首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Iron uptake by rabbit reticulocytes was inhibited by spermine in a concentration-dependent manner. Examination of the single-cycle endocytosis of 125I-transferrin showed that a graded reduction in the rate of exocytosis of transferrin was related to increasing extracellular spermine concentrations. This reduction could affect the recycling of transferrin receptors and resulted in the loss of membrane binding sites in spermine-treated cells. As large vacuoles were observed in cells treated with spermine, the endotubular function of these cells was probably affected. Spermine also enhanced the binding affinity of transferrin to membrane receptors. The mechanism for this enhancement was not clear.  相似文献   

3.
The possible role of calcium in the uptake of transferrin and iron by rabbit reticulocytes was investigated by altering cellular calcium levels through the use of the chelating agents EDTA and ethyleneglycol-bis-(3-aminoethylether)-N,N′-tetraacetic acid (EGTA) and the ionophores, A23187 and X537A. Incubation of reticuloyctes with EDTA or EGTA at 4°C had no effect on transferrin and iron uptake but incubation at 37°C resulted in an irreversible inhibition associated with decreased adsorption of transferrin to the cells and evidence of inactivation or loss of the transferrin receptors. Transferrin and iron uptake were also inhibited when the cells were incubated with A23187 or X537A. In the case of A23187 the action was primarily exerted on the temperature-sensitive stage of transferrin uptake and was associated with loss of cellular K+ and decrease in cell size. The effect was greater when Ca2+ was added to the incubation medium than its absence. X537A produced relatively greater inhibition of iron uptake than of transferrin uptake, associated with a reduction in cellular ATP concentratio. The action of X537A was unaffected by the presence of Ca2+ in the incubation medium.The results obtained with EDTA and EGTA indicate that cell membrane Ca2+ is required for the integrity or binding of transferrin receptors to the reticulocyte membrane. No evidence was obtained from the experiments with ionophores that an increase of cellular Ca2+ affects transferrin and iron uptake directly. The inhibition caused by A23187 was mainly due to a reduction in cell size resulting from increased membrane permeability to K+ and that caused by X537A appeared to result from an inhibition of energy metabolism and ATP production.  相似文献   

4.
The uptake of transferrin-bound iron by receptor-mediated endocytosis has been the subject of extensive experimental investigation. However, the path followed by iron (Fe) after release from transferrin (Tf) remains obscure. Once Fe is released from Tf within the endosome, it must be transported across the endosomal membrane into the cell. The present investigation describes the presence of a cytoplasmic Tf-free Fe pool which is detectable only when cells are detached from their culture dishes at low temperature, after initial incorporation of diferric transferrin at 37 degrees C. This cellular iron pool was greatly reduced if incubation temperatures were maintained at 37 degrees C or if cells were treated with pronase. Human melanoma cells (SK-MEL-28) in culture were prelabeled by incubation with human 125I-59Fe-transferrin for 2 h, washed, and reincubated at 4 degrees C or 37 degrees C in balanced salt solution in the presence or absence of pronase. The cells were then mechanically detached from the plates and separated into "internalized" and supernatant fractions by centrifugation. Approximately 90% of cellular 59Fe and 20% of 125I-Tf remained internalized when this reincubation procedure was carried out in balanced salt solution at 37 degrees C. However, at 4 degrees C, cellular internalized iron was reduced to approximately 50% of the initial value. The release of this component of cellular 59Fe (approximately 40% of total cell 59Fe) at 4 degrees C was completely inhibited in the presence of pronase and other general proteinases at 4 degrees C and at 37 degrees C, without affecting internalized transferrin levels. Similar results were obtained in fibroblasts and hepatoma cells, indicating that this phenomenon is not unique to melanoma cells. The characterization of this Tf-free cellular Fe pool which is detectable at low temperature may yield valuable insights into the metabolic fate of iron following its transport across the membrane of the endocytotic vesicle.  相似文献   

5.
The endocytosis of diferric transferrin and accumulation of its iron by freshly isolated rabbit reticulocytes was studied using 59Fe-125I-transferrin. Internalized transferrin was distinguished from surface-bound transferrin by its resistance to release during treatment with Pronase at 4 degrees C. Endocytosis of diferric transferrin occurs at the same rate as exocytosis of apotransferrin, the rate constants being 0.08 min-1 at 22 degrees C, 0.19 min-1 at 30 degrees C, and 0.45 min-1 at 37 degrees C. At 37 degrees C, the maximum rate of transferrin endocytosis by reticulocytes is approximately 500 molecules/cell/s. The recycling time for transferrin bound to its receptor is about 3 min at this temperature. Neither transferrin nor its receptor is degraded during the intracellular passage. When a steady state has been reached between endocytosis and exocytosis of the ligand, about 90% of the total cell-bound transferrin is internal. Endocytosis of transferrin was found to be negligible below 10 degrees C. From 10 to 39 degrees C, the effect of temperature on the rate of endocytosis is biphasic, the rate increasing sharply above 26 degrees C. Over the temperature range 12-26 degrees C, the apparent activation energy for transferrin endocytosis is 33.0 +/- 2.7 kcal/mol, whereas from 26-39 degrees C the activation energy is considerably lower, at 12.3 +/- 1.6 kcal/mol. Reticulocytes accumulate iron atoms from diferric transferrin at twice the rate at which transferrin molecules are internalized, implying that iron enters the cell while still bound to transferrin. The activation energies for iron accumulation from transferrin are similar to those of endocytosis of transferrin. This study provides further evidence that transferrin-iron enters the cell by receptor-mediated endocytosis and that iron release occurs within the cell.  相似文献   

6.
1. The role of specific interaction between transferrin and its receptors in iron uptake by the liver in vivo was investigated using 59Fe-125I-labelled transferrins from several animal species, and adult and 15-day rats. Transferrin-free hepatic uptake of 59Fe was measured 2 or 0.5 hr after intravenous injection of the transferrins. 2. Rat, rabbit and human transferrins gave high and approximately equal levels of hepatic iron uptake while transferrins from a marsupial (Sentonix brachyurus), lizard, crocodile, toad and fish gave very low uptake values. Chicken ovotransferrin resulted in higher uptake than with any other species of transferrin. 3. Iron uptake by the femurs (as a sample of bone marrow erythroid tissue) and, in another group of 19-day pregnant animals by the placentas and fetuses, was also measured, for comparison with the liver results. The pattern of uptake from the different transferrins was found to be similar to that of iron uptake by the liver except that with femurs, placentas and fetuses ovotransferrin gave low values comparable to those of the other non-mammalian species. 4. It is concluded that iron uptake by the liver from plasma transferrin in vivo is largely or completely dependent on specific transferrin-receptor interaction. The high hepatic uptake of iron from ovotransferrin was probably mediated by the asialoglycoprotein receptors on hepatocytes.  相似文献   

7.
Reticulocytes incubated in an isotonic NaCl saline medium containing glucose, glutamine and amino acids, were able to detach both iron atoms from all the transferrin incorporated by them. In the absence of these metabolites, although transferrin uptake was the same, the reticulocytes failed to remove completely the iron from the transferrin which they incorporated. It has been shown before that there is unspecific as well as specific binding of transferrin to the reticulocyte. By incubating the cells in the presence of a high concentration of bovine serum albumin, we have been able to prevent the unsepcific attachment of transferrin. At least 94% of the iodinated transferrin was capable of donating its iron to the reticulocytes.  相似文献   

8.
An increase in extracellular spermine concentration brought about a progressive rise in intralysosomal pH in rabbit reticulocytes. Since intracellular release of iron from transferrin is believed to involve the protonation of the iron-transferrin complex, the rise in intralysomal pH could account for the inhibitory effect of spermine on iron uptake. The inhibition could be reversed if spermine was removed by washing. As a result of spermine treatment, more acid-labile N-terminal monoferric transferrin and less apotransferrin were released from the cell. These results are consistant with the protonation theory of iron release.  相似文献   

9.
Previously we had demonstrated the presence of transferrin receptor (TfR) on the plasma membrane of cultured rat cortical astrocytes. In this study, we investigated the roles of TfR in transferrin-bound iron (Tf-Fe) as well as transferrin-free iron (Fe II) uptake by the cells. The cultured rat astrocytes were incubated with 1 microM of double-labelled transferrin (125I-Tf-59Fe) in serum- free DMEM F12 medium or 59Fe II in isotonic sucrose solution at 37 degrees C or 4 degrees C for varying times. The cellular Tf-Fe, Tf and Fe II uptake was analyzed by measuring the intracellular radioactivity with gamma counter. The result showed that Tf-Fe uptake kept increasing in a linear manner at least in the first 30-min. In contrast to Tf-Fe uptake, the internalization of Tf into the cells was rapid initially but then slowed to a plateau level after 10 min. of incubation. The addition of either NH4Cl or CH3NH2, the blockers of Tf-Fe uptake via inhibiting iron release from Tf within endosomes, decreased the cellular Tf-Fe uptake but had no significant effect on Tf uptake. Pre-treated cells with trypsin inhibited significantly the cellular uptake of Tf-Fe as well as Tf. These findings suggested that Tf-Fe transport across the membrane of astrocytes is mediated by Tf-TfR endocytosis. The results of transferrin-free iron uptake indicated that the cultured rat cortical astrocytes had the capacity to acquire Fe II. The highest uptake of Fe II occurred at pH 6.5. The Fe II uptake was time and temperature dependent, iron concentration saturable, inhibited by several divalent metal ions, such as Co2+, Zn2+, Mn2+ and Ni2+ and not significantly affected by phenylarsine oxide treatment. These characteristics of Fe II uptake by the cultured astrocytes suggested that Fe II uptake is not mediated by TfR and implied that a carrier-mediated iron transport system might be present on the membrane of the cultured cells.  相似文献   

10.
The uptake of iron from transferrin by isolated rat hepatocytes and rat reticulocytes has been compared. The results show the following. 1) Reticulocytes and hepatocytes express plasma membrane NADH:ferricyanide oxidoreductase activity. The activity, expressed per 10(6) cells, is approximately 60-fold higher in the hepatocyte than in the reticulocyte. 2) Hepatocyte plasma membrane NADH:ferricyanide oxidoreductase activity and uptake of iron from transferrin are stimulated by low oxygen concentration and inhibited by iodoacetate. In reticulocytes, similar changes are seen in NADH:ferricyanide oxidoreductase activity, but not on iron uptake. 3) Ferricyanide inhibits the uptake of iron from transferrin by hepatocytes, but has no effect on iron uptake by reticulocytes. 4) Perturbants of endocytosis and endosomal acidification have no inhibitory effect on hepatocyte iron uptake, but inhibit reticulocyte iron uptake. 5) Hydrophilic iron chelators effectively inhibit hepatocyte iron uptake, but have no effect on reticulocyte iron uptake. Hydrophobic iron chelators generally inhibit both hepatocyte and reticulocyte iron uptake. 6) Divalent metal cations with ionic radii similar to or less than the ferrous iron ion are effective inhibitors of hepatocyte iron uptake with no effect on reticulocyte iron uptake. The results are compatible with hepatocyte uptake of iron from transferrin by a reductive process at the cell surface and reticulocyte iron uptake by receptor-mediated endocytosis.  相似文献   

11.
12.
Receptor mediated endocytosis has been proposed as the method of cellular iron uptake from transferrin (TF). However, the experimental evidence for endocytosis in every situation is found wanting. This is particularly true for the hepatocyte where an alternative mechanism of iron release at the cell surface can account for all iron uptake. It may be, that under appropriate physiological conditions (e.g. degree of iron saturation of TF) cells may take up iron by either an endocytotic or nonendocytotic mechanism.  相似文献   

13.
Mechanism of transferrin iron uptake by rat reticulocytes was studied using 59Fe- and 125I-labelled rat transferrin. Whereas more than 80% of the reticulocyte-bound 59Fe was located in the cytoplasmic fraction, only 25–30% of 125I-labelled transferrin was found inside the cells. As shown by the presence of acetylcholine esterase, 10–15% of the cytoplasmic 125I-labelled transferrin might have been derived from the contamination of this fraction by the plasma membrane fragments. Electron microscopic autoradiography indicated 26% of the cell-bound 125I-labelled transferrin to be inside the reticulocytes. Both the electron microscopic and biochemical studies showed that the rat reticulocytes endocytosed their plasma membrane independently of transferrin. Sepharose-linked transferrin was found to be capable of delivering 59Fe to the reticulocytes. Our results suggest that penetration of the cell membrane by transferrin is not necessary for the delivery of iron and that, although it might make a contribution to the cellular iron uptake, internalization of transferrin reflects endocytotic activity of the reticulocyte cell membrane.  相似文献   

14.
15.
Iron release from human, rabbit, rat and sheep transferrin, chicken conalbumin and human lactoferrin was measured by the change in absorbance of solutions of the iron-protein complexes or by the release of 59Fe from the protein conjugated to agarose. Several phosphatic compounds and iron chelators were able to mediate the process (ATP, GTP, 2,3-diphosphoglycerate, inositol hexaphosphate, pyridoxal 5-phosphate, cytidine 5-triphosphate, pyrophosphate, inorganic phosphate, citrate, EDTA, oxalate, nitrilotriacetate). The greatest rate of iron release was found with pyrophosphate and the least with inorganic phosphate. Different rates of iron release were obtained with the different proteins, greatest with human transferrin and least with lactoferrin. With each of the proteins and the mediators there was a linera relationship between the H+ concentration and the rate of iron release. At any given pH the rate of iron release increased to a maximal rate as the mediator concentration was raised. It is concluded that iron release from transferrin under the conditions of these experiments involves an initial interaction between H+ and the iron-transferrin complex followed by release of the iron under the action of the mediator.  相似文献   

16.
The effect of nicotine on transferrin and iron transport in placental cells has been studied. Nicotine inhibits iron uptake but has little effect on the steady-state levels of transferrin. The effect is temperature and concentration dependent and is not reversible. At a concentration of 15 mM nicotine inhibited transferrin endocytosis by 40%, while iron uptake was decreased by nearly 60%. Nicotine exerted a similar effect on reticulocytes, but other amines, either tertiary or quaternary, had little or no effect on either iron uptake or steady-state intracellular transferrin levels. The results suggest that nicotine acts by blocking uptake, probably by acting as a weak base inhibiting iron release from transferrin, and inhibiting exocytosis with a resultant block of endocytosis. The concentrations required to exert an effect are too high to implicate inhibition of iron transport in the effects of smoking on pregnancy.  相似文献   

17.
The effects of ferric ammonium citrate (FAC) and desferrioxamine (DFO) on iron (Fe), and transferrin (Tf) uptake have been investigated using SK-MEL-28 human melanoma cells, which express the Tf homologue, melanotransferrin, in high concentrations. Previously we demonstrated two separate Fe uptake mechanisms from Tf, viz. a specific process mediated by the transferrin receptor (TfR) and a nonspecific process (Richardson, D. R., and Baker, E. (1990) Biochim. Biophys. Acta 1053, 1-12). Cells exposed to DFO demonstrated up-regulation of the TfR with a concurrent increase in the rate of Fe uptake. Desferrioxamine also stimulated the nonspecific process of Fe uptake, resulting in a further increase in accumulation of Fe over Tf after saturation of the specific TfR. Ferric ammonium citrate had two effects. First, it resulted in down-regulation of the TfR. Second, and paradoxically, it markedly stimulated the rate of Fe uptake from Tf by the nonspecific process without increasing the rate of nonspecific Tf uptake. These data conclusively demonstrate that two entirely different mechanisms of iron uptake from Tf exist in melanoma cells and that ferric ammonium citrate may be a useful experimental tool to further characterize the specific and nonspecific mechanisms of Fe uptake from Tf.  相似文献   

18.
Previously we showed that preincubation of cells with ferric ammonium citrate (FAC) resulted in a marked increase in Fe uptake from both (59)Fe-transferrin (Tf) and (59)Fe-citrate (D.R. Richardson, E. Baker, J. Biol. Chem. 267 (1992) 13972-13979; D.R. Richardson, P. Ponka, Biochim. Biophys. Acta 1269 (1995) 105-114). This Fe uptake process was independent of the transferrin receptor and appeared to be activated by free radicals generated via the iron-catalysed Haber-Weiss reaction. To further understand this process, the present investigation was performed. In these experiments, cells were preincubated for 3 h at 37 degrees C with FAC or metal ion solutions and then labelled for 3 h at 37 degrees C with (59)Fe-Tf. Exposure of cells to FAC resulted in Fe uptake from (59)Fe-citrate that became saturated at an Fe concentration of 2.5 microM, while FAC-activated Fe uptake from Tf was not saturable up to 25 microM. In addition, the extent of FAC-activated Fe uptake from citrate was far greater than that from Tf. These results suggest a mechanism where FAC-activated Fe uptake from citrate may result from direct interaction with the transporter, while Fe uptake from Tf appears indirect and less efficient. Preincubation of cells with FAC at 4 degrees C instead of 37 degrees C prevented its effect at stimulating (59)Fe uptake from (59)Fe-Tf, suggesting that an active process was involved. Previous studies by others have shown that FAC can increase ferrireductase activity that may enhance (59)Fe uptake from (59)Fe-Tf. However, there was no difference in the ability of FAC-treated cells compared to controls to reduce ferricyanide to ferrocyanide, suggesting no change in oxidoreductase activity. To examine if activation of this Fe uptake mechanism could occur by incubation with a range of metal ions, cells were preincubated with either FAC, ferric chloride, ferrous sulphate, ferrous ammonium sulphate, gallium nitrate, copper chloride, zinc chloride, or cobalt chloride. Stimulation of (59)Fe uptake from Tf was shown (in order of potency) with ferric chloride, ferrous sulphate, ferrous ammonium sulphate, and gallium nitrate. The other metal ions examined decreased (59)Fe uptake from Tf. The fact that redox-active Cu(II) ion did not stimulate Fe uptake while redox-inactive Ga(III) did, suggests a mechanism of transporter activation not solely dependent on free radical generation. Indeed, the activation of Fe uptake appears dependent on the presence of the Fe atom itself or a metal ion with atomic similarities to Fe (e.g. Ga).  相似文献   

19.
Summary A previous study described a cytoplasmic, transferrin (Tf)-free, iron (Fe) pool that was detected only when cells were mechanically detached from the culture substratum at 4°C, after initial incubation with59Fe-125I-Tf at 37°C (Richardson and Baker, 1992a). The release of this internalized59Fe could be markedly reduced if the cells were treated with proteases or incubated at 37°C prior to detachment. The present study was designed to characterize this Fe pool and understand the mechanism of its release. The results show that cellular59Fe release increased linearly as a function of preincubation time with59Fe-Tf subsequent to mechanical detachment at 4°C using a spatula. These data suggest that the59Fe released was largely composed of end product(s) and was not an “intermediate Fe pool.” When the Fe(II) chelator, dipyridyl (DP), was incubated with59Fe-Tf and the cells, it prevented the accumulation of59Fe that was released following mechanical detachment at 4°C. Other chelators had much less effect on the proportion of59Fe released. Examination of the59Fe released showed that after a 4-h preincubation with59Fe-Tf, approximately 50% of the59Fe was present in ferritin. These data indicate that mechanical detachment of cells at 4°C resulted in membrane disruptions that allow the release of high M, molecules. Moreover, electron microscopy studies showed that detachment of cells from the substratum at 4°C resulted in pronounced membrane damage. In contrast, when cells were detached at 37°C, or at 4°C after treatment with pronase, membrane damage was minimal or not apparent. These results may imply that temperature-dependent processes prevent the release of intracellular contents on membrane wounding, or alternatively, prevent wounding at 37°C. The evidence also indicates that caution is required when interpreting data from expriments where cells have been mechanically detached at 4°C.  相似文献   

20.
Polyacrylamide-gel electrophoresis in urea was used to prepare the four molecular species of transferrin:diferric transferrin, apotransferrin and the two monoferric transferrins with either the C-terminal or the N-terminal metal-binding site occupied. The interaction of these 125I-labelled proteins with rabbit reticulocytes was investigated. At 4 degrees C the average value for the association constant for the binding of transferrin to reticulocytes was found to increase with increasing iron content of the protein. The association constant for apotransferrin binding was 4.6 X 10(6)M-1, for monoferric (C-terminal iron) 2.5 X 10(7)M-1, for monoferric (N-terminal iron) 2.8 X 10(7)M-1 and for diferric transferrin, 1.1 X 10(8)M-1. These differences in the association constants did not affect the processing of the transferrin species by the cells at 37 degrees C. Accessibility of the proteins to extracellular proteinase indicated that the transferrin was internalized by the cells regardless of the iron content of the protein, since in each case 70% was inaccessible. Cycling of the cellular receptors may also occur in the absence of bound transferrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号