首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intrinsic fluorescence from DNA can be enhanced by metallic particles   总被引:5,自引:0,他引:5  
High sensitivity detection of DNA is essential for genomics. The intrinsic fluorescence from DNA is very weak and almost all methods for detecting DNA rely on the use of extrinsic fluorescent probes. We show that the intrinsic emission from DNA can be enhanced many-fold by spatial proximity to silver island films. Silver islands are subwavelength size patches of metallic silver on an inert substrate. Time-resolved measurements show a decreased lifetime for the intrinsic DNA emission near the silver islands. These results of increased intensity and decreased lifetime indicate a metal-induced increase in the radiative rate decay of the DNA bases. The possibility of increased radiative decay rates for DNA bases and other fluorophores suggest a wide variety of DNA measurements and other biomedical assays based on metal-induced increases in the fluorescence quantum yield of weakly fluorescent substances.  相似文献   

2.
We examined the fluorescence spectral properties of DNA oligomers, labeled with Cy3 or Cy5, when bound to quartz surfaces coated with metallic silver particles. Prior to binding of labeled DNA the surfaces were treated with polylysine or 3-aminopropyl triethoxysilane or were coated with avidin for binding of biotinylated oligomers. The fluorescence intensities were increased an average of 8-fold on these surfaces. Despite the increased emission intensity, the photostability of the labeled DNA was the same or higher on the silver-coated surfaces than on the uncoated slides. The time-integrated intensities, that is the area under the intensity plots with continuous illumination, increased an average of 6-fold. In all cases the lifetimes were dramatically shortened on the silver particles, indicating an over 100-fold increase in the radiative decay rates. These results suggest the use of substrates containing silver particles for increased sensitivity of DNA detection on DNA arrays.  相似文献   

3.
Metallic surfaces can have unusual effects on fluorophores such as increasing or decreasing the rates of radiative decay and the rates of resonance energy transfer (RET). In the present article we describe the effects of metallic silver island films on the emission spectra, lifetimes, and energy transfer for several fluorophores. The fluorophores are not covalently coupled to the silver islands so that there are a range of fluorophore-to-metal distances. We show that proximity of fluorophores to the silver islands results in increased fluorescence intensity, with the largest enhancement for the lowest-quantum-yield fluorophores. Importantly, the metal-induced increases in intensity are accompanied by decreased lifetimes and increased photostability. These effects demonstrate that the silver islands have increased the radiative decay rates of the fluorophore. For solvent-sensitive fluorophores the emission spectra shifted to shorted wavelengths in the presence of the silver islands, which is consistent with a decrease of the apparent lifetime for fluorophores near the metal islands. We also observed an increased intensity and blue spectral shift for the protein human glyoxalase, which displays a low quantum yield for its intrinsic tryptophan emission. In this case the blue shift is thought to be due to increased emission from a buried low-quantum-yield tryptophan residue. Increased intensities were also observed for the intrinsic emission of the nucleic acid bases adenine and thymine and for single-stranded 15-mers poly(T) and poly(C). And finally, we observed increased RET for donors and acceptors in solution and when bound to double-helical DNA. These results demonstrate that metallic particles can be used to modify the emission from intrinsic and extrinsic fluorophores in biochemical systems.  相似文献   

4.
The detection of submonolayers of proteins based on native fluorescence is a potentially valuable approach for label-free detection. We have examined the possibility of using silver nanostructures to increase the emission of tryptophan residues in proteins. Fluorescence spectra, intensities, and lifetimes of multilayers and submonolayers of proteins deposited on the surfaces of silver island films were measured. Increased fluorescence intensities from two- to three-fold and similar decreases in lifetimes were observed in the presence of the silver nanoparticles compared with the proteins on the surface of the bare quartz. The observed spectral effects of silver nanoparticles on tryptophan fluorescence indicates the possibility for the design of analytical tools for the detection of proteins without traditional labeling by extrinsic fluorophores.  相似文献   

5.
We studied one- and two-photon induced fluorescence of Pacific Blue (PB)-labeled human serum albumin (HSA) in the presence of different size silver colloids. The PB fluorescence emission intensity was observed with small (30-40 nm) and large (about 120 nm) colloids and compared with PB emission in absence of colloids. For the system with a small core size colloids we did not detect any fluorescence enhancement with one-photon excitation and the enhancement observed with two-photon excitation was about 2.5-fold. In contrast, for large silver colloids we observed about a 2-fold increase in PB fluorescence brightness for one-photon excitation, and the enhancement with two-photon excitation excided 13-folds. Much stronger increases in brightness observed with two-photon excitation, compared to one-photon excitation, indicate a dominant role of enhanced local field in fluorescence enhancement on silver colloids in solutions.  相似文献   

6.
We examined the effects of metallic silver particles on resonance energy transfer (RET) between fluorophores covalently bound to DNA. A coumarin donor and a Cy3 acceptor were positioned at opposite ends of a 23-bp double helical DNA oligomer. In the absence of silver particles the extent of RET is near 9%, consistent with a Forster distance R(0) near 50 A and a donor to acceptor distance near 75 A. The transfer efficiency increased when the solution of AMCA-DNA-Cy3 was placed between two quartz plates coated with silver island films to near 64%, as determined by both steady-state and time-resolved measurements. The apparent R(0) in the presence of silver island films increases to about 110 A. These values of the transfer efficiency and R(0) represent weighted averages for donor-acceptor pairs near and distant from the metallic surfaces, so that the values at an optimal distance are likely to be larger. The increased energy transfer is observed only between two sandwiched silvered slides. When we replaced one silvered slide with a quartz plate the effect vanished. Also, the increased energy transfer was not observed for silvered slides separated more than a few micrometers. These results suggest the use of metal-enhanced RET in PCR, hybridization, and other DNA assays, and the possibility of controlling energy transfer by the distance between silver surfaces.  相似文献   

7.
We examined the fluorescence spectral properties of Cy3- and Cy5-labeled oligonucleotides at various distances from the surface of silver island films. The distance to the surface was controlled by alternating layers of biotinylated bovine serum albumin (BSA) and avidin, followed by binding of a biotinylated oligonucleotide. The maximum enhancement of fluorescence near a factor of 12 was observed for the first BSA-avidin layer, with the enhancement decreasing to 2-fold for six layers. The minimum lifetimes were observed for the first BSA-avidin layer, and were about 25-fold shorter than on quartz slides without silver, with the lifetimes being about 2-fold shorter for six BSA-avidin layers. These results suggest that maximum fluorescence enhancements occur about 90A from the silver surface, a distance readily obtained by one or two layers of proteins.  相似文献   

8.
We present a generic immunoassay platform that uses enhanced total internal reflection fluorescence in the proximity of silver island films (SIFs), a surface coating consisting of metal (silver) particles. This platform is used with a model immunoassay where a protein antigen, rabbit immunoglobulin G, was immobilized on the SIF-coated glass surface. The signal from a fluorescent dye-labeled anti-rabbit antibody binding to the surface antigen was detected; different color dyes have been tested. Close placement of the fluorophore to surface-bound silver nanostructures results in dramatic signal enhancement (up to 40-fold) on the SIFs as compared with the glass slides. Use of the total internal reflection mode of excitation has significant advantages (over classic front-face excitation) for practical assay development. The limited evanescent wave excitation volume makes it possible to minimize the background signal and use the immunoassay with no need for any washing steps.  相似文献   

9.
PicoGreen (PG) is a fluorescent probe for both double-stranded DNA (dsDNA) detection and quantification based on its ability to form a luminescent complex with dsDNA as compared with the free dye in solution. To expand the sensitivity of PG detection, we have studied the spectral properties of PG, both free and in complex with DNA in solution, when the fluorophore is in proximity to silver nanoparticles. We show that for a broad range of PG concentrations (20 pM-3.5 μM), it does not form dimers/oligomers and it exists in a monomeric state. On binding to DNA in the absence of silver, PG fluorescence increases approximately 1100-fold. Deposition of PG/DNA complex onto silver island films (SiFs) increases fluorescence approximately 7-fold due to the metal-enhanced fluorescence (MEF) effect, yielding fluorescence enhancement of 7700-fold as compared with the free dye on glass. In contrast to PG in complex with DNA, the free dye on SiFs demonstrates a decrease in brightness approximately 5-fold. Therefore, the total enhancement of PG on binding to DNA on silver reaches a value of approximately 38,000 as compared with free PG on SiFs. Consequently, the metal-enhanced detection of PG fluorescence is likely to find important utility for amplified dsDNA quantification.  相似文献   

10.
The adsorption of the protein avidin from hen egg white on patterns of silicon dioxide and platinum surfaces on a microchip and the use of fluorescent microscopy to detect binding of biotin are described. A silicon dioxide microchip was formed using plasma-enhanced chemical vapor deposition while platinum was deposited using radiofrequency sputtering. After cleaning using a plasma arc, the chips were placed into solutions containing avidin or bovine serum albumin. The avidin was adsorbed onto the microchips from phosphate-buffered saline (PBS) or from PBS to which ammonium sulfate had been added. Avidin was also adsorbed onto bovine serum albumin (BSA)-coated surfaces of oxide and platinum. Fluorescence microscopy was used to confirm adsorption of labeled protein, or the binding of fluorescently labeled biotin onto previously adsorbed, unlabeled avidin. When labeled biotin in PBS was presented to avidin adsorbed onto a BSA-coated microchip, the fluorescence signal was significantly higher than for avidin adsorbed onto the biochip alone. The results show that a simple, low-cost adsorption process can deposit active protein onto a chip in an approach that has potential application in the development of protein biochips for the detection of biological species.  相似文献   

11.
Plasmonic gold films (PGF) prepared by vacuum deposition of gold onto quartz slides possess unique property to enhance electromagnetic signal in the near field. Spectral tuning of PGF’s plasmon band to resonance with the electronic spectra of adsorbed molecules provides selective enhancement of fluorescence or surface-enhanced Raman scattering in the far field. Plasmon-enhanced fluorescence (PEF) of mitoxantrone (mitox) as a function of the distance between gold surface and adsorbed molecules for different polarization and incidence angle of exciting light is analyzed in this work. Spectrophotometric data reveal that probability of localized plasmon excitation in gold grains increases with growth of incidence angle for s-polarized and decrease for p-polarized excitation. This fact correlates well with oblate shape of gold particles detected by Atomic force microscope. However, the fluorescence intensity of dyes deposited at fixed distance from gold surface increase with angle of incidence of p-polarized light more noticeably than for s-polarized one. Nevertheless, the behavior of mitox PEF signal upon p-polarized laser excitation and different angle of incidence are similar in appearance to such phenomenon as selective photoelectric effect. According to this observation, the near-field interactions between plasmons and molecule as possible mechanism of PEF is discussed.  相似文献   

12.
Spectral changes and a sixfold increase in the emission intensity were observed in the fluorescence of a single xanthene probe (Texas red) attached to beta2m-microglobulin (beta2m) upon assembly of beta2m into a ternary complex with mouse H-2Kd heavy chain and influenza nuclear protein peptide. Dissociation of the labeled beta2m from the ternary complex restored the probe's fluorescence and absorption spectra and reduced the emission intensity. Thus changes in xanthene probe fluorescence upon association/dissociation of the labeled beta2m molecule with/from the ternary complex provide a simple and convenient method for studying the assembly/dissociation mechanism of the class I major histocompatibility complex (MHC-I) encoded molecule. The photophysical changes in the probe can be accounted for by the oligomerization of free labeled beta2m molecules. The fluorescence at 610 nm is due to beta2m dimers, where the probes are significantly separated spatially so that their emission and excitation properties are close to those of xanthene monomers. Fluorescence around 630 nm is due to beta2m oligomers where xanthene probes interact. Minima in the steady-state excitation (550 nm) and emission (630 nm) anisotropy spectra correlate with the maxima of the high-order oligomer excitation and emission spectra, showing that their fluorescence is more depolarized. These photophysical features are explained by splitting of the first singlet excited state of interacting xanthene probes that can be modeled by exciton theory.  相似文献   

13.
Direct monitoring of recognition processes at the molecular level is a valuable tool for studying reaction kinetics to assess affinity constants (e.g. drugs to receptors) and for designing rapid single step immunoassays. Methods currently used to gain information about binding processes predominantly depend on surface plasmon resonance. These systems use excitation with coherent light in attenuated total reflection geometry to obtain discrimination between surface-bound and free molecules in solution. Therefore labeling of the compounds is not necessary, but due to the complexity of the measuring setup the method is rather costly. In this contribution we present a simple method for performing kinetic single step biorecognition assays with fluorophore labeled compounds using the fluorescence enhancement properties of surface bound silver colloids. Silver colloids are bound to standard microplates via silanization of the plastic surface. Fluorophores close to this colloid coated surface show a significant gain in fluorescence compared to fluorophores farther away in the bulk solution. Therefore discrimination between surface bound and free fluorophores is possible and the binding of, for example, fluorophore labeled antibodies to antigens immobilized on the colloid surface results in increasing fluorescence intensity. Utilization of standard microplates makes this method fully compatible with conventional microplate processing and reading devices. Neither excitation with coherent laser light nor ATR geometry is required, the measurement is performed in a standard fluorescence microplate reader in front face geometry with a xenon flash lamp as excitation source. Methods for the preparation of colloid-coated microplates and fluorescence-enhanced biorecognition assays are presented. Additionally the dependence of the system performance on the structure and properties of the metal colloid coated surface is described. A two-component biorecognition model system shows a detection limit in the subnanomolar range. The ease of colloid-surface preparation and the high sensitivity makes fluorescence enhancement at colloid-coated microplates a valuable tool for studying reaction kinetics and performing rapid single-step immunoassays.  相似文献   

14.
We present fluoroimmunoassays on plain metal-coated surfaces (metal mirrors) enhanced by metal nanoparticles (silver island films [SIFs]). Metal mirrors (aluminum, gold, or silver protected with a thin silica layer) were coated with SIFs, and an immunoassay (model assay for rabbit immunoglobulin G or myoglobin immunoassay) was performed on this surface using fluorescently labeled antibodies. Our results showed that SIFs alone (on glass surface not coated with metal) enhance the immunoassay signal approximately 3- to 10-fold. Using a metal mirror instead of glass as support for SIFs results in up to 50-fold signal enhancement.  相似文献   

15.
Decreasing photobleaching by silver island films: application to muscle   总被引:1,自引:0,他引:1  
Recently it has become possible to study interactions between proteins at the level of single molecules. This requires collecting data from an extremely small volume, small enough to contain one molecule-typically of the order of attoliters (10(-18) L). Collection of data from such a small volume with sufficiently high signal-to-noise ratio requires that the rate of photon detection per molecule be high. This calls for a large illuminating light flux, which in turn leads to rapid photobleaching of the fluorophores that are labeling the proteins. To decrease photobleaching, we measured fluorescence from a sample placed on coverslips coated with silver island films (SIF). SIF reduce photobleaching because they enhance fluorescence brightness and significantly decrease fluorescence lifetime. Increase in the brightness effectively decreases photobleaching because illumination can be attenuated to obtain the same fluorescence intensity. Decrease of lifetime decreases photobleaching because short lifetime minimizes the probability of oxygen attack while the fluorophore is in the excited state. The decrease of photobleaching was demonstrated in skeletal muscle. Myofibrils were labeled lightly with rhodamine-phalloidin, placed on coverslips coated with SIF, illuminated by total internal reflection, and observed through a confocal aperture. We show that SIF causes the intensity of phalloidin fluorescence to increase 4-5 fold and its fluorescence lifetime to decrease on average 23-fold. As a consequence, the rate of photobleaching of four or five molecules of actin of a myofibril on Olympus coverslips coated with SIF decreased at least 30-fold in comparison with photobleaching on an uncoated coverslip. Significant decrease of photobleaching makes the measurement of signal from a single cross-bridge of contracting muscle feasible.  相似文献   

16.
Near-infrared (near-IR) excitation produces little background signal from biological molecules, making near-IR fluorescence technology highly useful in proteomic and genomic applications. To increase the emissions of near-IR fluorophores, we examined the use of metal-enhanced fluorescence on these longer wavelength dyes. IRDye®700- and IRDye®800-labeled DNA oligonucleotides and proteins were spotted onto silver island film (SIF)-coated glass slides, and analyzed using a LI-COR Odyssey® IR imaging system. We observed more than 18-fold enhancement of the IRDye®700 and 15-fold enhancement of the IRDye®800-labeled DNA oligonucleotides when spotted on SIF-coated surfaces compared with uncoated surfaces. We also demonstrated that the enhanced emissions produced on the SIF-coated slides remained linear over several orders of magnitude, that the emissions remained reproducible across a slide surface, and that the SIF-coated slide remained effective at enhancing emissions after 9 months of storage. Our results indicate that SIF-coated glass slides are effective at enhancing near-IR fluorescence and could be developed into an effective tool to aid in molecular biological applications.  相似文献   

17.
This work constitutes the first fluorescent imaging of cells using metal plasmon-coupled probes (PCPs) at single cell resolution. N-(2-Mercapto-propionyl)glycine-coated silver nanoparticles were synthesized by reduction of silver nitrate using sodium borohyride and then succinimidylated via ligand exchange. Alexa Fluor 647-labeled concanavalin A (con A) was chemically bound to the silver particles to make the fluorescent metal plasmon-coupled probes. The fluorescence images were collected using a scanning confocal microscopy. The fluorescence intensity was observed to enhance 7-fold when binding the labeled con A on a single silver particle. PCPs were conjugated on HEK 293 A cells. Imaging results demonstrate that cells labeled by PCPs were 20-fold brighter than those by free labeled con A.  相似文献   

18.
The green fluorescent protein (GFP) has emerged as a powerful reporter molecule for monitoring gene expression, protein localization, and protein-protein interaction. However, the detection of low concentrations of GFPs is limited by the weakness of the fluorescent signal and the low photostability. In this report, we observed the proximity of single GFPs to metallic silver nanoparticles increases its fluorescence intensity approximately 6-fold and decreases the decay time. Single protein molecules on the silvered surfaces emitted 10-fold more photons as compared to glass prior to photobleaching. The photostability of single GFP has increased to some extent. Accordingly, we observed longer duration time and suppressed blinking. The single-molecule lifetime histograms indicate the relatively heterogeneous distributions of protein mutants inside the structure.  相似文献   

19.
The interaction of ligands and drug molecules with protein is of major interest in drug pharmacokinetics and pharmacodynamics. In this study, we synthesized a novel thiosemicarbazone‐based amphiphilic molecule for selective binding and detection of human serum albumin (HSA) with significant increase in fluorescence intensity. The compound 5‐(octyloxy) naphthalene substituted salicylaldehyde thiosemicarbazone was designed to interact with site I of HSA. The weak fluorescence of the probes in aqueous solution showed a dramatic increase in fluorescence intensity upon binding with HSA, while the responses to various other proteins and enzymes were negligible under similar experimental conditions. Changes in fluorescence intensity and formation of a new emission maximum of the compound in the presence of HSA as well as an increase in steady‐state anisotropy values reflected well the nature of binding and location of the probe inside the protein environment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
近几年,稀土上转换荧光纳米材料作为新型的荧光探针受到研究者的广泛关注,其优势在于光化学稳定性好、发射谱带窄、荧光寿命长、Stokes位移大等.同时,它利用近红外激光器作为激发光源,组织穿透能力好、对生物组织的损伤小、几乎没有背景荧光,使其应用于生物活体荧光成像成为可能.本文主要综述了最近稀土上转换荧光纳米材料在制备与生物应用方面的研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号