首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi-walled, single-walled and double-walled carbon nanotubes as well as graphene can be doped with boron and nitrogen. B2H6 has been generally used as the boron source while NH3 or pyridine is employed as the nitrogen source. Doping carbon nanotubes and graphene with boron and nitrogen brings about significant changes in the electronic structure and properties. Such doping not only results in desirable properties but also allows manipulation of properties for specific purposes. Doping with boron- and nitrogen-causes marked changes in the Raman spectra of the carbon nanostructures. In this article, we present the synthesis, characterization and properties of boron- and nitrogen-doped carbon nanotubes and graphene.  相似文献   

2.
Gerretsen  F. C.  de Hoop  H. 《Plant and Soil》1954,5(4):349-367
Summary 1. It was shown that boron is an essential micro-element forAzotobacter chroococcum.2. Multiplication, CO2 production, N fixation and pigmentation are closely related to the boron content of the culture medium. Of these, pigmentation is most susceptible to slight boron deficiency; with an easily assimilable carbon source (mannite, glucose) nitrogen fixation seems to be more susceptible than multiplication to boron deficiency.3. With increasing gifts of boron, the CO2 production curves in quartz sand with nutrients as well as in liquid cultures follow each other at regular sequences.4. The optimum boron content for normal development ofAzotobacter amounts toca 2 ppm in liquid cultures, to 5 ppm in quartz sand cultures, whereas in soils sometimes 8 ppm B are tolerated, without noticeable loss of activity.  相似文献   

3.
The dissociation of O2 and HO2 are important reactions that occur at the cathode of fuel cells and require catalysts to proceed. There is a need to replace the presently used platinum catalyst with less expensive materials. Modelling has been used to identify potential two-dimensional catalysts such as boron- and nitrogen-doped graphene. Here, the possibility of boron nitride nano-ribbons and nano-tubes which do not require doping are considered. Density functional calculations are used to show that O2 and HO2 can bond to zig–zag and armchair boron nitride nano-ribbons and nano-tubes. The bond dissociation energies (BDEs) to remove an O and an OH from O2 and HO2 bonded to the boron nitride ribbons and tubes are calculated and are a measure of the catalytic effectiveness of the boron nitride structures. The results show that both the zig–zag and armchair boron nitride ribbons could be a catalyst for HO2 dissociation but not O2 dissociation. However, zig–zag boron nitride nano-tubes are shown not to be effective catalysts for the dissociation of O2 or HO2. An armchair boron nitride nano-tube is shown to have a very low BDEs to remove OH from HO2 bonded to it and could be an affective catalyst.  相似文献   

4.
It is worth remarking that the C20 cage like isomer has been the topic of concentrated theoretical research. C20 single fullerene molecular devices gained a lot of popularity in the field of nano research due to their superlative doping dependent conductive properties. In this work, the double fullerene device has been considered. Here double fullerene molecular junction is created when two C20 fullerene molecules, one in pristine form and other in doped form, are positioned between gold electrodes. Doping was done firstly by second period elements, boron, nitrogen, oxygen, and fluorine and then by group 14 tetragens, silicon, germanium, tin, and lead. For both the cases current characteristics were investigated. Superior conductivity was observed in the boron doped double C20 molecular device while the fluorine doped device was the least conducting. Further for group 14 doping, the silicon doped double C20 device showed maximum current carrying feature, whereas, least value of current was noted in tin doped C20 device.  相似文献   

5.
Postmenopausal women may benefit from dietary interventions in order to increase bone strength and prevent fractures. Dietary boron (B) may be beneficial for optimal calcium metabolism and, as a consequence, optimal bone metabolism. The present study evaluated the effects of boron, in the form of boric acid, with or without 17β-estradiol (E2) supplementation (via subcutaneous implant), in ovariectomized (OVX) aged 13-mo-old F-344 rats. Boric acid was administered by gavage at a subtoxic dose (8.7 mg B/kg/d) for 40 d. Results indicate that serum level of minerals as well as osteocalcin (a marker of bone resorption) are dependent to a greater extent on the hormonal status of the animals than on boron supplementation. Boron treatment increased the E2-induced elevation of urinary calcium and magnesium. Bone mineral density (BMD) of the L5 vertebra and proximal femur was highest in the E2-treated groups; no increase in BMD was conferred by boron treatment. By histomorphometry of the proximal tibial metaphysis, osteoblastic, osteoid, and eroded surfaces were significantly suppressed by E2 treatment, but not by boron treatment. In biomechanical testing of femur and vertebra, neither E2 nor boron treatment significantly increased bone strength. At the levels given, boron alone provided no protection against OVX-induced osteopenia. In addition, combination therapy (B + E2) provided no additional benefits over those of 17β-estradiol treatment alone in this aged rat model.  相似文献   

6.
Abstract

We report a quantum mechanics calculation and molecular dynamics simulation study of Carmustine drug (BNU) adsorption on the surface of nitrogen (N) and boron (B) doped-functionalized single-walled carbon nanotubes. The stability of the optimized complexes is determined on the basis of relative adsorption energy (ΔEads). The ΔEads results claim that drug molecule tends to adsorb on the nitrogen and boron doped functionalized tubes with the energy values in the range of ?61.177 to ?95.806?kJ/mol. Based on the obtained results, it is observed that N-doping compared with B-doping has improved more effectively drug absorption on the surface of functionalized nanotube. The results of Atoms in Molecule calculations indicate that drug adsorbs molecularly via hydrogen bonds interactions on the surface doped-functionalized carbon nanotubes. Moreover, molecular dynamics simulation is performed to investigate the dynamics behavior of the drug molecules on the nitrogen-doped functionalized carbon nanotube (f-NNT) and functionalized carbon nanotube (f-CNT). The higher average calculated electrostatic and van der Waals energies as well as higher number of intermolecular hydrogen bonds in BNU-f-NNT in comparison with BNU-f-CNT model suggest the more effectual interaction between drug molecules and nitrogen-doped functionalized carbon nanotube.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
《Inorganica chimica acta》1988,146(2):167-171
2,4,6-trisbromo-cyclo-1,3,5-trithia-2,4,6-triborane, (BrBS)3 has been prepared and its thermolysis studied by on line FT-IR and (HeI) photoelectron spectroscopy. The products are compared with the reaction products of dibromodisulphide and boron at high temperatures. Ab initio molecular orbital calculations have been carried out, assisting in the assignment of the photoelectron spectrum of (BrBS)3. The 1st ionisation energy of (BrBS)3 is 10.32 eV, due to a doubly degenerate E type orbital originating from ionisation of the lone pairs on sulphur and bromine. 11B NMR spectra of the various boron sulphur compounds prepared are reported, and the IR of B2S3 in the gas phase has also been measured.  相似文献   

8.
Crops specific proper concentration of micronutrient application is necessary to improve the yield and quality of crops. Therefore, an experiment was conducted to identify the optimum dose of boron for groundnut plant. Six level of boron (B) application, B0 (0?ppm), B1 (0.5?ppm), B2 (1?ppm), B3 (2?ppm), B4 (4?ppm) and B5 (8?ppm) were evaluated. Photosynthetic rate, transpiration and stomatal conductance were increased for boron application but leaf vapor pressure deficit decreased. Physiological growth parameters, yield and yield contributing character, and shelling percentage was highest for B3. The values of biochemical traits including protein, oil and vitamin E content were higher for B4. Thus, leaf gas exchange showed that boron can be used to culture groundnut as it provides high yield and biochemical properties.  相似文献   

9.
In this paper, we present a simple atomistic model for describing the evolution of interstitial clusters during boron diffusion in kinetic Monte-Carlo (KMC) calculation. It has been known that clusters generated after ion implantation play a decisive role in the enhanced boron diffusion at the tail region while being immobile at the peak region. Our model, which is based on the simple continuum model, takes the intermediate clusters into account as well as dominant clusters for describing the evolutionary behavior of interstitial clusters during boron diffusion. We found that the intermediate clusters such as B3I3 and B2I3 play a significant role during the evolution of clusters despite the fact that the lifetimes of the corresponding intermediate clusters are relatively short due to low binding energies. Further, our investigation revealed that B3I is the most dominant cluster after annealing. We applied our simple atomistic model to the study of boron retardation in arsenic pre-doped substrate. KMC simulation results were compared with experimental SIMS data, which supports our theoretical model.  相似文献   

10.
Boron-neutron capture therapy (BNCT) is an attractive technique for cancer treatment. As such, α, α-cycloalkyl amino acids containing thiododecaborate ([B12H11]2?-S-) units were designed and synthesized as novel boron delivery agents for BNCT. In the present study, new thiododecaborate α, α-cycloalkyl amino acids were synthesized, and biological evaluation of the boron compounds as boron carrier for BNCT was carried out.  相似文献   

11.
Boron application at proper concentration is necessary to enhance the leaf gas exchange, physiological growth, reproductive development and nutritional improvement of crops. Therefore, an experiment was conducted to study the effects of boron to evaluate the effect on the leaf gas exchange, reproductive development, physiological and nutritional changes of peanut. Treatments comprised six levels of boron (B), viz., B1 (0?ppm), B2 (0.5?ppm), B3 (1?ppm), B4 (2?ppm), B5 (4?ppm) and B6 (8?ppm). Results revealed that the vegetative growth, physiological growth parameters, leaf gas exchange, reproductive characters, peg strength, shelling (%) and nutritional elements were increased for boron application. Some vegetative, physiological and reproductive traits are positively correlated with each other. Thus, this finding showed that boron can be used to culture peanut as it provides high yield and nutritional properties.  相似文献   

12.
Effects of boron and calcium on the blue-green algaCalothrix parietina were determined. There was a significant decrease in growth, chlorophylla, saccharide and total nitrogen fixed under Ca2+ and boron deficiency. The addition of boron at different concentrations to Ca2+-deficient cultures led to partial recovery of these parameters. Calcium addition to B-deficient cells led to a partial recovery of growth, saccharide, chlorophylla and total nitrogen fixed. At high concentrations of calcium these parameters were significantly inhibited. The data also revealed that the different responses to B concentrations were due to the Ca2+ level in the medium.  相似文献   

13.
Summary In a glasshouse experiment with a boron deficient soil the application of nitrogen was found to decrease the boron concentration and boron uptake by lucerne (Medicago sativa). Without added boron, nitrogen applications killed the lucerne, probably by inducing severe boron deficiency. With added boron, the lowest rate of nitrogen application increased lucerne yield but further additions depressed yields. The effect was due to a physiological interaction rather than an effect of the nitrogen on the availability of the boron in the soil.  相似文献   

14.
Nitrogenase activity of Anabaena PCC 7119 is inhibited under conditions of boron deficiency. To elucidate the mechanisms of this inhibition, this study examined how the deficiency of boron affected photosynthesis, photosynthetic pigments, the enzymes of the oxidative pentose phosphate pathway, and respiration of Anabaena PCC 7119 cultures. After 24 to 48 hours of boron deficiency, reductions in photosynthetic O2 evolution and in CO2 fixation were observed. At the same time, the activities of oxidative pentose phosphate pathway enzymes and respiration increased significantly with boron deficiency. No change was observed in these processes when assays were performed after 4 to 6 hours of deficiency, a time at which nitrogenase activity was severely inhibited. These results suggest that the requirement for boron in N2 fixation is independent of its effects on photosynthesis and reductant supply.  相似文献   

15.
It is demonstrated that amorphous cobalt boride (Co2B) prepared by the chemical reduction of CoCl2 using NaBH4 is an exceptionally efficient electrocatalyst for the oxygen evolution reaction (OER) in alkaline electrolytes and is simultaneously active for catalyzing the hydrogen evolution reaction (HER). The catalyst achieves a current density of 10 mA cm?2 at 1.61 V on an inert support and at 1.59 V when impregnated with nitrogen‐doped graphene. Stable performance is maintained at 10 mA cm?2 for at least 60 h. The optimized catalyst, Co2B annealed at 500 °C (Co2B‐500) evolves oxygen more efficiently than RuO2 and IrO2, and its performance matches the best cobalt‐based catalysts reported to date. Co2B is irreversibly oxidized at OER conditions to form a CoOOH surface layer. The active form of the catalyst is therefore represented as CoOOH/Co2B. EXAFS observations indicate that boron induces lattice strain in the crystal structure of the metal, which potentially diminishes the thermodynamic and kinetic barrier of the hydroxylation reaction, formation of the OOH* intermediate, a key limiting step in the OER.  相似文献   

16.
The relationship between the requirement for boron and the form of N supplied in nutrient media to cyanobacterium Anabaena sp. PCC 7119 was investigated. When cells were grown in a medium which contained nitrate or ammonium-N, boron deficiency in the nutrient media did not inhibit growth or change cell composition. However, when cells were dependent on N2 fixation, the lack of boron inhibited growth (i.e. growth ceased after 96 hours under these conditions). Additionally, boron-deficient cells showed a significant decrease in their content of phycobiliproteins and chlorophyll and accumulated carbohydrates within 24 hours of removing boron from the nutrient media. Inhibition of photosynthetic O2 evolution accompanied the decrease in photosynthetic pigments. Boron deficiency symptoms were relieved when either boron or combined N was added to boron-deficient cultures. The degree of recovery depended upon the age of the cultures. Assays of nitrogenase activity showed that, after 2 hours of growth, nitrogenase activity of boron-deficient cells was inhibited by 40%. After 24 hours a total inactivation of nitrogenase activity was observed in boron-deficient cells. These results strongly suggest an involvement of boron in N2 fixation in cyanobacteria.  相似文献   

17.
High accumulation and selective delivery of boron into tumor tissues are the most important requirements to achieve efficient neutron capture therapy of cancers. We focused on liposomal boron delivery system to achieve a large amount of boron delivery to tumor. We succeeded in the synthesis of the double-tailed boron cluster lipids 4a–c and 5a–c, which has a B12H11S-moiety as a hydrophilic function, by S-alkylation of B12H11SH with bromoacetyl and chloroacetocarbamate derivatives of diacylglycerols. Size distribution of liposomes prepared from the boron cluster lipid 4b, dimyristoylphosphatidylcholine, polyethyleneglycol-conjugated distearoylphosphatidylethanolamine, and cholesterol was determined as 100 nm in diameter by an electrophoretic light scattering spectrophotometer. Calcein-encapsulation experiments revealed that these boronated liposomes are stable at 37 °C in fetal bovine serum solution for 24 h.  相似文献   

18.
In this paper, we report our study on the minimised atomistic model (MAM) and the determination of an evolution path for dominant B m I n clusters during boron diffusion in kinetic Monte Carlo (KMC). It has been known that clusters generated after ion implantation play a decisive role in the enhanced boron diffusion at the tail region while being immobile at the peak region. Our MAM, based on the simple continuum model and the simple atomistic model, takes the smallest number of intermediate clusters into account as well as dominant clusters for the evolution path of interstitial clusters during boron diffusion. We find that intermediate clusters such as B2I3 and B3I3 play a significant role during the evolution of clusters despite the fact that the lifetimes of the corresponding intermediate clusters are relatively short due to low binding energies. Also, through our simulation results, we find the main evolution path of dominant clusters from B2I to B3I during thermal annealing in the MAM. Furthermore, our investigation reveals that the density of BI2 clusters increases at the beginning of the annealing process while the density of B3I increases at a later stage. KMC simulation results are compared with experimental SIMS data, which support our theoretical model.  相似文献   

19.
N,N-bis[4-(2-aminoethyl)morpholino]glyoxime (H2L) (Fig. 1), has been prepared in various yields using three different methods. The most efficient of these methods is the technique of microwave irradiation. The crystal structures of H2L, and of two nickel(II) complexes 1 and 2 have been determined by single crystal X-ray diffraction. Both nickel(II) complexes have a metal-ligand ratio of 1:2 in which the ligand coordinates through the two nitrogen atoms as do most vic-dioximes. The nickel(II) complexes are either hydrogen (1) or boron diphenyl bridged (2). Complex 1 was synthesized by reacting H2L with nickel(II) chloride in refluxing ethanol. Complex 2 was prepared at room temperature in an ethanol solution containing excess NaBPh4. Elemental analyses, NMR(1H, 13C), IR and mass data are also presented.  相似文献   

20.
Trogtalite CoSe2 nanobuds encapsulated into boron and nitrogen codoped graphene (BCN) nanotubes (CoSe2@BCN‐750) are synthesized via a concurrent thermal decomposition and selenization processes. The CoSe2@BCN‐750 nanotubes deliver an excellent storage capacity of 580 mA h g?1 at current density of 100 mA g?1 at 100th cycle, as the anode of a sodium ion battery. The CoSe2@BCN‐750 nanotubes exhibit a significant rate capability (100–2000 mA g?1 current density) and high stability (almost 98% storage retention after 4000 cycles at large current density of 8000 mA g?1). The reasons for these excellent storage properties are illuminated by theoretical calculations of the relevant models, and various possible Na+ ion storage sites are identified through first‐principles calculations. These results demonstrate that the insertion of heteroatoms, B–C, N–C as well as CoSe2, into BCN tubes, enables the observed excellent adsorption energy of Na+ ions in high energy storage devices, which supports the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号