首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vegetation-rich patches in the High Arctic may serve as a significant source for vegetation reconstruction in the climate changes. Diversity and colonization, however, of such potential source populations in the High Arctic has rarely been studied. We examined chloroplast sequence variation in Salix arctica, a key species in the Canadian High Arctic, from four adjacent glacial moraines of differing ages on Ellesmere Island, Canada, as well as two other populations located at the center and southern end of the species’ range. The estimated ages of the moraines varied from 35,000 to 250 years old. The older moraine populations showed higher within-population genetic variation compared with the other moraine populations, which is generally attributed to differences in establishment age associated with plant densities among moraines. The moraines with smaller plant density had lower genetic diversity and had no private haplotypes, indicating the local population size and genetic diversity may not be recovered within a few thousand years. This suggests seed dispersal at a local scale may be limited even in species with high velocity of seed dispersal, and that High Arctic vegetation-rich patches may serve as significant source populations for sustaining local genetic diversity. In addition, the three regions we observed comprised an evolutionarily distinct lineage and significant population differentiation. This implies multiple sources for the colonization during the most recent deglaciation, resulting in the current wide distribution. Local as well as range-wide processes of colonization would be essential to understand vegetation responses in High Arctic to the environmental changes.  相似文献   

2.
A study of the dry weights and ages of 57 Salix arctica plantsgrowing in a higharctic region shows that their annual relativegrowth-rate, which decreases with age, is about one-fifth ofthe annual relative growth-rate of comparable plants under temperateconditions. Data on the thickness of annual rings indicate thatthere is a large and progressive increase in annual growth fromhigh-arctic to sub-arctic regions.  相似文献   

3.
Summary The seasonal and diurnal water relations were investigated within arctic and alpine populations of the dwarf willow Salix arctica. Marked differences that were habitat dependent (e.g. xeric vs. mesic) occured both within and between the populations. The environmental variables that most affected plant water balance and the bulk tissue water relations were soil water potential (soil) and the leafto-air water vapor pressure gradient (w), however, low soil temperature (<4.0° C) also had a marked effect in the wet to mesic habitats. The effects of declining soil and increased w were most pronounced in the plants growing in xiric habitats in both populations. Stomatal response to increased w was two-fold greater in alpine versus arctic plants and is hypothesized to have arisen in response to more frequent exposure to the higher evaporative conditions of alpine existance. Seasonal fluctuations in the osmotic potential closely followed changes in soil, suggesting that these were active rather that passive changes. Additionally, plants from xeric habiats had a lower bulk tissue elastic modulus (more elastic tissues) in both arctic and alpine populations. The osmotic and elastic properties enhanced turgor maintenance over a broad range of leaf water potentials and during periods when w was high. Turgor maintenance also correlated to continued transpiration despite fluctuations in soil and atmospherically induced water deficits. Arctic habitats have a shorter growing season, lower soil temperatures due to the presence of permafrost, but higher soil water potentials and lower leaf-to-air vapor pressure gradients than alpine habitats. The observed variation in patterns of stomatal conductance and in values of tissue water relations characteristics between arctic and alpine populations of S. arctica is hypothesized to have arisen in response to these different environmental regimes which represent different selective regimes that occur along the arctic-alpine environmental continuum inhabited by this wide ranging species.  相似文献   

4.
Periodic fire, grazing, and a variable climate are considered the most important drivers of tallgrass prairie ecosystems, having large impacts on the component species and on ecosystem structure and function. We used long-term experiments at Konza Prairie Biological Station to explore the underlying demographic mechanisms responsible for tallgrass prairie responses to two key ecological drivers: fire and grazing. Our data indicate that belowground bud banks (populations of meristems associated with rhizomes or other perennating organs) mediate tallgrass prairie plant response. Fire and grazing altered rates of belowground bud natality, tiller emergence from the bud bank, and both short-term (fire cycle) and long-term (>15 year) changes in bud bank density. Annual burning increased grass bud banks by 25% and decreased forb bud banks by 125% compared to burning every 4 years. Grazing increased the rate of emergence from the grass bud bank resulting in increased grass stem densities while decreasing grass bud banks compared to ungrazed prairie. By contrast, grazing increased both bud and stem density of forbs in annually burned prairie but grazing had no effect on forb bud or stem density in the 4-year burn frequency treatment. Lastly, the size of the reserve grass bud bank is an excellent predictor of long-term ANPP in tallgrass prairie and also of short-term interannual variation in ANPP associated with fire cycles, supporting our hypothesis that ANPP is strongly regulated by belowground demographic processes. Meristem limitation due to management practices such as different fire frequencies or grazing regimes may constrain tallgrass prairie responses to interannual changes in resource availability. An important consequence is that grasslands with a large bud bank may be the most responsive to future climatic change or other global change phenomena such as nutrient enrichment, and may be most resistant to exotic species invasions.  相似文献   

5.
Fernández  R. J.  Nuñez  A. H.  Soriano  A. 《Oecologia》1992,91(1):39-46
Summary Two shrub species, dominant in western Patagonia, Argentina, exhibited different demographic behaviors under the effect of sheep grazing and of manipulated resource levels. Senecio filaginoides showed an increase in cover under increasing grazing pressures; the rise was explained by an increasing number of individuals and not by larger plants; this trend was reversed when no grazing took place. Mulinum spinosum showed a slight decrease in cover and density at increasing grazing pressures, and no change in plant size. In a field experiment in which water was added (30 mm in early summer) and the dominant grasses removed, both factors substantially augmented the number of 1-year-old seedlings of Senecio recruited; the only noticeable response of Mulinum was an increase in seedling emergence because of grass removal. Six years after this last treatment, Senecio exhibited a ten fold increase in density, and its population structure showed a peak in younger classes; Mulinum remained unaffected. In seedling surveys conducted within an exclsure and in its surroundings, the emergence of Senecio was similar in these areas in the two years of the study, whereas the emergence of Mulinum was higher inside the exclosure for one of the years. The emergence of Senecio in the wetter year was 3 times larger than in the drier one. Grazing did not affect first-year survival of any species; the major source of seedlign death in this case, as well as in the manipulative experiment, was desiccation during summer drought. We conclude that the contrasting responses of the two species to grazing are mostly due to the greater ability of Senecio to benefit from any increase in resources, including those not used by grazed plants. The difference might also be due to a reduction in the seed availability of Mulinum caused by sheep preference for its fruits. The dissimilar abilities of the two shrubs to employ the resources freed by grazing would derive more from their contrasting demographic potential (i.e. the ability to rapidly increase biomass/m2) than from a difference in their niche overlap with palatable species.  相似文献   

6.
Two strains of a psychrophilic basidiomycetous yeast species belonging to the genus Mrakia were isolated from a melt-pool mat community, on an ice island located in Disraeli Fjord, Ellesmere Island in the Canadian Arctic. Analysis of the large subunit rDNA D1/D2 domain and internal transcribed spacer region sequences indicated that these strains represent a novel species, and the name Mrakia arctica sp. nov. is proposed. This new species could grow at sub-zero temperatures and in vitamin-free media. Moreover, lipase and cellulase enzymes of M. arctica were strongly active even at ?3 °C. These results suggest an important role for M. arctica in the biogeochemical cycle of glacial ecosystems.  相似文献   

7.
8.
To evaluate the suitability of wood pastures as a managing tool in subalpine regions it is essential to know more about the influence of grazing on the ground vegetation. This study assessed native plant species selection by cattle at different stocking rates, feeding habits and site preferences of cattle. Based on the results, conclusions concerning the value of silvopastoral systems in the Alps were drawn. A field study on six different wood pasture areas, grazed by cattle at different stocking rates, was accompanied by an experiment on three adjoining areas of 0.51 ha each, stocked with either three, six, or nine heifers. Plant species were recorded in plots of 20 cm × 20 cm before and after grazing, and the intensity of grazing on each species was assessed. At low stocking rates, grasses and tall species were most intensely grazed, while at higher stocking rates the intake of forbs and small species increased. Since no relationship was found between nutritional value and species preference, other factors such as accessibility of a plant seem to be important for the feeding preferences of cattle. The preference for grasses at low and medium stocking rates suggests that an increased growth of forbs might lead to an increase in plant species diversity.  相似文献   

9.
Polar willow (Salix polaris Wahlenb.), a mycorrhizal dwarf shrub, colonizes recently deglaciated areas in the High Arctic, Svalbard. To clarify successional changes in ECM fungi associated with S. polaris after glacier retreat, we examined the diversity and density of ECM fungi in culture and field conditions. Plant and soil samples were collected from three sites of different successional stages in the deglaciated area of Austre Br?ggerbreen, near Ny-?lesund, Svalbard. The successional stages were early stage with newly exposed bare ground (site I), transient stage with scattered colonization of Salix (sites IIa and IIb), and late stage with well-developed vegetation (site III). No ECM colonization on Salix was observed in soils collected from bare ground in early and transient stages (sites I and IIa). However, most Salix individuals showed ECM colonization in soils collected from sites close to Salix colonies in transient and late stages (sites IIb and III). Based on molecular analyses and operational taxonomic unit (OTU: >95% ITS sequence similarity) delimitations, we identified 15 OTUs/species in eight genera. The dominant OTU/species of ECM fungi identified in the transient and late stages was Geopora sp.1 and Cenococcum sp.1, respectively. In the culture experiment, ECM diversity was greater in late stage (eight OTUs/species) than in transient stage (three OTUs/species). This pattern was consistent with field observations, i.e., late-stage sites contained more OTUs/species of ECM fungi. These results indicate that species diversity of ECM fungi increases and the dominant species changes with the progress of succession after glacier retreat in the High Arctic.  相似文献   

10.
Samples were collected from the top 200 m of the water columnat 50 stations during two cruises in different, near equinoctialseasons on an Atlantic transect near the 20°W meridian between50°N and 50°S. These samples were analysed to determinecharacteristics of the heterotrophic bacterial populations.Flow cytometry was used to enumerate these bacteria and determinetheir average size so as to calculate their biomass. Heterotrophicbacterial production, and the rate of grazing of these bacteriaby heterotrophic nanoplankton in the main depth layers, weredetermined using 3H thymidine and 14C leucine techniques. Thebiomass of heterotrophic nanoplankton in these layers was determinedusing a glucosaminidase assay. Five provinces were distinguishedalong the transect and characterized by average values of allmeasured parameters. The relative composition and activity ofthe microbial community in the water columns within each provincechanged little between the two cruises. Lowest heterotrophicbacterial biomass of 1–2 mg C m–3 and productionof 0.1–0.2 mg C m–3 day–1 were found in thenorthern and southern Atlantic gyres, and were relatively similarin both seasons. Biomass and production were 2–4 timeshigher in the northern and southern temperate waters, and inequatorial waters, than in the gyres and tended to show moreseasonal variation. Production and biomass in the layer belowthe pycnocline were lower by 10–30% and about 50%, respectively,than values determined in the surface mixed layer, and variedless with latitude. Depth-integrated values of these two parameterswere generally of similar size in the mixed water layer andthe layer of the chlorophyll maximum and pycnocline, and tendedto vary with season. The specific growth rate of heterotrophicbacteria was in the range 0.05 to 0.12 day–1 in the topmixed layer at all latitudes. In spite of the elevated temperatures,bacterial growth appears to be restricted by a shortage of nutrientsso that the microbial community cycles very slowly, with a turnovertime of the order of 1 week or more. The depth-integrated biomassof heterotrophic nanoplankton was generally about 100% of theheterotrophic bacterial biomass in the same water. Grazing bythese nanoplankton at the rate measured could consume all ofthe new production of heterotrophic bacteria in all waters,and they probably control the populations of both heterotrophicand phototrophic bacteria.  相似文献   

11.
Three species of dwarf, prostrate willow ( Salix arctica , S. rotundifolia and S. herbacea ) were subjected to experimental summer warming in high arctic Canada, arctic Alaska, and subarctic Sweden, respectively, as part of the International Tundra Experiment. Phenological and growth responses of these species were compared for the second season of the experiment. Stigmas became receptive and pollen dispersal occurred significantly earlier for S. rotundifolia and S. herbacea in the ITEX open-top chambers, but not for S. arctica . Warming had no effect on the timing of seed dispersal, leaf yellowing, or leaf senescence. The length and dry weight of the largest leaves were greater for warmed plants, and was significant for S. rotundifolia . The number of catkins/plot did not differ among species or treatments, but the fruit : flower ratio was reduced in the experimental plots.  相似文献   

12.
The impressive roaring of adult male muskoxen most often occurs during rutting contests. Roaring in adult females is primarily relevant to mother–infant communication. Loud roars are produced by taking up a specific roaring posture. Acoustic recordings were made in a small herd of zoo muskoxen during three successive rutting seasons. Earlier recordings of a different herd were used for comparison. Head-and-neck specimens were subjected to vascular injection, macroscopic anatomical dissection, computer tomographic analysis and skeletonization. Isolated preserved larynges of young animals were dissected for ontogenetic comparison. Despite a pronounced sexual dimorphism of head mass, larynx size is almost identical in adult male and female muskoxen, as is the fundamental frequency of their roars. Remarkably, the larynges of both sexes of muskoxen are provided with an unpaired ventrorostral ventricle. Probably, this ventricle is inflated during the initial phase of a roar. The ventricle may have two functions: to increase the amplitude of roaring and to darken the timbre of the roars by acting as an additional resonance space. The vocal fold of adult female and young individuals has a sharp rostral edge and a vocal ligament is still present. During male ontogeny the vocal ligament becomes transformed into a large fat pad extending into the wall of the laryngeal vestibulum. Accordingly, the glottic region in the adult male lacks any sharp edges of the mucosa. In both sexes the thyroarytenoid muscle is divided into three portions. A single roar may comprise phases of different sound volume. The roars of both muskox sexes are characterized by a pulsed structure. We suggest that two oscillating systems are involved in the production of roars: one comprising only the medial portion of the vocal fold and one including its lateral portion.  相似文献   

13.
Indirect interactions as mediated by higher and lower trophic levels have been advanced as key forces structuring herbivorous arthropod communities around the globe. Here, we present a first quantification of the interaction structure of a herbivore-centered food web from the High Arctic. Targeting the Lepidoptera of Northeast Greenland, we introduce generalized overlap indices as a novel tool for comparing different types of indirect interactions. First, we quantify the scope for top-down-up interactions as the probability that a herbivore attacking plant species i itself fed as a larva on species j. Second, we gauge this herbivore overlap against the potential for bottom-up-down interactions, quantified as the probability that a parasitoid attacking herbivore species i itself developed as a larva on species j. Third, we assess the impact of interactions with other food web modules, by extending the core web around the key herbivore Sympistis nigrita to other predator guilds (birds and spiders). We find the host specificity of both herbivores and parasitoids to be variable, with broad generalists occurring in both trophic layers. Indirect links through shared resources and through shared natural enemies both emerge as forces with a potential for shaping the herbivore community. The structure of the host-parasitoid submodule of the food web suggests scope for classic apparent competition. Yet, based on predation experiments, we estimate that birds kill as many (8%) larvae of S. nigrita as do parasitoids (8%), and that spiders kill many more (38%). Interactions between these predator guilds may result in further complexities. Our results caution against broad generalizations from studies of limited food web modules, and show the potential for interactions within and between guilds of extended webs. They also add a data point from the northernmost insect communities on Earth, and describe the baseline structure of a food web facing imminent climate change.  相似文献   

14.
15.
1. To test the response of algal communities to altered grazer abundance in lakes lacking efficient predators on herbivores, we performed field and experimental studies in two sub-Antarctic lakes (South Georgia).
2. The number of algal species in these high latitude lakes is low, and all dominant species have grazer-resistant adaptations, including spines in three dimensions ( Staurastrum sp.), large size ( Tribonema sp.), a mucus sheet allowing viable passage through the gut ( Chlamydocapsa sp., Elakatothrix sp.) or ability to recruit individuals from the sediment surface ( Mallomonas sp.).
3. Algal community composition was only slightly changed by experimentally altered grazer abundance, indicating that it was already adapted for a high grazing pressure. Hence, the diets of herbivores were restricted to vulnerable food organisms such as Mallomonas sp. and heterotrophic flagellates in the water column, and to benthic food sources.
4. At high grazer abundance, the concentration of available phosphorus (PO4-P) in the water was lower than at low grazer abundances, due to inefficient nutrient regeneration by the copepod herbivores. Hence, in lakes where copepods are dominant grazers, algae suffer both directly from grazing and indirectly from reduced nutrient availability.  相似文献   

16.
1. To test the response of algal communities to altered grazer abundance in lakes lacking efficient predators on herbivores, we performed field and experimental studies in two sub-Antarctic lakes (South Georgia).
2. The number of algal species in these high latitude lakes is low, and all dominant species have grazer-resistant adaptations, including spines in three dimensions ( Staurastrum sp.), large size ( Tribonema sp.), a mucus sheet allowing viable passage through the gut ( Chlamydocapsa sp., Elakatothrix sp.) or ability to recruit individuals from the sediment surface ( Mallomonas sp.).
3. Algal community composition was only slightly changed by experimentally altered grazer abundance, indicating that it was already adapted for a high grazing pressure. Hence, the diets of herbivores were restricted to vulnerable food organisms such as Mallomonas sp. and heterotrophic flagellates in the water column, and to benthic food sources.
4. At high grazer abundance, the concentration of available phosphorus (PO4-P) in the water was lower than at low grazer abundances, due to inefficient nutrient regeneration by the copepod herbivores. Hence, in lakes where copepods are dominant grazers, algae suffer both directly from grazing and indirectly from reduced nutrient availability.  相似文献   

17.
Leaf and bud demography and shoot growth were studied in 10 evergreen (ES) and 15 deciduous (DS) tree species occurring between 600 and 2200 m elevation in the central Himalayan mountains in India. Results were analyzed to help explain why ES prevail in the vegetation of this region, even though the number of ES is no greater than for DS. Although each species had its own pattern with regard to leaf and bud demography and seasonality of shoot extension and radial growth, it was possible to group the species on the basis of shoot growth phenology. In most species, leaves emerged during March-April, at the onset of warm and dry summer season. The ES recruit leaves in shoots more rapidly than the DS. Across all species, peak number of leaves per shoot (5.8–20.7), peak leaf area per shoot (116.2–1559.2 cm2), peak number of vegetative buds per shoot (1.9–14.5), bud survival per shoot (23–84%), shoot extension growth (6.4–40.8 cm) and shoot extension period (13–30 weeks) varied considerably. The peak leaf area per shoot (587.7 vs. 246.7 cm2) and shoot extension growth (19.3 vs. 11.2 cm) were significantly greater for DS than for ES, and these two functional groups of species were clearly separable with regard to shoot growth characteristics.Results indicate that rapid recruitment of leaf crop in the shoots, longer leaf life-span, and access to ground water due to deep roots were some of the advantages, the ES had over the DS, that may have likely enable them to maintain growth for a longer period in this region of warm winters and longer winter day length as compared to temperate climates. In the shallow rooted DS, shoot growth seems to be much affected by a seasonal drought in winter and they are likely to be affected more in the event of failure of monsoon rains in this region.  相似文献   

18.
Growth of tallgrass prairie plants, many of which maintain substantial bud banks, can be limited by nitrogen (N), water, and/or light. We hypothesized that tallgrass prairie plants respond to increases in N through demographic effects on the bud bank. We tested the effects of a pulse of N on (1) bud bank demography, (2) plant reproductive allocation, and (3) ramet size. We parameterized matrix models, considering each genet as a population of plant parts. Nitrogen addition significantly impacted bud bank demography in two subdominant species of bunchgrass: Sporobolus heterolepis (a C(4) grass) and Koeleria macrantha (a C(3) grass), but had no effect on the size of individual ramets. Emergence from the bud bank and ramet population growth rates (λ) were significantly higher in S. heterolepis genets that received supplemental N. Nitrogen addition also affected the bud demography of K. macrantha, but N addition decreased rather than increased λ. Prospective and retrospective demographic analyses indicated that bud bank dynamics were the most important demographic processes driving plant responses to nutrient availability. Thus, the variation in productivity in these tallgrass prairie species is driven principally by the demography of the bud bank rather than by the physiology and growth of aboveground tillers. Improved understanding of bud bank dynamics may lead to improved predictive models of grassland responses to environmental changes such as altered N deposition and precipitation.  相似文献   

19.
Rapid advancement of spring in the High Arctic   总被引:1,自引:0,他引:1  
  相似文献   

20.
Summary Within the high arctic of Canada, Salix arctica, a dioecious, dwarf willow exhibits significant spatial segregation of the sexes. The overall sex ratio is female-biased and female plants are especially common in wet, higher nutrient, but lower soil temperature habitats. In contrast, male plants predominate in more xeric and lower nutrient habitats with higher soil temperatures that can be drought prone. Associated with the sex-specific habitat differences were differences in the seasonal and diurnal patterns of water use as measured by stomatal conductance to water vapor and the bulk tissue water relations of each gender. Within the wet habitats, female plants maintained higher rates of stomatal conductance (g) than males when soil and root temperatures were low (<4° C). In contrast, within the xeric habitats, male plants maintained higher g and had lower leaf water potentials leaf at low soil water potentials and a high leaf-to-air vapor pressure gradient (w) when compared to females. Female plants had more positive carbon isotope ratios than males indicating a lower internal leaf carbon dioxide concentration and possibly higher water use efficiency relative to males. Tissue osmotic and elastic properties also differed between the sexes. Male plants demonstrated lower tissue osmotic potentials near full tissue hydration and at the turgor loss point and a lower bulk tissue elastic modulus (higher tissue elasticity) than female plants. Males also demonstrated a greater ability to osmotically adjust on a diurnal basis than females. These properties allowed male plants to maintain higher tissue turgor pressures at lower tissue water contents and soil over the course of the day. The sex-specific distributional and ecophysiological characteristics were also correlated with greater total plant growth and higher fecundity of females in wet habitats, and males in xeric habitats respectively. The intersexual differences in physiology persisted in all habitats. These results and those obtained from growth chamber studies suggest that sex-specific differences have an underlying genetic basis. From these data we conjecture that selection maintaining the intersexual differences may be related to different costs associated with reproduction that can be most easily met through physiological specialization and spatial segregation of the sexes among habitats of differing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号