首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Intracellular immunoglobulins in plasma cells were characterized by antigen-enzyme conjugates and anti-immunoglobulin antibody-enzyme conjugates applied in a double immunocytochemical approach. After their assemblage, immunoglobulins in the cytoplasm of anti-TNP antibody producing plasma cells can be demonstrated both by TNP-enzyme conjugates and by anti-immunoglobulin ( or chain specific) antibody-enzyme conjugates. Once arrived in the Golgi complex (GC) detection with TNP-enzyme conjugates remains possible, but anti-immunoglobulin antibody-enzyme conjugates did not bind to a detectable degree. Similar results were obtained in experiments where immunoglobulin-enzyme conjugates were used both as an antigen-enzyme conjugate and as an antibody-enzyme conjugate.  相似文献   

2.
After antigenic stimulation, specific antibody-forming cells can be detected in situ in tissue sections of lymphoid organs using an antigen specific immunoenzyme approach. Immunoglobulin-forming cells staining positively with a particular antigen-enzyme conjugate are considered to be specific antibody-forming cells (provided that the right control conjugates show a negative staining). Immunoglobulin-forming cells, staining negatively with the same antigen-enzyme conjugate, may do so for two reasons: (i) they are in fact specific antibody-forming cells, but are not detected as such because of limitations of the technique; (ii) they are real-nonspecific immunoglobulin producing cells. In this paper, the limitations of the technique are discussed.  相似文献   

3.
Summary A new general approach has been developed for the detection of one or more different specific antibody producing cells and the simultaneous determination of their Ig isotype in tissue sections, after immunization of animals. Specificity of intracellular antibodies is demonstrated after incubation of the sections with an antigen-enzyme conjugate and the isotype of the antibodies is determined using an anti-immunoglobulin (Fc chain-specific)-enzyme conjugate followed by histochemical revelation of the two different enzymes. The principles of the method, the required antigen— and antibody—enzyme conjugates and their application in single, double or triple staining studies are reviewed.The method allows the detection of specific antibody-forming cells against protein antigens as well as against haptens. By means of haptens such as trinitrophenyl (TNP), immune responses against thymus dependent, thymus independent, and particulate antigens can be studied. In a limited number of cases the method can also be used to study the localization of antigen—antibody complexes.  相似文献   

4.
A new double-enzyme conjugate was synthesized by coupling alkaline phosphatase (AP) to horseradish peroxidase (HRP). After AP (blue) and subsequent HRP (red) cytochemistry, this new conjugate produced a stable intermediate-colored (violet) product. By coupling this double-enzyme conjugate to an antigen (trinitrophenyl, TNP) or an antibody (anti-mouse immunoglobulin G2a), anti-TNP or -IgG2a-producing cells could be demonstrated as violet cells in spleen sections. This led to the development of a rapid one-step incubation--two-step cytochemical procedure for simultaneous detection of three different determinants in a single tissue section. To demonstrate this novel triple staining method, we coupled three different antigens to, respectively, AP, HRP, and AP-HRP. When spleen sections of immunized animals were incubated with a mixture of these three antigen-enzyme conjugates, we could distinguish antibody-forming cells against each of these three antigens simultaneously as red (HRP), blue (AP), and violet (AP-HRP) cells. The simultaneous detection of three different classes of intracellular antibodies in a single section also proved to be possible with this method. With this study we provide a new direct method for detection of three different intracellular immunoglobulins after a one-step incubation and a two-step standard cytochemical procedure.  相似文献   

5.
We present a new type of enzyme-antibody conjugate that simplifies the labeling procedure and increases the sensitivity of enzyme-linked immunosorbent assay (ELISA). The conjugates were prepared through layer-by-layer immobilization of enzyme and antibody on a silica nanoparticle scaffold. A maximal amount of enzyme was immobilized on the nanoparticle, followed by antibody linkage through Dextran 500. The conjugate could be easily purified from unreacted reagents by simple centrifugations. In comparison with the conventional antibody-enzyme conjugate used in ELISA, which often has one or two enzyme molecules per antibody, the new type of conjugate contained more enzyme molecules per antibody and provided a much higher signal and increased sensitivity. When used in an ELISA detection of the hepatitis B surface antigen (HBsAg), the detection limit was three times lower than that of the commercially available ELISA kit.  相似文献   

6.
Members of the pancreatic ribonuclease (RNase) family have diverse activities toward RNA that could cause them to function during host defense and physiological cell death pathways. This activity could be harnessed by coupling RNases to cell binding ligands for the purpose of engineering them into cell-type specific cytotoxins. Therefore, the cytotoxic potential of RNase was explored by linking bovine pancreatic ribonuclease A via a disulfide bond to human transferrin or antibodies to the transferrin receptor. The RNase hybrid proteins were cytotoxic to K562 human erythroleukemia cells in vitro with an IC50 around 10(-7) M, whereas > 10(-4) M of native RNase was required to inhibit protein synthesis. Cytotoxicity required both components of the conjugate since excess transferrin or ribonuclease inhibitors added to the medium protected the cells from the transferrin-RNase toxicity. Importantly, the RNase conjugates were found to have potent antitumor effects in vivo. Chimeric RNase fusion proteins were also developed. F(ab')2-like antibody-enzyme fusions were prepared by linking the gene for human RNase to a chimeric antitransferrin receptor heavy chain gene. The antibody enzyme fusion gene was introduced into a transfectoma that secreted the chimeric light chain of the same antibody, and cell lines were cloned that synthesized and secreted the antibody-enzyme fusion protein of the expected size at a concentration of 1-5 ng/mL. Culture supernatants from clones secreting the fusion protein caused inhibition of growth and protein synthesis toward K562 cells that express the human transferrin receptor but not toward a nonhuman derived cell line. Since human ribonucleases coupled to antibodies also exhibited receptor mediated toxicities, a new approach to selective cell killing is provided. This may allow the development of new therapeutics for cancer treatment that exhibit less systemic toxicity and, importantly, less immunogenicity than the currently employed ligand-toxin conjugates.  相似文献   

7.
Amplified detection of biomolecules and biological interactions using an optical surface technique, ellipsometry, is demonstrated for two biosystems--immunoglobulin G with anti-immunoglobulin G (IgG) and the lectin concanavalin A (Con A) with yeast cells. In order to improve the sensitivity of the ellipsometer signal, an amplifier conjugate is formed by binding the affinity ligand to a 12-nm silica particle which is readily detected by the ellipsometer. Thus by using conjugates of IgG-silica and Con A-silica, amplifications of five to seven times have been obtained enabling detection of less than 20 pg/mm2 of biomolecular material.  相似文献   

8.
In this report, we describe the synthesis of a panel of disulfide-linked huC242 (anti-CanAg) antibody maytansinoid conjugates (AMCs), which have varying levels of steric hindrance around the disulfide bond, in order to investigate the relationship between stability to reduction of the disulfide linker and antitumor activity of the conjugate in vivo. The conjugates were first tested for stability to reduction by dithiothreitol in vitro and for plasma stability in CD1 mice. It was found that the conjugates having the more sterically hindered disulfide linkages were more stable to reductive cleavage of the maytansinoid in both settings. When the panel of conjugates was tested for in vivo efficacy in two human colon cancer xenograft models in SCID mice, it was found that the conjugate with intermediate disulfide bond stability having two methyl groups on the maytansinoid side of the disulfide bond and no methyl groups on the linker side of the disulfide bond (huC242-SPDB-DM4) displayed the best efficacy. The ranking of in vivo efficacies of the conjugates was not predicted by their in vitro potencies, since all conjugates were highly active in vitro, including a huC242-SMCC-DM1 conjugate with a noncleavable linkage which showed only marginal activity in vivo. These data suggest that factors in addition to intrinsic conjugate potency and conjugate half-life in plasma influence the magnitude of antitumor activity observed for an AMC in vivo. We provide evidence that bystander killing of neighboring nontargeted tumor cells by diffusible cytotoxic metabolites produced from target cell processing of disulfide-linked antibody-maytansinoid conjugates may be one additional factor contributing to the activity of these conjugates in vivo.  相似文献   

9.
Antibody-directed enzyme prodrug therapy (ADEPT) involves two phases. The first is an antibody-enzyme conjugate that localizes to tumor. The second phase is a prodrug that is administered when the enzyme-conjugate has cleared from blood and other nontumor tissues. In the pilot-scale clinical trial, the prodrug has been measured—in the plasma of patients, by liquid chromatography (HPLC) and by liquid chromatography-mass spectrometry (LC-MS). Active drug has been detected and metabolites identified. An indirect measurement of enzyme-conjugate in the plasma of patients has also been developed.  相似文献   

10.
Fractionation abilities of polyacrylamide-agarose gel (Ultrogel) and dextran gel (Sephadex) column chromatography were compared in isolating horseradish peroxidase conjugates, prepared using two different methods. Utrogel AcA-44 provides an efficient separation of monomer conjugated and nonconjugated immunoglobulins resulting from the two-step glutaraldehyde procedure, Sephadex G-200 does not. Both types of columns eluted the polymer conjugates resulting from the periodate procedure in the void volume; these were hardly isolated from the small amount of monomer conjugate. Unreacted horseradish peroxidase, present in very low quantities after the efficient periodate method and in large amounts after the glutaraldehyde procedure, was separated by both gel types.  相似文献   

11.
Dendritic nanostructures can play a key role in drug delivery, due to the high density and variety of surface functional groups that can facilitate and modulate the delivery process. We have investigated the effect of dendrimer end-functionality on the activity of polyamido amine (PAMAM) dendrimer-methotrexate (MTX) conjugates in MTX-sensitive and MTX-resistant human acute lymphoblastoid leukemia (CCRF-CEM) and Chinese hamster ovary (CHO) cell lines. Two amide-bonded PAMAM dendrimer-MTX conjugates were prepared using a dicyclohexylcarbodiimide (DCC) coupling reaction: one between a carboxylic acid-terminated G2.5 dendrimer and the amine groups of the MTX (conjugate A) and another between an amine-terminated G3 dendrimer and the carboxylic acid group of the MTX (conjugate B). Our studies suggest that conjugate A showed an increased drug activity compared to an equimolar amount of free MTX toward both sensitive and resistant cell lines, whereas conjugate B did not show significant activity on any of the cell lines. Despite substantially impaired MTX transport by MTX-resistant CEM/MTX and RII cells, conjugate A showed sensitivity increases of approximately 8- and 24-fold (based on IC50 values), respectively, compared to free MTX. Co-incubation of the cells with adenosine and thymidine along with either conjugate A or MTX resulted in almost complete protection, suggesting that the conjugate achieves its effect on dihyrofolate reductase (DHFR) enzyme through the same mechanism as that of MTX. The differences in cytotoxicity of these amide-bonded conjugates may be indicative of differences in the intracellular drug release from the cationic dendrimer (conjugate B) versus the anionic dendrimer (conjugate A), perhaps due to the differences in lysosomal residence times dictated by the surface functionality. These findings demonstrate the feasibility of using dendrimers as drug delivery vehicles for achieving higher therapeutic effects in chemotherapy, especially in drug-resistant cells.  相似文献   

12.
The transferrin cycle was used to attempt the import of bioactive macromolecules into cells with the aid of an acid-labile cross-linking agent. Anti-tetanus F(ab')2 fragments were iodinated and then conjugated to transferrin with a newly developed acid-labile cleavable cross-linking reagent, bismaleimidoethoxy propane, following thiolation of both proteins. Noncleavable conjugates were also prepared. At saturating conjugate concentrations, the uptake rate for both conjugates averaged over the first 2 h is about 6.5 fmol/million cells/min. Incubation of loaded cells in fresh medium for 30 min and analysis of cell pellets and supernatants reveal that 1) of the previously cell-associated label, only intact conjugate (about 50% of the label) is returned to the medium; 2) most of the remaining cell-associated material for the cleavable conjugate is chromatographically coincident with free Fab with some contribution from free F(ab')2 fragments. In contrast, the cell pellets loaded with noncleavable conjugates contained intact transferrin-F(ab'), conjugates. These results are consistent with transferrin receptor-mediated uptake of acid-labile conjugate followed by hydrolysis in acidified endosomes and resulting in concentration of free F(ab')2 and Fab within a prelysosomal intracellular compartment. A protein shuttle such as transferrin may therefore be used with ketal based acid-labile cross-linkers to load foreign molecules into an intracellular compartment. In addition, these data provide independent confirmation of the low pH compartment within the transferrin cycle. This new methodology is applicable to other cases of receptor/ligand trafficking to report low pH compartments independent of morphological analysis. Since transferrin receptors are overexpressed in tumors, antineoplastic agents could be targeted to tumors as transferrin acid-labile conjugates. This import system might be particularly useful in combatting the tumor cell export of antitumor agents occurring in multidrug resistance.  相似文献   

13.
The existence and quantification of non-polar conjugates of pregnenolone, dehydroepiandrosterone (DHA) and androstenediol in human plasma is described. The plasma level of non-polar pregnenolone conjugate is 200% higher than that of pregnenolone but the conjugates of DHA and androstenediol are 10 and 5-10% respectively of the plasma levels of the unconjugated steroid. Non-polar pregnenolone conjugate concentrations were found to be highly elevated in the plasma of one pregnant subject, and elevated in the plasma of patients with acne and breast cancer. Non-polar DHA conjugate levels were significantly elevated in hirsute patients and were approaching significance for patients with acne. A subject taking the combined oral contraceptive pill had very low plasma DHA conjugate levels. No significant alterations in the plasma levels of the androstenediol conjugates were found. A role for the non-polar conjugates in the aetiology of hirsutism and acne is proposed.  相似文献   

14.
Members of the pancreatic ribonuclease (RNase) family have diverse activities toward RNA that could cause them to function during host defense and physiological cell death pathways. This activity could be harnessed by coupling RNases to cell binding ligands for the purpose of engineering them into cell-type specific cytotoxins. Therefore, the cytotoxic potential of RNase was explored by linking bovine pancreatic ribonuclease A via a disulfide bond to human transferrin or antibodies to the transferrin receptor. The RNase hybrid proteins were cytotoxic to K562 human erythroleukemia cells in vitro with an IC50 around 10−7 M, whereas>10−4 M of native RNase was required to inhibit protein synthesis. Cytotoxicity required both components of the conjugate since excess transferrin or ribonuclease inhibitors added to the medium protected the cells from the transferrin-RNase toxicity. Importantly, the RNase conjugates were found to have potent antitumor effects in vivo. Chimeric RNase fusion proteins were also developed. F(ab′)2-like antibody-enzyme fusions were prepared by linking the gene for human RNase to a chimeric antitransferrin receptor heavy chain gene. The antibody enzyme fusion gene was introduced into a transfectoma that secreted the chimeric light chain of the same antibody, and cell lines were cloned that synthesized and secreted the antibody-enzyme fusion protein of the expected size at a concentration of 1–5 ng/mL. Culture supernatants from clones secreting the fusion protein caused inhibition of growth and protein synthesis toward K562 cells that express the human transferrin receptor but not toward a nonhuman derived cell line. Since human ribonucleases coupled to antibodies also exhibited receptor mediated toxicities, a new approach to selective cell killing is provided. This may allow the development of new therapeutics for cancer treatment that exhibit less systemic toxicity and, importantly, less immunogenicity than the currently employed ligand-toxin conjugates.  相似文献   

15.
The purpose of the present study is to optimize the structure of the polyamidoamine starburst dendrimer (dendrimer) conjugate with alpha-cyclodextrin (alpha-CDE conjugate) as a nonviral vector. alpha-CDE conjugates of dendrimer (generation 3, G3) with various average degrees of substitution (DS) of alpha-CyD of 1.1, 2.4, and 5.4 were prepared. alpha-CDE conjugates formed the complexes with pDNA, resulting in a change of the particle sizes of pDNA complexes, but the distinction of physicochemical properties among their vector/pDNA complexes was only very slight. The membrane-disruptive ability of alpha-CDE conjugates on liposomes encapsulating calcein and their cytotoxicity to NIH3T3 and HepG2 increased with an increase in the DS value of alpha-CyD. In vitro gene transfer activity of alpha-CDE conjugates in both NIH3T3 and HepG2 cells augmented as the charge ratio (vector/pDNA) increased, and the activity of alpha-CDE conjugate (DS 2.4) was the highest at higher charge ratios among dendrimer (G3), the three alpha-CDE conjugates, and TransFast. After intravenous administration of pDNA complexes in mice, alpha-CDE conjugate (DS 2.4) delivered pDNA more efficiently in spleen, liver, and kidney, compared with dendrimer and other alpha-CDE conjugates (DS 1.1 and 5.4). The potential use of alpha-CDE conjugate (G3, DS 2.4) could be expected as a nonviral vector in vitro and in vivo, and these data may be useful for design of alpha-CyD conjugates with other nonviral vectors.  相似文献   

16.
The aim of this study was to compare the properties and antitumor potential of a novel type of antibody-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-bound doxorubicin conjugates with star structure with those of previously described classic antibody-targeted or lectin-targeted HPMA copolymer-bound doxorubicin conjugates. Classic antibody-targeted conjugates were prepared by aminolytic reaction of the multivalent HPMA copolymer containing side-chains ending in 4-nitrophenyl ester (ONp) reactive groups with primary NH(2) groups of the antibodies. The star structure of antibody-targeted conjugates was prepared using semitelechelic HPMA copolymer chains containing only one reactive N-hydroxysuccinimide group at the end of the backbone chain. In both types of conjugates, B1 monoclonal antibody (mAb) was used as a targeting moiety. B1 mAb recognizes the idiotype of surface IgM on BCL1 cells. The star structure of the targeted conjugate had a narrower molecular mass distribution than the classic structure. The peak in the star structure was around 300-350 kDa, while the classic structure conjugate had a peak around 1300 kDa. Doxorubicin was bound to the HPMA copolymer via Gly-Phe(D,L)-Leu-Gly spacer to ensure the controlled intracellular delivery. The release of doxorubicin from polymer conjugates incubated in the presence of cathepsin B was almost twice faster from the star structure of targeted conjugate than from the classic one. The star structure of the targeted conjugate showed a lower binding activity to BCL1 cells in vitro, but the cytostatic activity measured by [(3)H]thymidine incorporation was three times higher than that seen with the classic conjugate. Cytostatic activity of nontargeted and anti-Thy 1.2 mAb (irrelevant mAb) modified HPMA copolymer-bound doxorubicin was more than hundred times lower as compared to the star structure of B1 mAb targeted conjugate. In vivo, both types of conjugates targeted with B1 mAb bound to BCL1 cells in the spleen with approximately the same intensity. The classic structure of the targeted conjugate bound to BCL1 cells in the blood with a slightly higher intensity than the star structure. Both types of targeted conjugates had a much stronger antitumor effect than nontargeted HPMA copolymer-bound doxorubicin and free doxorubicin. The star structure of targeted conjugate had a remarkably higher antitumor effect than the classic structure: a single intravenous dose of 100 microg of doxorubicin given on day 11 completely cured five out of nine experimental animals whereas the classic structure of targeted conjugate given in the same schedule only prolonged the survival of experimental mice to 138% of control mice. These results show that the star structure of antibody-targeted HPMA copolymer-bound doxorubicin is a suitable conjugate for targeted drug delivery with better characterization, higher cytostatic activity in vitro, and stronger antitumor potential in vivo than classic conjugates.  相似文献   

17.
The use of flow cytometric analysis and sorting techniques for the enumeration and purification of lymphocyte-target conjugates was investigated. Murine cytotoxic T-lymphocytes (CTL) with killer effector function were identified and quantitated during a 3-hour cell-mediated cytotoxicity reaction using multiparameter analysis. Resolution of conjugates containing single and multiple lymphocytes was achieved by two-color fluorescence, and individual conjugate subpopulations were subsequently sorted for further analysis. To measure total and cytotoxic conjugate frequencies, CTL were labelled with FITC-conjugated Thy 1.2 antibody and dead target cells were stained with propidium iodide (PI). Size difference between the CTL and P815 tumor target cells, as measured by Coulter volume and axial light loss, facilitated detection of conjugates which were identified as both large and Thy 1.2-positive. Conjugates containing dead target cells possessed red fluorescence due to PI uptake. The frequency of conjugates containing cytotoxic activity increased with time during the cytotoxicity period and correlated with frequencies obtained in single-cell assays. Analysis of the distribution of single and multiple lymphocyte-bound conjugates was done by co-centrifugation of Hoechst-stained CTL and FITC-labeled P815 target cells. Analysis by two-color fluorescence effectively resolved conjugate populations containing different numbers of CTL and allowed their purification by cell sorting. The purity of the separate populations was confirmed by fluorescence microscopic inspection. The results of these studies demonstrate that flow cytometry can resolve target-bound and free CTL, measure cytolytic efficiency and specifically sort out cytometrically defined subgroups within the effector cell population.  相似文献   

18.
Numerous studies have identified members of the multidrug resistance protein (MRP) family of ABC transporters as ATP-dependent GS-X pumps responsible for export of various xenobiotic conjugates, and the few known glutathione conjugates of endogenous metabolites. In the present study we have investigated the possibility that the glutathione conjugate of 13-oxooctadecadienoic acid (13-OXO-SG), is exported from HT-29 cells by one of these GS-X pumps. The precursor 13-oxooctadecadienoic acid (13-OXO) is a metabolic oxidation product of linoleic acid. The transport of 13-OXO-SG is compared to that of the glutathione conjugate of chlorodinitrobenzene (DNP-SG). The results show that the efflux of 13-OXO-SG is ATP-dependent. In cultured HT-29 cells as well as in inside-out vesicles prepared from these cells, significant inhibition of conjugate export is achieved by the energy disrupters, beta,gamma-methylene ATP, sodium vanadate, and 2-deoxyglucose. Significant inhibition of the vesicle-mediated transport is also observed in the presence of genistein and verapamil. In inside-out vesicles, the transport of both conjugates exhibits saturation with an apparent K(m) of 325.5 microM and a V(max) of 0.0669 nmol/mg protein per min for 13-OXO-SG and a K(m) of 169 microM and a V(max) of 0.496 nmol/mg protein per min for DNP-SG. Furthermore, co-inhibition is observed when both conjugates are present simultaneously which is consistent with the involvement of common pumps. The data in this report demonstrate the involvement of an ATP-dependent pump in the metabolic disposition of endogenously derived metabolites of linoleic acid.  相似文献   

19.
Two Zn-Pc-peptide conjugates bearing either a short linker or a long PEG-linker between the macrocycle and a bifunctional peptide containing the nucleoplasmin and HIV-1 Tat 48-60 sequences have been synthesized in order to increase the Pc cell-targeting ability and to evaluate the effect of the linker. The presence of the peptide chain increased the water solubility of the Pc macrocycle and, consequently, its fluorescence in aqueous solutions. The highest fluorescence quantum yields were observed at low pH (5.0) for both conjugates and were always higher for the conjugate bearing the short linker. Both conjugates were found to have low dark cytotoxicity toward human HEp2 cells (IC50 > 77 microM) but were highly phototoxic (IC50 < 2 microM at 1 J cm-2). The conjugate bearing the long PEG-linker accumulated the most within cells (26 times more than the unconjugated Zn-Pc), followed by the short linker conjugate (17 times more than the unconjugated Zn-Pc). Both conjugates were found to localized preferentially within the cell lysosomes.  相似文献   

20.
Ubiquitin, a highly conserved 76-amino-acid protein, is involved in the response of many types of eukaryotic cells to stress but little is known about its role in lower plants. In the present study we have investigated the distribution of ubiquitin in the unicellular alga Chlamydomonas reinhardii as well as the effect of heat and light stress on its conjugation to cellular proteins. Immunoelectron microscopy shows that ubiquitin is located in the chloroplast, nucleus, cytoplasm, pyrenoid and on the plasma membrane. The location of ubiquitin within chloroplasts has not been observed previously. In immunoblots of whole cell extracts with an antibody to ubiquitin a prominent conjugate band with an apparent molecular mass of 29 kDa and a broad region of high-molecular-mass conjugates (apparent molecular mass greater than 45 kDa) were observed. Exposure of cells to a 41.5 degrees C heat shock in both the dark and light caused the disappearance of the 29-kDa conjugate and an increase in the high-molecular-mass conjugates. After step down to 25 degrees C the 29-kDa conjugate reappeared while the levels of high-molecular-mass conjugates decreased. In light, the recovery of the 29-kDa band was more rapid than in the dark. Photoinhibition alters the ubiquitin conjugation pattern similarly to heat shock, but to a lesser degree. These observations imply that, in Chlamydomonas, ubiquitin has a role in the chloroplast and in the response to heat and light stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号