首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate and zinc is co-released by excitation of hippocampal mossy fibers and both concentrations are increased in the extracellular compartment. In a novel environment, however, extracellular zinc is persistently decreased in spite of the increase in extracellular glutamate. The mechanism of the decrease in extracellular zinc was studied in the present paper. In rats subjected to the novelty stress under hippocampal perfusion, the differential changes in extracellular glutamate and zinc were abolished in the presence of 1 μM tetrodotoxin (TTX), a sodium channel blocker, which reduced exploratory behavior. When the hippocampus was perfused with corticosterone (50 ng/ml), extracellular zinc was increased. These results suggest that glutamatergic neuron activation elicited by novelty stress is involved in the decrease in extracellular zinc and that glucocorticoid is not a trigger for its decrease. The differential changes in extracellular glutamate and zinc was induced by electrical stimulation to analyze the decrease in extracellular zinc; the differential changes were elicited by delivery of tetanic stimuli (100 Hz for 1 s, 5 min intervals, three times) to the hippocampus instead of the novelty stress, as reported previously. The changes elicited by tetanic stimulation were abolished in the presence of 10 μM CNQX, an AMPA/kainate receptor antagonist. In a hippocampal slice double-labeled with zinc and calcium indicators, furthermore, CNQX inhibited the increase in intracellular zinc levels in mossy fiber synapses after delivery of tetanic stimuli (100 Hz for 5 s) to dentate granule cells. The in vivo and in vitro experiments suggest that AMPA/kainate receptor activation is involved in zinc influx into hippocampal cells, followed by the decrease in extracellular zinc. It is likely that zinc influx is persistently facilitated via stress-induced glutamatergic neuron activation.  相似文献   

2.
The extracellular concentration of glutamate in the hippocampus is increased by hippocampal perfusion with CaEDTA, a membrane-impermeable zinc chelator, suggesting that the activity of glutamatergic neurons in the hippocampus are influenced by the extracellular concentrations of zinc. In the present study, the relationship between the extracellular concentrations of zinc and mossy fiber activity in the hippocampus was examined in mice and rats fed a zinc-deficient diet for 4 weeks. Timm's stain, by which histochemically reactive zinc in the presynaptic vesicles is detected, was attenuated in the hippocampus in zinc deficiency. The extracellular signal of ZnAF-2, a membrane-impermeable zinc indicator, was also lower in the hippocampal CA3, suggesting that the basal extracellular concentrations of zinc are lower maintained in zinc deficiency. To check mossy fiber activity after 4-week zinc deprivation, the decrease in the signal of FM4-64, an indicator of presynaptic activity (exocytosis), at mossy fiber synapses was measured under the condition of spontaneous depolarization. The decrease was significantly facilitated by zinc deficiency, suggesting that the basal exocytosis at mossy fiber synapses is enhanced by zinc deficiency. On the other hand, the increase in anxiety-like behavior was observed in the open-field test after 4-week zinc deprivation. The present study demonstrates that the decrease in the basal extracellular concentrations of zinc may be linked to the enhancement of the basal mossy fiber activity in zinc deficiency. This decrease seems to be also involved in neuropsychological behavior in zinc deficiency.  相似文献   

3.
The response of hippocampal mossy fiber zinc to excessive glutamate release was examined to understand the role of the zinc in excessive excitation in the hippocampus. Extracellular zinc and glutamate concentrations during excessive stimulation with high K(+) were compared between the hippocampal CA3 and CA1 by the in vivo microdialysis. Zinc concentration in the CA3 was more increased than that in the CA1, while glutamate concentration in the CA3 was less increased than that in the CA1. It is likely that more increase in extracellular zinc is linked with less increase in extracellular glutamate in the CA3. To see zinc action in mossy fiber synapses during excessive excitation, furthermore, 1mM glutamate was regionally delivered to the stratum lucidum in the presence of zinc or CaEDTA, a membrane-impermeable zinc chelator, and intracellular calcium signal was measured in the CA3 pyramidal cell layer. The persistent increase in calcium signal during stimulation with glutamate was significantly attenuated in the presence of 100 microM zinc, while significantly enhanced in the presence of 1mM CaEDTA. These results suggest that zinc released from mossy fibers attenuates the increase in intracellular calcium signal in mossy fiber synapses and postsynaptic CA3 neurons after excessive inputs to dentate granular cells.  相似文献   

4.
Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons, a subclass of glutamatergic neurons. Zn(2+) serves as a signal factor in both the extracellular and intracellular compartments. Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of hippocampal function, i.e., cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation of CA1 LTP after exposure to acute stress. We propose that corticosterone-mediated increase in postsynaptic Zn(2+) signal, which is induced by acute stress, changes hippocampal function and then is possibly a risk factor under chronic stress circumstances to induce depressive symptoms.  相似文献   

5.
Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation of CA1 LTP after exposure to acute stress.  相似文献   

6.
This study was undertaken to evaluate the effects of chronic variate stress and lithium treatment on glutamatergic activity and neuronal vulnerability of rat hippocampus. Male Wistar rats were simultaneously treated with lithium and submitted to a chronic variate stress protocol during 40?days, and afterwards the hippocampal glutamatergic uptake and release, measured in slices and synaptosomes, were evaluated. We observed an increased synaptosomal [(3)H]glutamate uptake and an increase in [(3)H]glutamate stimulated release in hippocampus of lithium-treated rats. Chronic stress increased basal [(3)H]glutamate release by synaptosomes, and decreased [(3)H]glutamate uptake in hippocampal slices. When evaluating cellular vulnerability, both stress and lithium increased cellular death after oxygen and glucose deprivation (OGD). We suggest that the manipulation of glutamatergic activity induced by stress may be in part responsible for the neuroendangerment observed after stress exposure, and that, in spite of the described neuroprotective effects of lithium, it increased the neuronal vulnerability after OGD.  相似文献   

7.
Abstract— Glucocorticoids and stress have deleterious effects on hippocampal cell morphology and survival. It has been hypothesized that these effects are mediated via an excitatory amino acid mechanism. The present study was designed to evaluate the effects of acute stress on the extracellular levels of glutamate in the hippocampus and to determine if adrenalectomy modifies this response. Rats were adrenalectomized or sham-adrenalectomized and implanted with microdialysis probes in the CAS region of the hippocampus. Three days later rats were subjected to an acute 1 -h period of immobilization stress. Stress significantly increased extracellular glutamate levels in the sham-operated rats, which peaked at 20 min following the initiation of stress. Extracellular glutamate levels also increased immediately following the termination of stress. In the adrenalectomized rats there was a 30% decrease in basal extracellular concentrations of glutamate and a marked attenuation (-70%) of the stress-induced increase in extracellular glutamate levels. Extracellular concentrations of taurine were not modified by adrenalectomy and did not change in response to stress. These results suggest that glucocorticoid-in-duced elevations in extracellular glutamate concentrations may contribute to the deleterious effects of stress on hippocampal neurons.  相似文献   

8.
Abstract: The technique of intracerebral microdialysis was used to assess the effect of stress on the extracellular concentrations of excitatory amino acids, glutamate and aspartate, in the rat medial prefrontal cortex, hippocampus, striatum, and nucleus accumbens. A 20-min restraint procedure led to an increase in extracellular glutamate in all regions tested. The increase in glutamate levels was significantly higher in the prefrontal cortex than that observed in other regions. With the exception of the striatum, extracellular levels of aspartate were increased in all regions. Furthermore, the increase in aspartate levels was significantly higher in prefrontal cortex compared to hippocampus and nucleus accumbens. Local perfusion of tetrodotoxin during the restraint procedure significantly decreased the stress-induced increase in extracellular excitatory amino acids. In order to ensure that the above results were not an artifact of restraint not associated with stress (e.g., decreased mobility), we also examined the effect of swimming stress on the extracellular levels of excitatory amino acids in selected regions, i.e., striatum and medial prefrontal cortex. Both regions displayed a significant increase in extracellular levels of aspartate and glutamate following 20 min of swimming in room temperature water. This study provides direct evidence that stress increases the neuronal release of excitatory amino acids in a regionally selective manner. The implications of the present findings for stress-induced catecholamine release and/or hippocampal degeneration are discussed.  相似文献   

9.
It has been postulated that a reversal of glutamate reuptake (“uptake reverse”) may contribute to glutamate release during cerebral ischemia. We tested this hypothesis by studying the effect of threo-3hydroxy- -aspartic acid (THA), a glutamate uptake inhibitor, on extracellular glutamate accumulation measured by microdialysis during 4-vessel ischemia (20 min). The inhibitory effect of THA on sodium-dependent glutamate uptake was measured in vitro on rat hippocampal slices (Ki = 45 ± 11 μM). We examined in vivo the effect of THA (400 μM in the dialysis solution) on the extracellular glutamate release from the rat hippocampus, during veratridine depolarization and ischemia. THA decreased the amount of glutamate appearing in the extracellular space during veratridine depolarization (61%). In contrast, the glutamate release induced by ischemia was not affected by THA. We conclude that a reversal of the sodium-dependent uptake contributes to an increase in extracellular glutamate during veratridine depolarization. In contrast, glutamate release occurring during ischemia is not mediated by uptake reverse.  相似文献   

10.
On the basis of the evidence that the excitability of hippocampal glutamatergic neurotransmitter system is enhanced by dietary zinc deficiency, the response of amygdalar neurotransmitter system was checked in young rats fed a zinc-deficient diet for 4 weeks. Extracellular zinc concentration in the amygdala, which was measured by the in vivo microdialysis, was almost the same as that in the hippocampus and decreased by zinc deficiency. Extracellular zinc concentration in the amygdala was increased both in the control and zinc-deficient rats by stimulation with 100 mM KCl, suggesting that the increase in extracellular zinc in the amygdala, as well as that in the hippocampus, is linked with neuronal depolarization. In amygdalar extracellular fluid, the basal glutamate concentration was not significantly different between the control and zinc-deficient rats and was increased to almost the same extent between them by stimulation with 100 mM KCl, unlike more increase in extracellular glutamate concentration in the hippocampus in zinc deficiency. On the other hand, the basal GABA concentration in the amygdalar extracellular fluid was significantly lower in zinc-deficient rats and was not increased both in the control and zinc-deficient rats by stimulation with 100 mM KCl. These results suggest that GABAergic neurotransmitter system is critically impaired in the amygdala of young rats after 4-week zinc deprivation.  相似文献   

11.
Glutamatergic mechanisms are thought to be involved in stress-induced changes of brain function, especially in the hippocampus. We hypothesized that alterations caused by the hormonal changes associated with chronic and acute stress may affect glutamate uptake and release from hippocampal synaptosomes in Wistar rats. It was found that [3H]glutamate uptake and release by hippocampal nerve endings, when measured 24 h after 1 h of acute restraint, presented no significant difference. The exposure to repeated restraint stress for 40 days increased neuronal presynaptic [3H]glutamate uptake as well as basal and K+-stimulated glutamate release when measured 24 h after the last stress session. Chronic treatment also caused a significant decrease in [3H]glutamate binding to hippocampal membranes. We suggest that changes in the glutamatergic system are likely to take part in the mechanisms involved in nervous system plasticity following repeated stress exposure.  相似文献   

12.
Oxygen–glucose deprivation (OGD) in brain cells increases extracellular glutamate concentration leading to excitotoxicity. Glutamate uptake from the synaptic cleft is carried out by glutamate transporters, which are likely to be modulated by oxidative stress. Therefore, oxidative stress is associated with reduced activity of glutamate transporters and glutamine synthetase, thus increasing extracellular glutamate levels that may aggravate damage to brain cells. Atorvastatin, a cholesterol-lowering agent, has been shown to exert neuroprotective effects. The aim of this study was to investigate if in vivo atorvastatin treatment would have protective effects against hippocampal slices subjected to OGD, ex vivo. Atorvastatin pretreatment promoted increased cell viability after OGD and reoxygenation of hippocampal slices. Atorvastatin-induced neuroprotection may be related to diminished oxidative stress, since it prevented OGD-induced decrement of non-proteic thiols (NPSH) levels and increase in the production of reactive oxygen species (ROS). Atorvastatin pretreatment also prevented the OGD-induced decrease in glutamate uptake and glutamine synthetase activity, although it had no effect on OGD-induced excitatory aminoacids release. Addition of cholesterol before OGD and reoxygenation, abolished the protective effect of atorvastatin on cellular viability as well as on glutamate uptake and glutamine synthetase activity. Therefore, atorvastatin is capable of preventing OGD-induced cell death, an effect achieved due to modulation of glutamate uptake and glutamine synthetase activity, and associated with diminished oxidative stress. Additionally, atorvastatin effects were dependent on its action on cholesterol synthesis inhibition. Thus, atorvastatin might be a useful strategy in the prevention of glutamate exitotoxicity involved in brain injuries such as vascular disorders.  相似文献   

13.
Yan J 《生理科学进展》2000,31(2):131-134
本实验用Nissl染色法、Bielschowsky-Gros-Lawrentjew染色法、常规透射电镜、行为活动测定、双侧海马微量给药、海马神经元原代培养、活细胞连续照相、全细胞膜片钳记录、细胞内游离Ca^2+浓度测定及P53蛋白免疫组化测定等方法,观察了睫状神经营养因子(CNTF)对应激引起动物行为变化和海马神经元形态学变化的影响,探讨了CNTF的部分作用机制。结果表明,急性应激不引起大鼠海马神  相似文献   

14.
Previous studies have linked oxidative stress with aging and aging-related processes, including menopause. Abnormalities in the redox state similar to those observed in menopausal women can be modeled experimentally with rat ovariectomy. The aim of the present study was to investigate the effects of vitamin A (retinol palmitate) supplementation (500 or 1,500?IU?kg(-1)?day(-1) for 30?days) on behavioral parameters and brain redox profile in ovariectomized (OVX) and sham-operated rats. Ovariectomy caused pronounced uterine atrophy and decreased locomotor/exploratory activity. Moreover, we found increased hypothalamic and frontal cortex superoxide dismutase/catalase (SOD/CAT) ratio and decreased hippocampal thiol content, accompanied by increased frontal cortex lipid oxidative damage (TBARS) in OVX rats. Vitamin A at 1,500?IUkg(-1)?day(-1) decreased exploratory behavior and decreased total hippocampal thiol content in sham-operated rats, increased hippocampal SOD/CAT ratio and decreased total antioxidant potential in the hippocampus of both sham and OVX groups, and increased cortical TBARS levels in OVX rats. Thus, vitamin A may induce a pro-oxidant state in discrete brain regions of sham-operated and OVX rats. These results suggest some caution regarding the use of high doses of vitamin A supplementation during menopause.  相似文献   

15.
The effect of latrunculin A microperfusion on hippocampal extracellular concentrations of glutamate, aspartate, glycine and GABA, as measured by in vivo microdialysis, was investigated. Latrunculin A (4 microg/ml) was perfused for three consecutive days (8h a day) to promote in vivo F-actin depolymerization. Intrahippocampal latrunculin A microdialysis induced seizures during the second and third day of perfusion, and the animals started showing spontaneous seizures 1 month after lartrunculin A administration. Hippocampal glutamate levels were significantly increased during the first day of latrunculin A microperfusion without significant changes during the second and third day of perfusion. Aspartate levels were significantly increased during the first and second days of treatment. The rise on glutamate and asparate levels was partially reversed by perfusion of NMDA antagonist MK-801. Glycine concentrations were significantly increased during the 3 days of latrunculin A microdialyis, but no significant effect was observed on baseline GABA levels. One month after latrunculin A microperfusion, no significant differences in glutamate and aspartate extracellular concentrations were detected as compared to controls, however, significant increases in glycine and GABA extracellular concentrations were observed. The immediate increases in glutamate, aspartate and glycine levels indicate a modulatory effect of the F-actin cytoskeleton on extracellular concentrations of glutamate, aspartate and glycine. The chronic elevations in GABA and glycine levels are more likely to be related with long-term epileptogenesis processes. Our results suggest that the in vivo biochemical study of actin-dependent processes seems to be a promising approach to the neuropathology and neuropharmacology of epileptic seizures.  相似文献   

16.
Phosphorylation of the glial fibrillary acidic protein (GFAP) in hippocampal and cerebellar slices from immature rats is stimulated by glutamate. This effect occurs via a group II metabotropic glutamate receptor in the hippocampus and an NMDA ionotropic receptor in the cerebellum. We investigated the glutamate modulation of GFAP phosphorylation in the olfactory bulb slices of Wistar rats of different ages (post-natal day 15 = P15, post-natal day 21 = P21 and post-natal day 60 = P60). Our results showed that glutamate stimulates GFAP phosphorylation in young animals and this is mediated by NMDA receptors. We also observed a decrease in glutamate uptake at P60 compared to P15, a finding similar to that found in the hippocampus. The activity of glutamine synthetase was elevated after birth, but was found to decrease with development from P21 to P60. Together, these data confirm the importance of glutamatergic transmission in the olfactory bulb, its developmental regulation in this brain structure and extends the concept of glial involvement in glutamatergic neuron-glial communication.  相似文献   

17.
We present an overview of the long-term adaptation of hippocampal neurotransmission to cholinergic and GABAergic deafferentation caused by excitotoxic lesion of the medial septum. Two months after septal microinjection of 2.7 nmol alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), a 220% increase of GABA(A) receptor labelling in the hippocampal CA3 and the hilus was shown, and also changes in hippocampal neurotransmission characterised by in vivo microdialysis and HPLC. Basal amino acid and purine extracellular levels were studied in control and lesioned rats. In vivo effects of 100 mm KCl perfusion and adenosine A(1) receptor blockade with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) on their release were also investigated. In lesioned animals GABA, glutamate and glutamine basal levels were decreased and taurine, adenosine and uric acid levels increased. A similar response to KCl infusion occurred in both groups except for GABA and glutamate, which release decreased in lesioned rats. Only in lesioned rats, DPCPX increased GABA basal level and KCl-induced glutamate release, and decreased glutamate turnover. Our results evidence that an excitotoxic septal lesion leads to increased hippocampal GABA(A) receptors and decreased glutamate neurotransmission. In this situation, a co-ordinated response of hippocampal retaliatory systems takes place to control neuron excitability.  相似文献   

18.
This study aims to determine whether the regulation of extracellular glutamate is altered during aging and its possible consequences on synaptic transmission and plasticity. A decrease in the expression of the glial glutamate transporters GLAST and GLT‐1 and reduced glutamate uptake occur in the aged (24–27 months) Sprague–Dawley rat hippocampus. Glutamatergic excitatory postsynaptic potentials recorded extracellularly in ex vivo hippocampal slices from adult (3–5 months) and aged rats are depressed by DL‐TBOA, an inhibitor of glutamate transporter activity, in an N‐Methyl‐d‐ Aspartate (NMDA)‐receptor‐dependent manner. In aged but not in young rats, part of the depressing effect of DL‐TBOA also involves metabotropic glutamate receptor (mGluRs) activation as it is significantly reduced by the specific mGluR antagonist d‐methyl‐4‐carboxy‐phenylglycine (MCPG). The paired‐pulse facilitation ratio, a functional index of glutamate release, is reduced by MCPG in aged slices to a level comparable to that in young rats both under control conditions and after being enhanced by DL‐TBOA. These results suggest that the age‐associated glutamate uptake deficiency favors presynaptic mGluR activation that lowers glutamate release. In parallel, 2 Hz‐induced long‐term depression is significantly decreased in aged animals and is fully restored by MCPG. All these data indicate a facilitated activation of extrasynaptic NMDAR and mGluRs in aged rats, possibly because of an altered distribution of glutamate in the extrasynaptic space. This in turn affects synaptic transmission and plasticity within the aged hippocampal CA1 network.  相似文献   

19.
We have used microdialysis to measure the in vivo level of tyrosine hydroxylation in hippocampus of the freely moving rat. An inhibitor of aromatic amino acid decarboxylase, NSD-1015, was administered through the dialysis probe and the resulting accumulation of 3,4-dihydroxyphenylalanine (DOPA) in extracellular fluid of hippocampus was quantified. Administration of the tyrosine hydroxylase inhibitor, alpha-methyl-p-tyrosine, decreased extracellular DOPA to undetectable level. In addition, both systemic and local application of clonidine, an alpha 2-adrenergic agonist, produced a decrease in extracellular DOPA. In response to acute tail shock, a significant increase in extracellular DOPA was observed. Thus, it appears that in vivo accumulation of DOPA after local administration of NSD-1015 provides a reliable index of hippocampal tyrosine hydroxylation. We have used this technique to investigate whether prior exposure to chronic stress alters the in vivo level of tyrosine hydroxylation in hippocampus under basal conditions as well as in response to a novel stressor. In rats previously exposed to chronic cold stress, the basal accumulation of extracellular DOPA did not differ from naive controls. Acute tail shock, however, produced a significantly greater and more prolonged elevation in extracellular DOPA of chronically stressed rats. These data suggest that enhanced biosynthetic capacity of noradrenergic terminals may be one mechanism underlying adaptation to chronic stress.  相似文献   

20.

Aim

Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter.

Main methods

Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214–314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation.

Key findings

Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated “amoeboid” form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different.

Significance

These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号