首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Backgrounds and Aims

Shoot demography affects the growth of the tree crown and the number of leaves on a tree. Masting may cause inter-annual and spatial variation in shoot demography of mature trees, which may in turn affect the resource budget of the tree. The aim of this study was to evaluate the effect of masting on the temporal and spatial variations in shoot demography of mature Betula grossa.

Methods

The shoot demography was analysed in the upper and lower parts of the tree crown in mature trees and saplings over 7 years. Mature trees and saplings were compared to differentiate the effect of masting from the effect of exogenous environment on shoot demography. The fate of different shoot types (reproductive, vegetative, short, long), shoot length and leaf area were investigated by monitoring and by retrospective survey using morphological markers on branches. The effects of year and branch position on demographic parameters were evaluated.

Key Results

Shoot increase rate, production of long shoots, bud mortality, length of long shoots and leaf area of a branch fluctuated periodically from year to year in mature trees over 7 years, in which two masting events occurred. Branches within a crown showed synchronized annual variation, and the extent of fluctuation was larger in the upper branches than the lower branches. Vegetative shoots varied in their bud differentiation each year and contributed to the dynamic shoot demography as much as did reproductive shoots, suggesting physiological integration in shoot demography through hormonal regulation and resource allocation.

Conclusions

Masting caused periodic annual variation in shoot demography of the mature trees and the effect was spatially variable within a tree crown. Since masting is a common phenomenon among tree species, annual variation in shoot demography and leaf area should be incorporated into resource allocation models of mature masting trees.  相似文献   

2.
TOMPSETT  P. B. 《Annals of botany》1978,42(4):889-900
Vegetative shoots from the base of the crown, and from partsof the tree likely to form male or female buds, were collectedfrom 40–years–old trees of Picea sitchensis (Bong.)Carr. throughout the 1973–4 annual growth cycle. The morphologyand growth rates of the terminal buds on these shoots were assessed. Bud scale primordia were formed most quickly in the female position,at an intermediate rate in the male position and most slowlyin the basal vegetative position during April, May and June.In July and early August the apical meristems swelled to formdomes and continued to grow at the same relative rates in themale, female and basal vegetative positions. Reproductive budswere first morphologically distinct in late August and sporangiaappeared in October. Dormancy, defined by the pause in apicalvolume increase, extended from mid-October to mid–March.Young strobili grew much faster than basal vegetative shootsof the same age between mid–March and bud burst in lateApril. Throughout the growth cycle, external changes in budsize reflected changes in size of the apical meristem, youngstrobihis or young vegetative shoot inside the bud. It is proposed that the rate of growth of an apical meristemmay be causally related to the type of bud which subsequentlydevelops from it. Sitka spruce, Picea sitchensis, bud development, morphology, growth of apical dome, flowering  相似文献   

3.
Habitats, disturbed severely at least once a year, are often dominated by annual plants, which avoid disturbance by means of a short life span and massive production of seeds. Contrary to perennials, they lack pools of reserve meristems on and storage carbon in below-ground organs necessary for vegetative regeneration after disturbance. However, some annuals are able to initiate a bud bank on the hypocotyl after loss of their shoot. In three experiments, we investigated how the timing of disturbance or population origin affects adventitious bud formation on the hypocotyl for regeneration and compensatory growth in some annual weeds.  相似文献   

4.
Shoot branching (tillering) primarily determines plant shoot architecture and has been studied in many plants. Shoot branching is an important trait in non-heading Chinese cabbage (Brassica rapa ssp. chinensis Makino). The B. rapa ssp. chinensis var. multiceps exhibits unique and multiple shoot branching characteristics. Here, we analyzed the variation in shoot branching between ‘Maertou,’ with multiple shoot branching, and ‘Suzhouqing,’ a common variety. The levels of endogenous indole-3-acetic acid (IAA), zeatin riboside and active gibberellins in the shoot meristem tissues of the two cultivars were quantified by enzyme-linked immunosorbent assay during the vegetative growth stage. High levels of IAA maintained axillary bud dormancy and repressed axillary bud outgrowth allowing shoot branching to form in the vegetative stage in ‘Suzhouqing.’ In contrast, low levels of IAA did not inhibit axillary buds in ‘Maertou,’ while a high level of cytokinin promoted axillary bud growth and branch shoot development. Exogenous hormone (rac-GR24 and 6-benzylaminopurine) treatment showed that ‘Maertou’ was relatively sensitive to cytokinin, because the fold changes of cytokinin-responsive genes in ‘Maertou’ were significantly more frequent than those in ‘Suzhouqing’. Cytokinin was the direct regulator for axillary bud growth of ‘Maertou’. Compared with ‘Suzhouqing’, ‘Maertou’ was sensitive to cytokinin and this weakened the strigolactone–cytokinin branching pathway.  相似文献   

5.
Abstract. Tiller demography of Carex aquatilis ssp. stans, Carex membranacea, and Eriophorum angustifolium ssp. triste was investigated in ungrazed and grazed high arctic vegetation on central Ellesmere Island, Canada. Tiller birth, growth, flowering and death were studied from excavated clonal fragments, and tiller density and biomass were studied from excavated turfs. Five life‐cycle stages were determined: dormant buds, juvenile, mature, flowering and dead tillers. A stage‐based transition matrix model was developed to estimate the long‐term dynamics of the sedge populations and to compare life‐history strategies between ungrazed and grazed populations. Short‐term and retrospective models, based on the growth during the sampling year and during the lifetime of the clonal fragments, respectively, were compared to see how well the short‐term model can describe demography of long‐lived plants. According to the short‐term model, tiller populations were decreasing (λ < 1 except for C. membranacea), whereas the retrospective model indicated that the tiller populations were increasing. Tiller population growth rates did not differ between ungrazed and grazed habitats. Nevertheless, the similar growth rates may be obtained by balanced differences in the vital rates between plants of the two habitats. The plants in the ungrazed habitat tended to remain in their current life‐cycle stage, whereas plants in the grazed habitat moved quickly to the next stage and died earlier. C. aquatilis ssp. stans appears to gain a competitive advantage over the other species under intensive grazing, as indicated by the higher tiller density and greater below‐ground biomass in grazed vegetation. The greater amount of below‐ground biomass apparently buffers C. aquatilis ssp. stans against grazing better than the other species.  相似文献   

6.
The demography of the bud bank and its sprouting capacity are important for understanding the population dynamics of clonal plants and their potential responses to disturbances. To this end, we investigated the size and composition of the bud bank of Miscanthus sacchariflorus (Maxim.) Hack. immediately after flooding (November), in winter (January), in spring (March), and before flooding (May) in the wetlands of Dongting Lake. We then examined the sprouting capacity of axillary buds after sediment burial at 0, 5, 10, 15, and 20 cm. Total bud density of M. sacchariflorus ranged from 2524 buds m-2 in November to 4293 buds m-2 in March. Rhizome segments with inactive axillary buds, which represented the majority of the bud population (88.7% in November, 93.3% in May), did not sprout during the 140 days of the experiment (n = 250). The sprouting ratio was the highest for active axillary buds buried at 0 cm (64%) and decreased when buried at 10–20 cm (34%–40%). Due to the large number of active axillary buds in the bud bank (211–277 buds m-2 from November to the following March), M. sacchariflorus could completely replace its aboveground shoot population, except in May (142 buds m-2). Increasing burial depth delayed bud emergence and reduced the growth period of shoots; however, burial depth did not affect the resulting plant height and only reduced the accumulated biomass at 20 cm. Therefore, the belowground bud bank and its strong sprouting capacity are important factors in the maintenance of local populations and colonization of new habitats for M. sacchariflorus after burial disturbances. The present methodology, which combined measurements of bud bank demography and sprouting capacity, may reflect the regeneration potential of clonal plants after burial disturbances.  相似文献   

7.
The phenology of germination, vegetative growth and sexual reproduction in the annual Chamaesyce maculata (L.) Small (Euphorbiaceae) were investigated in a natural population in western Japan. Seedlings emerged from mid-June to early October, with three peaks: mid-June, late July and late August. Plants that emerged in June commenced sexual reproduction from late July, and thereafter both vegetative growth and sexual reproduction occurred together until early November, the plants showing no switching from vegetative growth to sexual reproduction. Seedlings that emerged in June and July suffered high mortality, but most seedlings that emerged from August onward survived until the reproductive stage. The minimum size for reproduction was largest for plants that emerged early in the season, and it decreased with a delay in seedling emergence. The late emergence of seedlings that resulted in low reproductive output may be to some extent compensated for by the increased probability of survival in the seedling stage. A transplant experiment clarified that C. maculata can repeat a maximum of three overlapping generations within a year. Multiple generations per year were attained by non-dormant seeds produced in the first and second generations and clearly resulted in an increased reproductive output per year. The life cycle with multiple overlapping generations may have been acquired in habitats where unpredictable disturbance results in temporally unsuitable conditions for germination, vegetative growth and sexual reproduction of annual plants, but where suitable conditions frequently continue over a period longer than the single generation time of annual plants.  相似文献   

8.
Demographic parameters such as survival, sex ratio and abundance can profoundly affect the viability of populations and thus are of primary importance in species of conservation concern. Although numerous studies have been published on certain aspects of the ecology and evolution of the endangered Large Blue butterfly Maculinea arion, there is still a lack of detailed knowledge on its populations’ demography. Moreover, M. arion populates a variety of xerothermic habitats throughout its European range using various food plants and host ants, which leads to complications in its conservation. Our aim was to estimate demographic parameters of M. arion populations in different parts of its European range. Detailed mark-recapture sampling was conducted on populations in four different countries. We often found that daily apparent survival probability declined with increasing age of individuals, but there was no difference between male and female survival. In smaller populations, the sex ratio was rather female-biased. Our most interesting result was the lack of protandry in some populations that might be a consequence of selection against reproductive asynchrony in small populations or a polyandrous mating system. The perfect coincidence of male and female phenology can positively affect the effective population size, because the lack of reproductive asynchrony increases the chance of male–female encounters. Abundance of the studied populations ranged between 100 and 1,600 individuals, smaller populations were on the verge of extinction. Habitat of the threatened small populations was either overgrazed or abandoned, while habitat of larger, stable populations was lightly grazed.  相似文献   

9.
Identifying environmental factors associated with vital rate variation is critical to predict population consequences of environmental perturbation. We used matrix models to explore effects of habitat and microsite on demography of two widespread herbs, Chamaecrista fasciculata (partridge pea) and Balduina angustifolia (yellow buttons). We evaluated models simulating population dynamics in common microsites (shrub, litter, bare sand) within two habitats (intact, degraded Florida scrub) using data on experimental populations initiated by sowing seeds, and natural seed production. Models included four stages (seed bank, small vegetative, large vegetative, reproductive) and three vital rates (survival, growth, fecundity), summarized in sixteen transitions. We conducted life table response experiments to assess contributions of each habitat and microsite to population growth rates. We found that (1) C. fasciculata had greatest population growth in degraded habitat and litter microsites, (2) B. angustifolia had similar population growth between habitats and greatest in bare sand microsites, (3) advancing growth transitions of C. fasciculata had greatest elasticity on population growth in degraded habitat, shrub, and litter, as did seed survival in intact habitat and bare sand, (4) seed survival and advancing growth transitions of B. angustifolia had greatest elasticity on population growth in both habitats, as did seed survival in shrub and litter, and advancing growth in bare sand. Greater population growth of C. fasciculata in degraded scrub is probably explained by release from belowground competition; B. angustifolia may be most affected by competition with shrubs. Microsites in intact scrub were not ecologically equivalent to those in degraded scrub emphasizing that intact scrub is ecologically complex and critical to preserve.  相似文献   

10.
In many woody plants, shoots emerging from buds can develop as short or long shoots. The probability of a bud to develop as a long or short shoot relies upon genetic, environmental and management factors and controlling it is an important issue in commercial orchard. We use peach (Prunus persicae) trees, subjected to different winter pruning levels and monitored for two years, to develop and calibrate a model linking the probability of a bud to develop as a long shoot to winter pruning intensity and previous year vegetative growth. Eventually we show how our model can be used to adjust pruning intensity to obtain a desired proportion of long and short shoots.  相似文献   

11.

Background and Aims

Reproductive costs imply trade-offs in resource distribution at the physiological level, expressed as changes in future growth and/or reproduction. In dioecious species, females generally endure higher reproductive effort, although this is not necessarily expressed through higher somatic costs, as compensatory mechanisms may foster resource uptake during reproduction.

Methods

To assess effects of reproductive allocation on vegetative growth and physiological response in terms of costs and compensation mechanisms, a manipulative experiment of inflorescence bud removal was carried out in the sexually dimorphic species Corema album. Over two consecutive growing seasons, vegetative growth patterns, water status and photochemical efficiency were measured to evaluate gender-related differences.

Key Results

Suppression of reproductive allocation resulted in a direct reduction in somatic costs of reproduction, expressed through changes in growth variables and plant physiological status. Inflorescence bud removal was related to an increase in shoot elongation and water potential in male and female plants. The response to inflorescence bud removal showed gender-related differences that were related to the moment of maximum reproductive effort in each sexual form: flowering in males and fruiting in females. Delayed costs of reproduction were found in both water status and growth variables, showing gender-related differences in resource storage and use.

Conclusions

Results are consistent with the existence of a trade-off between reproductive and vegetative biomass, indicating that reproduction and growth depend on the same resource pool. Gender-related morphological and physiological differences arise as a response to different reproductive resource requirements. Delayed somatic costs provide evidence of gender-related differences in resource allocation and storage. Adaptive differences between genders in C. album may arise through the development of mechanisms which compensate for the cost of reproduction.  相似文献   

12.
Leaf and bud demography and shoot growth were studied in 10 evergreen (ES) and 15 deciduous (DS) tree species occurring between 600 and 2200 m elevation in the central Himalayan mountains in India. Results were analyzed to help explain why ES prevail in the vegetation of this region, even though the number of ES is no greater than for DS. Although each species had its own pattern with regard to leaf and bud demography and seasonality of shoot extension and radial growth, it was possible to group the species on the basis of shoot growth phenology. In most species, leaves emerged during March-April, at the onset of warm and dry summer season. The ES recruit leaves in shoots more rapidly than the DS. Across all species, peak number of leaves per shoot (5.8–20.7), peak leaf area per shoot (116.2–1559.2 cm2), peak number of vegetative buds per shoot (1.9–14.5), bud survival per shoot (23–84%), shoot extension growth (6.4–40.8 cm) and shoot extension period (13–30 weeks) varied considerably. The peak leaf area per shoot (587.7 vs. 246.7 cm2) and shoot extension growth (19.3 vs. 11.2 cm) were significantly greater for DS than for ES, and these two functional groups of species were clearly separable with regard to shoot growth characteristics.Results indicate that rapid recruitment of leaf crop in the shoots, longer leaf life-span, and access to ground water due to deep roots were some of the advantages, the ES had over the DS, that may have likely enable them to maintain growth for a longer period in this region of warm winters and longer winter day length as compared to temperate climates. In the shallow rooted DS, shoot growth seems to be much affected by a seasonal drought in winter and they are likely to be affected more in the event of failure of monsoon rains in this region.  相似文献   

13.
Depth of dormancy of alpine and subalpine perennial forbs in autumn was investigated, which was judged by the number of days required for growth initiation at 24 °C. The depth of dormancy differed depending on Raunkiaer’s life-form and shoot habits. Chamaephytes with perennial shoot-axes showed shallower dormancy than hemicryptophytes with annual shoot-axes, and geophytes with annual shoot-axes showed the deepest dormancy. The results strongly suggest that the dormancy is more endogenously controlled in forbs less hardy to freezing stress. Potential growth ability of alpine herbaceous chamaephytes in autumn is an adaptive advantage, since they utilize the short vegetative period as long as possible. All of the species with annual shoot-axes had winter buds covered with scales. In plants with perennial shoot-axes, percentage of winter buds covered with scales increased with increasing depth of dormancy. The results indicate that the shoot apices are well protected by bud scales in forbs with a long endogeneous-dormant period.  相似文献   

14.
Starch was determined by means of IKI reaction in shoot apices ofChenopodium rubrum plants induced to flowering by two short days and in non-induced plants. Small starch grains were already observed in the meristematic cells at an age of four days after sowing. Larger grains were found in the subapical region of the apex. Heterogeneity increases during further growth of the plants in induced, as well as in non-induced vegetative plants. Starch disappears from the cells potentially giving rise to axillary buds, while the number and size of starch grains increase in cells from which leaf primordia will be formed. This metabolic specifity of leaf and bud primordia is preserved during morphological differentiation and applies to vegetative, as well as to prefloral apices of photoperiodically induced plants. The amount of starch in the different regions of the apex is linked rather with organogenesis than with the quantitative growth in the apex.  相似文献   

15.
The epiphytic habitat is potentially one of the most stressful environments for plants, making the effective developmental control in response to external cues critical for epiphyte survival. Because ethylene mediates several abiotic stresses in plants, here, we have examined the ethylene influence in both shoot and root systems of the epiphytic orchid Catasetum fimbriatum. Under controlled conditions, ethylene production was quantified during an entire growth cycle of C. fimbriatum development in vitro, while treatments modulating either ethylene concentration or perception were carried out over the early growth phase of these plants. After treatments, growth measurements and histological features were studied in both shoot and root tissues. Ethylene production showed a decreasing trend over the period of organ elongation; however, it increased considerably when leaves were shed, and a new axillary bud was initiating. The early exposure of young plants to higher concentrations of ethylene triggered morphogenic responses that included root hair formation instead of velamen, and a combination of inhibitory effects (decreases in both stem enlargement and cellular/organ elongation) and inductive effects (increases in leaf and root formation, bud initiation and cellular thickening) on plant growth, which favored biomass allocation to roots. Conversely, inhibition of ethylene perception over the plant growth phase generally resulted in the opposite morphogenic responses. Our data indicate that periodic variations in ethylene concentration and/or sensitivity seem to modulate several developmental features in shoot and root systems of C. fimbriatum which could have adaptive significance during the growing phase of this epiphytic orchid.  相似文献   

16.
Phytoliths (silica bodies) occur in Poaceae species in large numbers and have been shown to have antiherbivory roles. However, phytoliths occur also in many other taxa in much smaller numbers, which raises the question of the extent of both their potential and actual antiherbivory role in these taxa. In order to address the question of their potential antiherbivory role, we sampled 20 wild-growing southwest Asian species of the family Asteraceae, species of which have a much lower phytolith concentrations than Poaceae taxa. We studied the potential positive effect of grazing on phytolith formation and the possible tendency of plants to have higher concentrations of such defence structures in their reproductive organs. We sampled plants from populations of 12 non-spiny and eight spiny species growing in un-grazed and grazed plots in seven sites along a large rainfall gradient (80–900 mm mean annual) in Israel, a region known for its long and intensive grazing history. The study included 21 pairs of un-grazed and grazed plants from 16 of these 20 species. In addition, ten populations of eight species were sampled in order to examine whether phytolith concentrations in the reproductive organs are higher than in vegetative organs. We did not find consistently higher phytolith concentrations in grazed plants compared to un-grazed plants of the same species and habitat (15 species), and in 12 out of 21 pairs of un-grazed and grazed plants (from 15 species) we even found higher phytolith concentrations in un-grazed plants, a phenomenon which was more common in the more arid sites. Phytolith concentrations in inflorescences are commonly (6 out of the 8 species) lower than in the rest of the shoot. We conclude that the antiherbivory potential of phytoliths in the southwest Asian Asteraceae as a group is much smaller than in the Poaceae.  相似文献   

17.
The population dynamics of perennial crop plants are influenced by numerous factors, including management practices. Conditions in the field vary from year to year, and matrix population models are useful for evaluating population behaviour in relation to environmental variability. In Missouri, the stand persistence of birdsfoot trefoil ( Lotus corniculatus ), a perennial legume, is often limited by disease and poor seed production. A stage-based, matrix population model was developed to evaluate the population dynamics of birdsfoot trefoil in relation to clipping treatment. The plant growth stages represented in the model were seeds, seedlings, mature vegetative and reproductive plants. Two phases of population growth were evaluated in clipped and unclipped stands. Establishment-phase populations were characterized by relatively high mortality and low reproduction. Elasticity analysis indicated that growth of these populations was most sensitive to the survival of vegetative plants. Mature vegetative plants and seeds comprised the majority of surviving individuals in clipped and unclipped populations, respectively; however, establishment-phase populations under both management treatments tended toward extinction. Populations in the post-establishment phase of growth were characterized by relatively low mortality and high reproduction. Population growth in this phase of growth was most sensitive to seed production, and most individuals in these populations were at the seed stage.  相似文献   

18.
An analysis of axillary meristem (axillary bud) localization of radish (Raphanus sativus L. cv. Tetra-I?ówiecka) was undertaken on vernalized (flowering) and unvernalized (vegetative) plants. It has been shown that the localization of these meristems can be different on successive nodes of the same plant and is connected with the development stages of the plants. The axillary meristems can arise on the stem as well as in the leaf axil or on the base of the subtending leaf. The localization of axillary meristems has been discussed in relation to growth directions and growth correlations inside the meristematic region of the shoot apex.  相似文献   

19.
Soil salinity is an increasing problem, including in regions of the world where chickpea is cultivated. Salt sensitivity of chickpea was evaluated at both the vegetative and reproductive phase. Root-zone salinity treatments of 0, 20, 40 and 60 mM NaCl in aerated nutrient solution were applied to seedlings or to older plants at the time of flower bud initiation. Even the reputedly tolerant cultivar JG11 was sensitive to salinity. Plants exposed to 60 mM NaCl since seedlings, died by 52 d without producing any pods; at 40 mM NaCl plants died by 75 d with few pods formed; and at 20 mM NaCl plants had 78-82% dry mass of controls, with slightly higher flower numbers but 33% less pods. Shoot Cl exceeded shoot Na by 2-5 times in both the vegetative and reproductive phase, and these ions also entered the flowers. Conversion of flowers into pods was sensitive to NaCl. Pollen from salinized plants was viable, but addition of 40 mM NaCl to an in vitro medium severely reduced pollen germination and tube growth. Plants recovered when NaCl was removed at flower bud initiation, adding new vegetative growth and forming flowers, pods and seeds. Our results demonstrate that chickpea is sensitive to salinity at both the vegetative and reproductive phase, with pod formation being particularly sensitive. Thus, future evaluations of salt tolerance in chickpea need to be conducted at both the vegetative and reproductive stages.  相似文献   

20.
In this study we quantified variability in foliage herbivory and pre-dispersal seed predation and its effects on plant performance and demography in populations of a rare and protected perennial herb, Paeonia officinalis. An individual-based survey was performed during four years in four populations, which contained plants in both open habitat and woodland. We detected marked spatial and temporal variation among and within populations in foliage herbivory (by insects) and pre-dispersal seed predation (by insects, rodents and Roe Deer). Foliage herbivory decreased with plant demographic stages in open habitats, from seedlings to reproductive individuals, but no significant trend was detected in woodland habitats. This may be due to different demographic origin of larger vegetative plants in this habitat. Depending on demographic stage, herbivory was higher in open habitats or not significantly different between habitats. This suggests differences in herbivore abundance in different habitats within sites. Pre-dispersal seed predation remained weak and did not depend on habitat. We did not detect any consequence of foliage herbivory on seedling mortality and individual growth in our study. Our results illustrate the need to investigate plant-herbivore interactions over several years in distinct populations in order to more accurately evaluate herbivore impact on plant population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号