首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The insulin receptor (IR) tyrosine kinase can apparently directly phosphorylate and activate one or more serine kinases. The identities of such serine kinases and their modes of activation are still unclear. We have described a serine kinase (here designated insulin receptor serine (IRS) kinase) from rat liver membranes that co-purifies with IR on wheat germ agglutinin-agarose. The kinase was activated after phosphorylation of the membrane glycoproteins by casein kinase-1, casein kinase-2, or casein kinase-3 (Biochem Biophys Res Commun 171:75–83, 1990). In this study, IRS kinase was further characterized. The presence of vanadate or phosphotyrosine in reaction mixtures was required for activation to be observed. Phosphoserine and phosphothreonine are only about 25% as effective as phosphotyrosine, whereas sodium fluoride and molybdate were ineffective in supporting activation. Vanadate and phosphotyrosine support IRS kinase activation by apparently inhibiting phosphotyrosine protein phosphatases present among the membrane glycoproteins. IR -subunit, myelin basic protein, and microtubule-associated protein-2 are good substrates for IRS kinase. The kinase prefers Mn2+ (Ka=1.3 mM) as a metal cofactor. Mg2+ (Ka=3.3 mM) is only 30% as effective as Mn2+. The kinase activity is stimulated by basic polypeptides, with greater than 30-fold activation achieved with polylysine and protamine. Our results suggest that both serine/threonine and tyrosine phosphorylation are required for activation of IRS kinase. Serine phosphorylation is catalyzed by one of the casein kinases, whereas tyrosine phosphorylation is catalyzed by a membrane tyrosine kinase, possibly IR tyrosine kinase. (Mol Cell Biochem121: 167–174, 1993)  相似文献   

3.
FAK (focal adhesion kinase) is a nonreceptor protein-tyrosine kinase activated by tyrosine phosphorylation following integrin-mediated cell adhesion. Oncogenic Src promotes enhanced and deregulated FAK tyrosine phosphorylation which has been proposed to contribute to altered cell growth and/or morphological properties associated with transformation. In this study, an inducible FAK expression system was used to study the potential role of FAK in v-Src transformation. Our results portray FAK as a major v-Src substrate that also plays a role in recruiting v-Src to phosphorylate substrates CAS (Crk-associated substrate) and paxillin. The FAK Tyr-397 autophosphorylation site was necessary for this scaffolding function, but was not required for v-Src to stably interact with and phosphorylate FAK. FAK was also shown to negatively regulate v-Src mediated phosphorylation of the FAK-related kinase PYK2. Despite these effects, FAK does not play an essential role in targeting v-Src to major cellular substrates including CAS and paxillin. Nor is FAK strictly required to achieve the altered morphological and growth characteristics of v-Src transformed cells.  相似文献   

4.
5.
Glutamate is the major excitatory neurotransmitter in the CNS. Although its role in neurons has been studied extensively, little is known about its function in astrocytes. We studied the effects of glutamate on signaling pathways in primary astrocytes. We found that the tyrosine kinase related adhesion focal tyrosine kinase (RAFTK) is tyrosine phosphorylated in response to glutamate in a time- and dose-dependent manner. This phosphorylation was pertussis toxin (PTX) sensitive and could be attenuated by the depletion of Ca2+ from intracellular stores. RAFTK tyrosine phosphorylation was mediated primarily by class I/II metabotropic glutamate receptors and depends on protein kinase C (PKC) activation. Glutamate treatment of primary astrocytes also results in a significant increase in the activity of the mitogen-activated protein kinases [extracellular signal-related kinases 1/2 (ERK1/2)]. Like RAFTK phosphorylation, ERK1/2 activation is PTX sensitive and can be attenuated by the depletion of intracellular Ca2+ and by PKC inhibition, suggesting that RAFTK might mediate the glutamate-dependent activation of ERK1/2. Furthermore, we demonstrated that glutamate stimulation of primary astrocytes leads to a significant increase in DNA synthesis. Glutamate-stimulated DNA synthesis is PTX sensitive and can be inhibited by the MAP kinase kinase inhibitor PD98059, suggesting that in primary astrocytes, glutamate might signal via RAFTK and MAP kinase to promote DNA synthesis and cell proliferation.  相似文献   

6.
Focal adhesion kinase (FAK) is critical for collagen expression but its regulation of collagen remodeling is not defined. We examined the role of FAK in the degradation and reorganization of fibrillar collagen. Compared with wild-type (WT) mouse embryonic fibroblasts, FAK null (FAK−/−) fibroblasts generated twofold (p < .0001) higher levels of ¾ collagen I fragment and expressed up to fivefold more membrane-type matrix metalloproteinase (MMP). When plated on stiff collagen substrates, compared with WT, FAK−/− cells were smaller (threefold reduced cell surface area; p < .0001) and produced fivefold fewer cell extensions (p < .0001) that were 40% shorter (p < .001). When cultured on soft collagen gels (stiffness of ~100 Pa) for 6–48 hr, cell spreading and cell extension formation were reduced by greater than twofold (p < .05 and p < .0001, respectively) while collagen compaction and alignment were reduced by approximately 30% (p < .0001) in FAK−/− cells. Similar results were found after treatment with PF573228, a FAK inhibitor. Reconstitution of FAK−/− cells with FAK mutants showed that compared with WT, cell extension formation was reduced twofold (p < .0001) in the absence of the kinase domain and sixfold (p < .0001) with a Y397F mutant. Enhanced collagen degradation was exhibited by the mutants (~threefold increase; p < .0001 of ¾ collagen fragments without kinase domain or Y397F mutant; p < .01). Compared with FAK+/+ cells, matrices produced by FAK−/− cells generated higher levels of β1 integrin activation (p < 0.05), extracellular-signal-regulated kinase (ERK) phosphorylation, and production of ¾ collagen I fragment by human gingival fibroblasts. Collectively these data indicate that (a) the kinase activity of FAK enhances collagen remodeling by tractional forces but inhibits collagen degradation by MMPs; (b) FAK influences the biological activity of fibroblast-secreted extracellular matrices, which in turn impacts β1 integrin and ERK signaling, and collagen degradation.  相似文献   

7.
Involvement of tyrosine phosphorylation in osteoclastic bone resorption was examined using osteoclast-like multinucleated cells prepared from co-cultures of mouse osteoblastic cells and bone marrow cells in the presence of 1α,25-dihydroxyvitamin D3. When osteoclast-like cells were plated on culture dishes in the presence of 10% fetal bovine serum, they were sharply stained in their peripheral region by anti-phosphotyrosine antibody. Western blot analysis revealed that 115-to 130-kD proteins were tyrosine-phosphorylated in osteoclast-like cells. Using immunoprecipitation and immunoblotting, one of the proteins with 115–130 kD was identified as focal adhesion kinase (p125FAK), a tyrosine kinase, which is localized in focal adhesions. Immunostaining with anti-p 125FAK antibody revealed that p125FAK was mainly localized at the periphery of osteoclast-like cells. Herbimycin A, a tyrosine kinase inhibitor, not only suppressed tyrosine phosphorylation of p125FAK but also changed the intracellular localization of p125FAK and disrupted a ringed structure of F-actin-containing podosomes in osteoclast-like cells. Antisense oligodeoxynucleotides to p125FAK inhibited dentine resorption by osteoclast-like cells, whereas sense oligodeoxynucleotides did not. These results suggest that p125FAK is involved in osteoclastic bone resorption and that tyrosine phosphorylation of p125FAK is critical for regulating osteoclast function.  相似文献   

8.
Proline-rich tyrosine kinase 2 (PYK2), structurally related to focal adhesion kinase, has been shown to play a role in signaling cascades. Endothelial cells (ECs) under hemodynamic forces increase reactive oxygen species (ROS) that modulate signaling pathways and gene expression. In the present study, we found that bovine ECs subjected to cyclic strain rapidly induced phosphorylation of PYK2 and Src kinase. This strain-induced PYK2 and Src phosphorylation was inhibited by pretreating ECs with an antioxidant N-acetylcysteine. Similarly, ECs exposed to H(2)O(2) increased both PYK2 and Src phosphorylation. An increased association of Src to PYK2 was observed in ECs after cyclic strain or H(2)O(2) exposure. ECs treated with an inhibitor to Src (PPI) greatly reduced Src and PYK2 phosphorylation, indicating that Src mediated PYK2 activation. Whereas the protein kinase C (PKC) inhibitor (calphostin C) pretreatment was shown to inhibit strain-induced NADPH oxidase activity, ECs treated with either calphostin C or the inhibitor to NADPH oxidase (DPI) reduced strain-induced ROS levels and then greatly inhibited the Src and PYK2 activation. In contrast to the activation of PYK2 and Src with calcium ionophore (ionomycin), ECs treated with a Ca(2+) chelator inhibited both phosphorylation, indicating that PYK2 and Src activation requires Ca(2+). ECs transfected with antisense to PKCalpha, but not antisense to PKCepsilon(,) reduced cyclic strain-induced PYK2 activation. These data suggest that cyclic strain-induced PYK2 activity is mediated via Ca(2+)-dependent PKCalpha that increases NADPH oxidase activity to produce ROS crucial for Src and PYK2 activation. ECs under cyclic strain thus activate redox-sensitive PYK2 via Src and PKC, and this PYK2 activation may play a key role in the signaling responses in ECs under hemodynamic influence.  相似文献   

9.
Transforming growth factor-beta1 (TGF-beta1) is a potent growth inhibitor and apoptosis inducer for most normal cells. However, tumor cells are commonly nevertheless sensitive to the tumor-suppressing effects of TGF-beta1. In this paper, we focus on the effects of TGF-beta1 on two important anti-apoptotic protein kinases, protein kinase B (PKB), and focal adhesion kinase (FAK), in SMMC-7721 cells. We found that PKB-Ser-473 phosphorylation was apparently up-regulated by TGF-beta1. In the meantime, PKB-Thr-308 phosphorylation was slightly up-regulated by TGF-beta1. TGF-beta1 could also enhance FAK-Tyr phosphorylation. We observed that integrin-linked kinase (ILK) was also up-regulated by TGF-beta1 in good accordance with PKB-Ser-473 phosphorylation. We first found that TGF-beta1 could stimulate PKB-Ser-473 phosphorylation possibly via up-regulating ILK expression. Furthermore, we also failed to detect PKB-Ser-473 and FAK-Tyr phosphorylation with various concentrations of TGF-beta1 treatment when cells were kept in suspension. The above results indicate that PKB-Ser-473 and FAK-Tyr phosphorylation stimulated by TGF-beta1 are both dependent on cell adhesion.  相似文献   

10.
Group 1 metabotropic glutamate receptors (mGluR1 and mGluR5) stimulate phospholipase C (PLC) and lead to mobilization of intracellular Ca(2+) and activation of protein kinase C (PKC). In this investigation, using heterologous receptor-expressing Chinese hamster ovary (CHO) cells, we showed that stimulation of mGluR1 or mGluR5 with glutamate rapidly increases tyrosine phosphorylation of focal adhesion kinase (FAK) (maximum at 1-3 min) in a dose-dependent manner (half-maximal responses at approximately 2 microM). In mGluR1-expressing cells, the glutamate-induced increase of FAK tyrosine phosphorylation was blocked by not only the PLC inhibitor, U73122, but also depletion of intracellular Ca(2+) and effectively abrogated by calmodulin (CaM) inhibitors, calmidazolium and fluphenazine. However, neither the PKC inhibitor, GF109203X, nor the CaM kinase II inhibitor, KN-62, inhibited glutamate-stimulated FAK tyrosine phosphorylation. Stimulation of mGluR1 caused a marked increase in actin stress fiber formation. Importantly, this actin rearrangement was prevented by the CaM inhibitor, but not by the PKC inhibitor and is thus in a good agreement with the signaling cascade of the mGluR1-FAK pathway. These results suggest that the Ca(2+)/CaM signaling and its downstream FAK tyrosine phosphorylation play an important role in cellular function of mGluR1.  相似文献   

11.
Focal adhesion kinase (FAK) and the related proline-rich tyrosine kinase 2 (PYK2) are non-receptor protein tyrosine kinases that transduce extracellular signals through the activation of Src family kinases and are highly enriched in neurones. To further elucidate the regulation of FAK and PYK2 in nervous tissue, we investigated their distribution in brain subcellular fractions and analysed their translocation between membrane and cytosolic compartments. We have found that FAK and PYK2 are present in a small membrane-associated pool and a larger cytosolic pool in various neuronal compartments including nerve terminals. In intact nerve terminals, inhibition of Src kinases inhibited the membrane association of FAK, but not of PYK2, whereas tyrosine phosphatase inhibition sharply increased the membrane association of both FAK and PYK2. Disruption of the actin cytoskeleton was followed by a decrease in the membrane-associated pool of FAK, but not of PYK2. For both kinases, a significant correlation was found between autophosphorylation and membrane association. The data indicate that FAK and PYK2 are present in nerve terminals and that the membrane association of FAK is regulated by both phosphorylation and actin assembly, whereas that of PKY2 is primarily dependent on its phosphorylation state.  相似文献   

12.
Biochemical analysis of the male germ cell-associated kinase (mak) gene, which was isolated recently by using weak cross-hybridization with the v-ros tyrosine kinase gene, revealed that the gene was highly expressed in mammalian testicular germ cells, but not in ovarian cells. In order to identify the cells which express the mak gene in more detail, we localized mak mRNA in frozen sections of mouse testis by non-radioactive in situ hybridization. In this study, we utilized thymine-thymine (T-T) dimerized mak cDNA as a haptenic, non-radioactive probe, and the signal was detected enzyme-immunohistochemically by using an anti-T-T antibody. As a result, mak mRNA was localized intensely in late pachytene (stage X) and diplotene (stage XI) spermatocytes, and faintly in dividing spermatocytes (stage XII) and early round spermatids (stage I-II), suggesting that the gene may play an important role in the phase around meiotic cell division, but not throughout the entire meiosis.  相似文献   

13.
We examined the change of protein tyrosine kinases (PTKs) expression levels in colonic epithelial cells isolated from mice in which colitis was induced by oxazolone administration, using the monoclonal antibody YK34, which cross-reacts with a wide variety of PTKs. We identified focal adhesion kinase (FAK) and found the expression level increased due to the induction of colitis. Furthermore, we found that there was a positive correlation between FAK expression and the severity of colitis. Also, FAK expression localized in the colonic epithelium but not in the lamina propria, implying FAK functions in epithelial cells during colitis formation and/or wound repairing.  相似文献   

14.
Tyrosine hydroxylase (TH) is regulated by the reversible phosphorylation of serines 8, 19, 31 and 40. Upon initiation of this study, serine 19 was unique due to its requirement of 14-3-3 binding after phosphorylation for optimal enzyme activity, although it has been more recently demonstrated that phosphorylated serine 40 also binds 14-3-3. To identify proteins that interact with TH following phosphorylation of serine 19, this amino acid was mutated to alanine and THS19A was used as bait in a yeast two-hybrid system. From this, mouse-derived cyclin-dependent kinase 11 (CDK11)p110 was identified as an interacting partner with THS19A. The interaction was confirmed using human CDK11p110 cDNA in a mammalian system. Previous research has demonstrated that casein kinase 2 (CK2) interacts with CDK11p110, and both were observed to phosphorylate TH in vitro. In addition, CDK11p110 overexpression was observed to inhibit the interaction between TH and 14-3-3. A mechanism contributing to disruption of the interaction between TH and 14-3-3 may be due to CK2 phosphorylation of specific 14-3-3 isoforms, i.e. 14-3-3 tau. Collectively, these results imply that CDK11p110 and CK2 negatively regulate TH catecholamine biosynthetic activity since phosphoserine 19 of TH requires 14-3-3 binding for optimal enzyme activity and a decreased rate of dephosphorylation.  相似文献   

15.
Stimulation of rat cerebral cortex with endothelin-1 (ET-1) caused an increase in the tyrosine phosphorylation of several proteins. Two of these phosphoproteins were identified by the immunoprecipitation assays as being the focal adhesion kinase p125FAK and crk-associated substrate p130Cas. This effect was time- and dose-dependent, with an EC50 value of 3.9×10−8 M. In addition, the cerebral cortex ET receptor subtype involved in this action was determined by using BQ-123 and BQ-788, which are ETA and ETB receptor antagonists respectively. Our results indicate that the ET-1 effect on protein tyrosine phosphorylation occurred through ETB receptors. The requirement for extracellular Ca2+ on ET-1 action was also studied. ET-1-stimulated tyrosine phosphorylation of both p125FAK and p130Cas was abolished in the absence of external Ca2+ or in the presence of nimodipine, a Ca2+ channel-blocker. These results suggest that the ET-1-stimulated protein tyrosine phosphorylation was secondary to Ca2+ influx through the dihydropyridine Ca2+-channel. In slices where protein kinase C was inhibited, ET-1-stimulated tyrosine phosphorylation of both proteins was reduced. These results indicate that ET-1 modulates the tyrosine phosphorylation of specific proteins, which may be involved in adhesion processes in the brain.  相似文献   

16.
Shim H  Lee H  Jeoung D 《Biotechnology letters》2006,28(24):2057-2063
The cancer-associated gene (CAGE) is a novel cancer/testis antigen. Over-expression of it increased phosphorylation of focal adhesion kinase (FAK) and enhanced motility of SNU387 cells. Focal adhesion, kinase-related non-kinase (FRNK), an endogenous inhibitor of FAK, was significantly suppressed. This suggests that CAGE-promoted motility requires FAK. The inhibition of Rho-Associated coiled-coil-containing protein kinase (ROCK), an activator of FAK, also suppressed CAGE-promoted motility.  相似文献   

17.
18.
Exposure of cultured cerebellar granule neurons (24 h serum-starved) during 3 min to 30% hyposmotic medium activated the tyrosine kinase receptor ErbB4 in the absence of its ligand. Hyposmolarity also activated the non-receptor tyrosine kinases, Src, focal adhesion kinase (FAK), extracellular signal-regulated protein kinase (ERK)1/2, and the tyrosine kinase target phosphatidyl-inositol-3-kinase (PI3K). The hyposmotic-induced activation of these kinases required the prior phosphorylation of ErbB4 as shown by the effect of ErbB4 blockade with AG213 reducing by 85-95% the phosphorylation of FAK and ERK1/2, by 74% and 36% that of PI3K and Src, respectively. These results suggest a key role of ErbB4 as a signal integrator of events associated with hyposmolarity. PI3K seems to be an important connecting element in the signaling network evoked by the hyposmolarity/ErbB4 activation as: (i) the p85 regulatory subunit of PI3K co-immunoprecipitates with ErbB4 and with FAK; (ii) PI3K blockade with wortmannin reduced the hyposmotic activation of FAK (90%) and ERK1/2 (84-91%). Inhibition of Src with PP2 reduced ErbB4 phosphorylation and inhibited the subsequent cytosolic kinase activation with the same potency as ErbB4 blockade. These results point to Src and ErbB4 and as early targets of the hyposmotic stimulus and osmosignaling. The functional significance for cell volume regulation of the ErbB4-Src-PI3K signaling cascade is indicated by the 48-66% decrease of the hyposmotic taurine efflux observed by inhibition of these kinases.  相似文献   

19.
The 90-kDa isoform of the lipid kinase PIP kinase Type I γ (PIPKIγ) localizes to focal adhesions (FAs), where it provides a local source of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). Although PtdIns(4,5)P(2) regulates the function of several FA-associated molecules, the role of the FA-specific pool of PtdIns(4,5)P(2) is not known. We report that the genetic ablation of PIPKIγ specifically from FAs results in defective integrin-mediated adhesion and force coupling. Adhesion defects in cells deficient in FAPtdIns(4,5)P(2) synthesis are corrected within minutes while integrin-actin force coupling remains defective over a longer period. Talin and vinculin, but not kindlin, are less efficiently recruited to new adhesions in these cells. These data demonstrate that the specific depletion of PtdIns(4,5)P(2) from FAs temporally separates integrin-ligand binding from integrin-actin force coupling by regulating talin and vinculin recruitment. Furthermore, it suggests that force coupling relies heavily on locally generated PtdIns(4,5)P(2) rather than bulk membrane PtdIns(4,5)P(2).  相似文献   

20.
In the hippocampus, extracellular signal-regulated kinase (ERK) and the non-receptor protein proline-rich tyrosine kinase 2 (PYK2) are activated by depolarization and involved in synaptic plasticity. Both are also activated under pathological conditions following ischemia, convulsions, or electroconvulsive shock. Although in non-neuronal cells PYK2 activates ERK through the recruitment of Src-family kinases (SFKs), the link between these pathways in the hippocampus is not known. We addressed this question using K(+)-depolarized rat hippocampal slices. Depolarization increased the phosphorylation of PYK2, SFKs, and ERK. These effects resulted from Ca(2+) influx through voltage-gated Ca(2+) channels and were diminished by GF109203X, a protein kinase C inhibitor. Inhibition of SFKs with PP2 decreased PYK2 tyrosine phosphorylation dramatically, but not its autophosphorylation on Tyr-402. Moreover, PYK2 autophosphorylation and total tyrosine phosphorylation were profoundly altered in fyn-/- mice, revealing an important functional relationship between Fyn and PYK2 in the hippocampus. In contrast, ERK activation was unaltered by PP2, Fyn knock-out, or LY294002, a phosphatidyl-inositol-3-kinase inhibitor. ERK activation was prevented by MEK inhibitors that had no effect on PYK2. Immunofluorescence of hippocampal slices showed that PYK2 and ERK were activated in distinct cellular compartments in somatodendritic regions and nerve terminals, respectively, with virtually no overlap. Activation of ERK was critical for the rephosphorylation of a synaptic vesicle protein, synapsin I, following depolarization, underlining its functional importance in nerve terminals. Thus, in hippocampal slices, in contrast to cell lines, depolarization-induced activation of non-receptor tyrosine kinases and ERK occurs independently in distinct cellular compartments in which they appear to have different functional roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号