoprene. Plants that emit isoprene are better able to tolerate sunlight-induced rapid heating of leaves (heat flecks). They also tolerate ozone and other reactive oxygen species better than non-emitting plants. Expression of the isoprene synthase gene can account for control of isoprene emission capacity as leaves expand. The emission capacity of fully expanded leaves varies through the season but the biochemical control of capacity of mature leaves appears to be at several different points in isoprene metabolism. CONCLUSIONS: The capacity for isoprene emission evolved many times in plants, probably as a mechanism for coping with heat flecks. It also confers tolerance of reactive oxygen species. It is an example of isoprenoids enhancing membrane function, although the mechanism is likely to be different from that of sterols. Understanding the regulation of isoprene emission is advancing rapidly now that the pathway that provides the substrate is known. 相似文献
12.
Visual attention: the where,what, how and why of saliency 总被引:6,自引:0,他引:6
Treue S 《Current opinion in neurobiology》2003,13(4):428-432
Attention influences the processing of visual information even in the earliest areas of primate visual cortex. There is converging evidence that the interaction of bottom-up sensory information and top-down attentional influences creates an integrated saliency map, that is, a topographic representation of relative stimulus strength and behavioral relevance across visual space. This map appears to be distributed across areas of the visual cortex, and is closely linked to the oculomotor system that controls eye movements and orients the gaze to locations in the visual scene characterized by a high salience. 相似文献
13.
Oscillatory processes in biological signal transduction have come under progressively increasing scrutiny in terms of their functional significance and mechanisms of emergence and regulation. Since oscillatory processes can be a by-product of rapid adaptation and can also easily emerge if the feedback underlying adaptive processes is inadvertently artificially enhanced, one needs to exercise caution in both claiming the existence of in vivo oscillations and seeking to assign to them a specific functional significance. Nevertheless, oscillations can be a powerful means of encoding and transferring information both in time and in space, thus possessing important potential advantages for evolutionary selection and stabilization. Thus periodicity in the cell responses to diverse persistent external stimuli might become a more recognized and even expected feature of signaling processes. 相似文献
14.
Luhrmann TM 《Culture, medicine and psychiatry》2007,31(2):135-172
The history of the way schizophrenia has been conceptualized in American psychiatry has led us to be hesitant to explore the
role of social causation in schizophrenia. But there is now good evidence for social impact on the course, outcome, and even
origin of schizophrenia, most notably in the better prognosis for schizophrenia in developing countries and in the higher
rates of schizophrenia for dark-skinned immigrants to England and the Netherlands. This article proposes that “social defeat”
may be one of the social factors that may impact illness experience and uses original ethnographic research to argue that
social defeat is a common feature of the social context in which many people diagnosed with schizophrenia in America live
today. 相似文献
15.
16.
Longevity of clonal plants: why it matters and how to measure it 总被引:1,自引:0,他引:1
Background
Species'' life-history and population dynamics are strongly shaped by the longevity of individuals, but life span is one of the least accessible demographic traits, particularly in clonal plants. Continuous vegetative reproduction of genets enables persistence despite low or no sexual reproduction, affecting genet turnover rates and population stability. Therefore, the longevity of clonal plants is of considerable biological interest, but remains relatively poorly known.Scope
Here, we critically review the present knowledge on the longevity of clonal plants and discuss its importance for population persistence. Direct life-span measurements such as growth-ring analysis in woody plants are relatively easy to take, although, for many clonal plants, these methods are not adequate due to the variable growth pattern of ramets and difficult genet identification. Recently, indirect methods have been introduced in which genet size and annual shoot increments are used to estimate genet age. These methods, often based on molecular techniques, allow the investigation of genet size and age structure of whole populations, a crucial issue for understanding their viability and persistence. However, indirect estimates of clonal longevity are impeded because the process of ageing in clonal plants is still poorly understood and because their size and age are not always well correlated. Alternative estimators for genet life span such as somatic mutations have recently been suggested.Conclusions
Empirical knowledge on the longevity of clonal species has increased considerably in the last few years. Maximum age estimates are an indicator of population persistence, but are not sufficient to evaluate turnover rates and the ability of long-lived clonal plants to enhance community stability and ecosystem resilience. In order to understand the dynamics of populations it will be necessary to measure genet size and age structure, not only life spans of single individuals, and to use such data for modelling of genet dynamics. 相似文献17.
18.
Brain plasticity refers to the brain’s ability to change structure and/or function during maturation, learning, environmental challenges, or disease. Multiple and dissociable plastic changes in the adult brain involve many different levels of organization, ranging from molecules to systems, with changes in neural elements occurring hand-in-hand with changes in supportive tissue elements, such as glia cells and blood vessels. There is now substantial evidence indicating that new functional neurons are constitutively generated from endogenous pools of neural stem cells in restricted areas of the mammalian brain, throughout life. So, in addition to all the other known structural changes, entire new neurons can be added to the existing network circuitry. This addition of newborn neurons provides the brain with another tool for tinkering with the morphology of its own functional circuitry. Although the ongoing neurogenesis and migration have been extensively documented in non-mammalian species, its characteristics in mammals have just been revealed and thus several questions remain yet unanswered. Is adult neurogenesis an atavism, an empty-running leftover from evolution? What is adult neurogenesis good for and how does the brain ‘know’ that more neurons are needed? How is this functional demand translated into signals a precursor cell can detect? Adult neurogenesis may represent an adaptive response to challenges imposed by an environment and/or internal state of the animal. To ensure this function, the production, migration, and survival of newborn neurons must be tightly controlled. We attempt to address some of these questions here, using the olfactory bulb as a model system. 相似文献
19.
20.
Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence 总被引:1,自引:0,他引:1
Understanding the impact of climate-induced distributional shifts on species divergence, like those accompanying the Pleistocene glacial cycles [1, 2], requires tools that explicitly incorporate the geographic configuration of past distributions into analyses of genetic differentiation. Depending on the historical distribution of species, genetic differences may accumulate among ancestral source populations, but there is long-standing debate whether displacements into glacial refugia promoted divergence. Here we integrate coalescent-based genetic models [3, 4] with ecological-niche modeling [5, 6] to generate expectations for patterns of genetic variation based on an inferred past distribution of a species. Reconstruction of the distribution of a montane grasshopper species during the last glacial maximum suggests that Melanoplus marshalli populations from the sky islands of Colorado and Utah were likely colonized from multiple ancestral source populations. The genetic analyses provide compelling evidence that the historical distribution of M. marshalli-namely, spatial separation of multiple refugia-was conducive to genetic differentiation. The coupling of genetic and ecological-niche modeling provides a new and flexible tool for integrating paleoenvironmental details into species-specific predictions of population structure that can increase our understanding of why the glacial cycles promoted speciation in some taxa and yet inhibited diversification in others [7, 8]. 相似文献