首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitroxides are cell-permeable stable radicals that protect biomolecules from oxidative damage in several ways. The mechanisms of protection studied to date include removal of superoxide radicals as SOD-mimics, oxidation of transition metal ions to preempt the Fenton reaction, and scavenging carbon-centered radicals. However, there is no agreement regarding the reaction of piperidine nitroxides with peroxyl radicals. The question of whether they can protect by scavenging peroxyl radicals is important because these radicals are formed in the presence of oxygen abundant in biological tissues. To further our understanding of the antioxidative behavior of piperidine nitroxides, we studied their effect on biochemical systems exposed to the water soluble radical initiator 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH). AAPH thermally decomposes to yield tert-amidinopropane radicals (t-AP(*)) that readily react with oxygen to form peroxyl radicals (t-APOO(*)). It has recently been reported that piperidine nitroxides protect plasmid DNA from t-AP(*) though not from t-APOO(*). The present study was directed at the question of whether these nitroxides can protect biological systems from damage inflicted by peroxyl radicals. The reaction of nitroxides with AAPH-derived radicals was followed by cyclic voltammetry and electron paramagnetic resonance spectroscopy, whereas the accumulation of peroxide was iodometrically assayed. Assaying DNA damage in vitro, we demonstrate that piperidine nitroxides protect from both t-AP(*) and t-APOO(*). Similarly, nitroxides inhibit AAPH-induced enzyme inactivation. The results indicate that piperidine nitroxides protect the target molecule by reacting with and detoxifying peroxyl radicals.  相似文献   

2.
In order to gain more knowledge on the antioxidant role of nitroxide radicals, in this study we investigate their possible protective action against DNA damage induced by nitric oxide (NO) and reactive nitrogen oxide species deriving from it, namely nitroxyl anion (NO(-)) and peroxynitrite (ONOO(-)). Rat trachea epithelial cells were exposed under aerobic conditions to (1) NO generated by 150 microM S-nitrosoglutathione monoethyl ester (GSNO-MEE), (2) NO(-) generated by 200 microM Angeli's salt (Na(2)N(2)O(3)) (3) ONOO(-) generated by 1mM SIN-1 (3-morpholino-sydnonimine) and (4) 100 microM synthesized ONOO(-), in the absence and presence of 5 microM of two indolinonic nitroxides synthesized by us and the piperidine nitroxide TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl). DNA damage was assessed using the comet assay-a rapid and sensitive, single-cell gel electrophoresis technique used to detect primary DNA damage in individual cells. The parameter tail moment, used as an index of DNA damage, showed that in all cases the nitroxides remarkably inhibited DNA strand breaks induced by the different nitrogen oxide species. All three nitroxides protect to the same extent, except in the case of synthesized peroxynitrite where the aromatic nitroxides 1 and 2 are more efficient than TEMPO. These findings are consistent with the antioxidant character of nitroxide compounds and give additional information on the potential implications for their use as therapeutic agents.  相似文献   

3.
Indolinonic nitroxide radicals efficiently scavenge oxygen- and carbon-centered radicals. They protect lipid and protein systems against oxidative stress, but little is known about their capacity to protect DNA against radical-mediated damage. We compare indolinonic nitroxides and the piperidines TEMPO and TEMPOL for their ability to inhibit strand breaks inflicted on DNA when it is illuminated in vitro in the presence of dibenzoylmethane (DBM) and a relative, Parsol 1789, used as a UVA-absorbing sunscreen. We used spin-trapping EPR to examine the formation of radicals and plasmid nicking assays to evaluate DNA strand breakage. The results have a two-fold interest. First, they show that all the nitroxides tested efficiently prevent DNA damage in a dose-dependent fashion. Vitamin E had no effect under the conditions used. Second, they show that carbon-centered radicals are produced on illumination of DBM and its relative and that their formation is probably responsible for the direct strand breaks found when naked DNA is illuminated in vitro in their presence. Additional work on the ability of sunscreens to enter human cells and their response to the light that penetrates sunscreen-protected skin would be necessary before any conclusion could be drawn as to whether the results reported here are relevant to human use of sunscreens.  相似文献   

4.
Site-activity relationship of nitroxide radical's antioxidative effect   总被引:3,自引:0,他引:3  
A relatively new strategy in preventing oxidative damage employs cyclic nitroxides. These stable radicals have been widely used as biophysical probes, spin labels, and are currently tested as contrast agents for nuclear magnetic resonance imaging. Nitroxides were found to protect cells, organs, and whole animals against diverse oxidative insults. The present study concentrated on comparing the antioxidative activity of nitroxides against oxidative damage, initiated either in the lipid or aqueous phase, to egg phosphatidylcholine acyl chains (13.4% polyunsaturated fatty acids) in small unilamellar vesicles. We determined the lipophilicity and liposome-membrane/aqueous-medium partition coefficient for several nitroxides and compared their specific protective effects. The aim was to study the relation between nitroxides' concentration, location in the lipid bilayer, and their protection against oxidative damage. Both 6-membered- and 5-membered-ring nitroxides were studied for: (i) partitioning between the lipid bilayer and the aqueous phase (nitroxides were quantified using EPR spectroscopy); (ii) the intrabilayer distribution, using three different fluorescent probes of known location of their fluorophors in the lipid bilayer; and (iii) the specific antioxidative effect (protection per concentration) against radicals formed in a liposomal dispersion. The radicals were generated using the thermolabile, radical-generating compounds 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) in the aqueous phase, and 2,2'-azobis (2,4-dimethyl-valeronitrile) (AMVN) in the lipid phase. The results show that nitroxides react, in a concentration-dependent manner, with deleterious species at their formation sites, both in the aqueous and the lipid phase, and that their specific protective effects for the lipophilic target, the lipid bilayer, are similar for both the lipophilic and the hydrophilic nitroxides.  相似文献   

5.
Stable nitroxide radicals have been previously shown to function as superoxide dismutase (SOD)2 mimics and to protect mammalian cells against superoxide and hydrogen peroxide-mediated oxidative stress. These unique characteristics suggested that nitroxides, such as 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol), might protect mammalian cells against ionizing radiation. Treating Chinese hamster cells under aerobic conditions with 5, 10, 50, and 100 mM Tempol 10 min prior to X-rays resulted in radiation protection factors of 1.25, 1.30, 2.1, and 2.5, respectively. However, the reduced form of Tempol afforded no protection. Tempol treatment under hypoxic conditions did not provide radioprotection. Aerobic X-ray protection by Tempol could not be attributed to the induction of intracellular hypoxia, increase in intracellular glutathione, or induction of intracellular SOD mRNA. Tempol thus represents a new class of non-thiol-containing radiation protectors, which may be useful in elucidating the mechanism(s) of radiation-induced cellular damage and may have broad applications in protecting against oxidative stress.  相似文献   

6.
1. Incubation with hydralazine was shown to induce degradative changes of calf thymus DNA spin-labeled with 3-(2-bromoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidono-1-oxyl and 4-(2-bromoacetamido)-2,2,6,6-tetramethylpiperidino-1-oxyl detectable from electron spin resonance specta. 2. Hydralazine, especially in the presence of Fe2+ induced formation of thiobarbituric acid (TBA)-reactive DNA degradation products. 3. The formation of TBA-reactive products was prevented by catalase, EDTA and scavengers of .OH radicals and enhanced by superoxide dismutase which suggests that .OH radicals formed by the Fenton mechanism mediate the DNA damage by hydralazine-Fe2+.  相似文献   

7.
Stable Nitroxide Radicals Protect Lipid Acyl Chains From Radiation Damage   总被引:3,自引:0,他引:3  
The present study focused on protective activity of two six-membered-ring nitroxide radicals, 2,2,6,6-tetramethylpiperidine-1-oxyl (Tempo) and 4-hydroxy-Tempo (Tempol), against radiation damage to acyl chain residues of egg phosphatidylcholine (EPC) of small unilamellar vesicles (SUV). SUV were -irradiated (10–12 kGy) under air at ambient temperature in the absence and presence of nitroxides. Acyl chain composition of the phospholipids before and after irradiation was determined by gas chromatography. Both Tempo and Tempol effectively and similarly protected the acyl chains of EPC SUV, including the highly sensitive polyunsaturated acyl chains, C20:4, C22:5, and C22:6. The conclusions of the study are: (a) The higher the degree of unsaturation in the acyl chain, the greater is the degradation caused by irradiation. (b) The fully saturated fatty acids palmitic acid (C16) and stearic acid (C18) showed no significant change in their levels. (c) Both Tempo and Tempol provided similar protection to acyl chain residues. (d) Nitroxides' lipid-bilayer/aqueous distribution is not validly represented by their n-octanol/saline partition coefficient. (e) The lipid-bilayer/aqueous partition coefficient of Tempo and Tempol cannot be correlated with their protective effect. (f) The nitroxides appear to protect via a catalytic mode. Unlike common antioxidants, such as -tocopherol, which are consumed under irradiation and are, therefore, less effective against high radiation dose, nitroxide radicals are restored and terminate radical chain reactions in a catalytic manner. Furthermore, nitroxides neither yield secondary radicals upon their reaction with radicals nor act as prooxidants. Not only are nitroxides self-replenished, but also their reduction products are effective antioxidants. Therefore, the use of nitroxides offers a powerful strategy to protect liposomes, membranes, and other lipid-based assemblies from radiation damage. © 1997 Elsevier Science Inc.  相似文献   

8.
Nonsteroidal anti-inflammatory drugs are the drugs of choice in the treatment of rheumatoid arthritis (RA) because of their rapid analgesic effect. However, they induce severe gastric damage in RA patients and animals by a process mediated by reactive oxygen species (ROS). Nitroxides (nitroxyl radicals) are widely used as imaging agents and antioxidants to explore the role of ROS generation in the pathogenesis of disease. In this study, the effectiveness of the newly synthesized nitroxides 8-aza-7,7,9,9-tetramethyl-1,4-dioxaspiro[4.5]undecan-8-oxyl (compound 1) and 4-oxo-2,2,6,6-tetraethylpiperidine-1-oxyl (compound 2) in the prevention of gastric ulcers in adjuvant arthritis rats treated with indomethacin was evaluated by monitoring the reaction of reactive oxygen species in gastric tissue with Overhauser-enhanced magnetic resonance imaging (OMRI). Pretreatment with all tested nitroxides suppressed the ulcers induced by indomethacin treatment in arthritic rats. OMRI using compounds 1 and 2 as well as 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) demonstrated a redox imbalance in the stomach of these rats. Lipid peroxide and interleukin (IL)-1β levels in the gastric mucosa were significantly suppressed by compound 1 and TEMPOL, whereas CINC/gro, a member of the IL-8 family, was significantly suppressed by compound 1 only. These results suggest that the preventive effects of nitroxides on gastric ulcers may operate by different mechanisms.  相似文献   

9.
Phyllanthus amarus Linn is a widely distributed tropical medicinal plant highly valued for its therapeutic properties. The antioxidant activity of some of its principal constituents, namely amariin, 1-galloyl-2,3-dehydrohexahydroxydiphenyl (DHHDP)-glucose, repandusinic acid, geraniin, corilagin, phyllanthusiin D, rutin and quercetin 3-O-glucoside were examined for their ability to scavenge free radicals in a range of systems including 2,2-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azobis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS)/ferrylmyoglobin, ferric reducing antioxidant power (FRAP) and pulse radiolysis. In addition, their ability to protect rat liver mitochondria against oxidative damage was determined by measuring the ROO* radical induced damage to proteins and lipids and *OH radical induced damage to plasmid DNA. The compounds showed significant antioxidant activities with differing efficacy depending on the assays employed. Amariin, repandusinic acid and phyllanthusiin D showed higher antioxidant activity among the ellagitannins and were comparable to the flavonoids, rutin and quercetin 3-O-glucoside.  相似文献   

10.
The present study aims to determine the effect of bilayer composition on oxidative damage and the protection against it in lipid multicomponent membranes. Irradiation damage in 200-nm liposomes and the protection provided by the nitroxide radicals, 2,2,6,6-tetramethylpiperidine-1-oxyl (Tempo) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) were assessed by monitoring several chemical and physical parameters. Liposomes were prepared in four different lipid compositions (mole ratios), DPPC:DPPG 10:1; DPPC:DPPG:cholesterol 10:1:4; EPC:EPG 10:1; and EPC:EPG:cholesterol 10:1:4, and γ-irradiated with a dose of 32 kGy. Lipid degradation was determined by HPLC and GC analyses, whereas size and differential scanning calorimetry measurements were used to monitor physical changes in the liposomal dispersions. The results indicate that: (1) addition of 5 mM Tempo or Tempol, or freezing of the sample inhibited radiation-induced lipid degradation; (2) Tempo and Tempol caused neither physical nor chemical changes in the liposomal dispersions; and (3) both nitroxides prevented or reduced some of the radiation-induced changes in thermotropic characteristics of the liposomes, preventing a shift in the temperature of the maximum of the main phase transition (Tm).  相似文献   

11.
2,2,6,6-Tetramethylpiperidine-1-oxyl (Tempo), previously reported by us to augment oxidation of glutathione induced by peroxynitrite (Glebska J, Skolimowski J, Kudzin Z, Gwozdzinski K, Grzelak A, Bartosz G. Pro-oxidative activity of nitroxides in their reactions with glutathione. Free Radic Biol Med 2003; 35: 310-316) was found to increase oxidation of glutathione induced by various oxidants, including persulfate, tert-butyl hydroperoxide and hydrogen peroxide. Tempo augmented also the inactivation and thiol loss of alcohol dehydrogenase induced by 2,2'-azobis(2-amidinopropane) (AAPH) and oxidative degradation of deoxyribose induced by ammonium persulfate and tert-butyl hydroperoxide. These results point to a pro-oxidative effect of nitroxides on a range of biomolecules subjected to the action of various oxidants.  相似文献   

12.
Nitroxides block DNA scission and protect cells from oxidative damage.   总被引:1,自引:0,他引:1  
The protective effect of cyclic stable nitroxide free radicals, having SOD-like activity, against oxidative damage was studied by using Escherichia coli xthA DNA repair-deficient mutant hypersensitive to H2O2. Oxidative damage induced by H2O2 was assayed by monitoring cell survival. The metal chelator 1,10-phenanthroline (OP), which readily intercalates into DNA, potentiated the H2O2-induced damage. The extent of in vivo DNA scission and degradation was studied and compared with the loss of cell viability. The extent of DNA breakage correlated with cell killing, supporting previous suggestions that DNA is the crucial cellular target of H2O2 cytotoxicity. The xthA cells were protected by catalase but not by superoxide dismutase (SOD). Both five- and six-membered ring nitroxides, having SOD-like activity, protected growing and resting cells from H2O2 toxicity, without lowering H2O2 concentration. To check whether nitroxides protect against O2.(-)-independent injury also, experiments were repeated under hypoxia. These nitroxides also protected hypoxic cells against H2O2, suggesting alternative modes of protection. Since nitroxides were found to reoxidize DNA-bound iron(II), the present results suggest that nitroxides protect by oxidizing reduced transition metals, thus interfering with the Fenton reaction.  相似文献   

13.
Abstract

Phyllanthus amarus Linn is a widely distributed tropical medicinal plant highly valued for its therapeutic properties. The antioxidant activity of some of its principal constituents, namely amariin, 1-galloyl-2,3-dehydrohexahydroxydiphenyl (DHHDP)-glucose, repandusinic acid, geraniin, corilagin, phyllanthusiin D, rutin and quercetin 3-O-glucoside were examined for their ability to scavenge free radicals in a range of systems including 2,2-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azobis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS)/ferrylmyoglobin, ferric reducing antioxidant power (FRAP) and pulse radiolysis. In addition, their ability to protect rat liver mitochondria against oxidative damage was determined by measuring the ROO? radical induced damage to proteins and lipids and ?OH radical induced damage to plasmid DNA. The compounds showed significant antioxidant activities with differing efficacy depending on the assays employed. Amariin, repandusinic acid and phyllanthusiin D showed higher antioxidant activity among the ellagitannins and were comparable to the flavonoids, rutin and quercetin 3-O-glucoside.  相似文献   

14.
Modulation of radiation- and metal ion-catalyzed oxidative-induced damage using plasmid DNA, genomic DNA, and cell survival, by three nitroxides and their corresponding hydroxylamines, were examined. The antioxidant property of each compound was independently determined by reacting supercoiled DNA with copper II/1,10-phenanthroline complex fueled by the products of hypoxanthine/xanthine oxidase (HX/XO) and noting the protective effect as assessed by agarose gel electrophoresis. The nitroxides and their corresponding hydroxylamines protected approximately to the same degree (33-47% relaxed form) when compared to 76.7% relaxed form in the absence of protectors. Likewise, protection by both the nitroxide and corresponding hydroxylamine were observed for Chinese hamster V79 cells exposed to hydrogen peroxide. In contrast, when plasmid DNA damage was induced by ionizing radiation (100 Gy), only nitroxides (10 mM) provide protection (32.4-38.5% relaxed form) when compared to radiation alone or in the presence of hydroxylamines (10 mM) (79.8% relaxed form). Nitroxide protection was concentration dependent. Radiation cell survival studies and DNA double-strand break (DBS) assessment (pulse field electrophoresis) showed that only the nitroxide protected or prevented damage, respectively. Collectively, the results show that nitroxides and hydroxylamines protect equally against the damage mediated by oxidants generated by the metal ion-catalyzed Haber-Weiss reaction, but only nitroxides protect against radiation damage, suggesting that nitroxides may more readily react with intermediate radical species produced by radiation than hydroxylamines.  相似文献   

15.
Reactive free radicals and reactive oxygen species (ROS) induced by ultraviolet irradiation in human skin are strongly involved in the occurrence of skin damages like aging and cancer. In the present work an ex vivo method for the detection of free radicals/ROS in human skin biopsies during UV irradiation is presented. This method is based on the Electron Spin Resonance (ESR) spectroscopy and imaging and uses the radical trapping properties of nitroxides. The nitroxides 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO), 3-Carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCM), and 3-Carboxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCA), were investigated for their applicability of trapping reactive free radicals and reactive oxygen species in skin during UV irradiation. As a result of the trapping process the nitroxides were reduced to the EPR silent hydroxylamins. The reduction rate of TEMPO was due to both the UV radiation and the enzymatic activity of the skin. The nitroxides PCM and PCA are sufficiently stable in the skin and are solely reduced by UV-generated free radicals/ROS. The nitroxide PCA was used for imaging the spatial distribution of UV-generated free radicals/ROS. As a result of the homogeneous distribution of PCA in the skin, it was possible to estimate the penetration of UVA and UVB irradiation: The UV irradiation decreased the PCA intensity corresponding to its irradiance and penetration into the skin. This reduction was shown to be caused mainly by UVA radiation (320-400 nm).  相似文献   

16.
This study was performed to evaluate the effects, if any, of aromatic nitroxides, namely, indolinic nitroxides, on membrane fluidity of rat epithelial cells using steady-state fluorescence. These nitroxides are being increasingly considered as new and versatile compounds to reduce oxidative stress in biological systems. Hence, the results obtained in this study will give more insights on the interaction of these compounds with biological structures which at present is lacking, especially in view of their possible application as antioxidant therapeutic agents. The probes DPH and Laurdan which give information on the hydrophobic and hydrophilic-hydrophobic regions of the membrane bilayer, respectively, showed that nitroxide 1 (1,2-dihydro-2-methyl-3H-indole-3-one-1-oxyl) significantly increases membrane fluidity, whereas the corresponding phenylimino nitroxide derivative 2 (1,2-dihydro-2-methyl-3H-indole-3-phenylimino-1-oxyl) leads to membrane rigidification. The aliphatic nitroxide TEMPO included in this study for comparison produced no modifications. Consequently, it appears that the structure of the heterocyclic rings (aromatic or aliphatic) and the substituents may affect membrane fluidity differently.  相似文献   

17.
Metabolism of different nitroxides with piperidine structure used as spin labels in electron spin resonance (ESR) studies in vitro and in vivo was investigated in human keratinocytes of the cell line HaCaT by GC and GC-MS technique combined with S-band ESR. Besides the well known reduction of the nitroxyl radicals to the ESR silent hydroxylamines as primary products our results indicate the formation of the corresponding secondary amines. These reductions are inhibited by the thiol blocking agent N-ethylmaleimide and by the strong inhibitors of the thioredoxin reductase (TR) 2-chloro-2,4-nitrobenzene and 2,6-dichloroindophenol. The competitive inhibitor TR inhibitor azelaic acid and the cytochrome P-450 inhibitor metyrapone lack any effects. The rates of reduction to the hydroxylamines and secondary amines were dependent on the lipid solubility of the nitroxides. Therefore, it can be assumed that the nitroxides must enter the cells for their bioreduction. The mostly discussed intracellular nitroxide reducing substances ascorbic acid and glutathione were unable to form the secondary amines. In conclusion, our results suggest that the secondary amine represents one of the major metabolites of nitroxides besides the hydroxylamine inside keratinocytes formed via the flavoenzyme thioredoxin reductase most probably. Further metabolic conversions were detected with 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl and the benzoate of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl as substrates.  相似文献   

18.
Low molecular weight chitosan (LMWC) and chitooligosaccharides (COs), obtained by persulfate-induced depolymerization of chitosan showed scavenging of OH. and O2.- radicals and offered protection against calf thymus DNA damage. Over 85% inhibition of free radicals and DNA protection were observed. LMWC (0.05 micromol) showed a strong inhibitory activity compared to COs (3.6 micromol). Further, LMWC showed calf thymus DNA condensation reversibly giving stability, as evident from CD, TEM and melting curves (Tm). A fluorescence study suggests the binding of LMWC in the minor groove, forming H-bonds to the backbone phosphates without distorting the double helix structure.  相似文献   

19.
Mutagenicity of nitroxide-free radicals   总被引:2,自引:0,他引:2  
Stable nitroxides were found to be mutagenic using Salmonella typhimurium tester strain TA 104, a strain chosen on the basis of its high sensitivity to oxidative damage. Nitroxide mutagenicity was dramatically increased in the presence of the superoxide radical generating system, xanthine oxidase/hypoxanthine, and it was suppressed in cells carrying the oxyR1 mutation, which causes induction of enzymes protecting against oxidative stress. As nitroxide-free radicals occur biologically, e.g., in the metabolism of aromatic amines, these radical-induced mutations could be a model for the carcinogenicity observed with these compounds.  相似文献   

20.
Nitroxide radicals are an emerging class of interesting compounds with versatile antioxidant and radioprotective properties. All literature studies have so far concentrated on compounds bearing only one nitroxide function. Here, we now investigate and compare the radical scavenging behaviour and antioxidant activity of aromatic indolinonic and aliphatic piperidine bis-nitroxides, i.e compounds bearing two nitroxide functions. Their corresponding mono-derivatives were also studied for comparison. Radical scavenging activity was investigated using EPR and UV-Vis spectroscopy by following spectral changes in acetonitrile of the nitroxides in the presence of alkyl and peroxyl radicals generated, respectively, under anoxic or aerobic conditions from thermal decomposition of AMVN [2,2'-azobis(2,4-di-methylvaleronitrile)]. Antioxidant activity of the nitroxides was evaluated by monitoring conjugated dienes (CD) formation during methyl linoleate micelles peroxidation and by measuring carbonyl content in oxidized bovine serum albumin (BSA). The results show that: (a) each nitroxide moiety in bis-nitroxides scavenges radicals independent of each other; (b) aliphatic nitroxides do not scavenge peroxyl radicals, at least under the experimental conditions used here, whereas indolinonic aromatic ones do: their stoichiometric number is 1.14 and 2.17, respectively, for mono- and bis-derivatives; (c) bis-nitroxides are roughly twice more efficient at inhibiting lipid peroxidation compared to their corresponding mono-derivatives. Although this study provides only comparative information on the relative radical-scavenging abilities of mono- and bis-nitroxides, it helps in understanding further the interesting reactivity of these compounds especially with regards to peroxyl radicals where many controversies in the literature exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号