首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Mineral deficiency symptoms were observed in leaves of yellow passionfruit plantlets grown in MS medium (Murashige and Skoog, 1962) with 1.0 mg l−1 (3.0 μM) gibberellic acid. Initially, leaves showed interveinal chlorosis, followed by bleaching of the leaves and retarded growth. Leaf mineral analysis was done and compared to mineral requirements suggested for passionfruit in the literature. Several modifications were made to the inorganic composition of MS medium, according to mineral deficiencies, mainly of Fe and Ca, and possible toxicity of Cl. The concentration of the elements in the new medium (MSM) was based on the mineral composition of leaves of healthy plants. The chemical equilibrium was checked using the software Geochem (Sposito and Mattigod, 1980) and final adjustments were made to ensure good availability of nutrients. To test the efficiency of the modified medium nodal segments were cultured in both MS and MSM supplemented with 3.0 mg l−1 (13.3 μM) 6-benzyladenine. After three subcultures mineral analysis of the leaves was done. Severe mineral deficiency was observed on the leaves of plantlets cultured in MS, while plantlets cultivated in MSM had green leaves. A comparison of the mineral analysis of plantlets in both media showed a fairly large increase in Ca, Cu, Fe, Mg and S and decrease in levels of B and Cl in plantlets cultivated in MSM. A slight increase or decrease in other elements was also observed. Subculture of the chlorotic plantlets into MSM showed that the visual symptoms of mineral deficiency disappeared in 2–4 wk.  相似文献   

2.
It is commonly assumed that nitrogen (N) is the primary mineral resource limiting the productivity of temperate forests. Sustained inputs of N via atmospheric deposition are altering the N status of temperate forests raising the possibility that nutrients such as phosphorus (P) are increasingly limiting productivity. The objective of this study was to determine whether P availability limits tree growth alone or in combination with N. This study was conducted in two forest types common throughout the New England landscape of the northeastern United States; in sugar maple and white ash dominated stands growing on base rich parent material characterized by rapid rates of N cycling and high N availability, and in red oak–beech–hemlock dominated stands growing on base-poor parent material characterized by slow rates of N cycling and low N availability. Starting in 2004, N and P were added to replicate plots in each forest type in factorial combination at a rate of 150 and 50 kg ha−1 year−1, respectively. Diameter growth rates of all trees >10 cm DBH were measured in 2005 and 2006 using dendrometer bands and converted into units of basal area increment (BAI) and wood production. Following 2 years of fertilization, basal area increment in the sugar maple–white ash forests remained strongly N limited. Fertilization with P did not significantly increase BAI alone, although both N and P fertilization tended (P < 0.10) to increase diameter growth in white ash. Wood production in the N-fertilized plots increased by 100 g C m−2 year−1, roughly doubling production in the non-fertilized plots. In the red oak–beech–hemlock stands, there was no overall effect of N or P fertilization on BAI or wood production because BAI in some species was stimulated by fertilization with N alone (e.g., black cherry, red oak), while in other species BAI was unaffected (e.g., red maple, beech) or negatively affected by fertilization with N or P (e.g., eastern hemlock). Given that BAI in several tree species responded to fertilization with N alone and that only one species responded to P fertilization once N was added, this study suggests that decades of atmospheric N deposition have not (yet) resulted in widespread P limitation or saturation of tree demand for N.  相似文献   

3.
The RN locus in pigs has a major effect on the amount of stored glycogen in white muscle and affects meat quality. The fully dominant RN allele, associated with high glycogen content, occurs in the Hampshire breed. We have mapped the RN locus using a large half-sib family comprising one heterozygous RN /rn + Hampshire boar mated to homozygous rn +/rn + Swedish Landrace × Swedish Yorkshire sows. The segregation at the RN locus was inferred from data on glycolytic potential and residual glycogen in white muscle which both showed clear bimodal distributions. Highly significant evidence for genetic linkage was obtained against microsatellite markers on Chromosome (Chr) 15. Multipoint analysis revealed the order Sw1111–8.0–S0088–10.6–RN–4.8–Sw936,Sw906 (recombination estimates are given as Kosambi cM). Comparative mapping data imply that the human homolog of RN is located on Chr 2q. Received: 18 April 1995 / Accepted: 16 June 1995  相似文献   

4.
The three color morphotypes of the red alga Kappaphycus alvarezii (brown, red and green) were cultured in Camranh Bay, Vietnam, using the fixed off-bottom monoline culture method to evaluate the growth rate, carrageenan yield, 3,6-anhydrogalactose, gel strength and lectin content. The brown morphotype was cultivated over a 12-month period; the red and green morphotypes were over a 6-month period. At the 60-day culture timepoint, the brown morphotype showed a higher growth rate (3.5–4.6% day−1) from September to February, and lower growth rate (1.6–2.8% day−1) from March to August. Significant (P < 0.05) differences in growth rate between culture months were found with the brown morphotype. High growth rates for the red (3.6–4.4% day−1) and green (3.7–4.2% day−1) morphotypes were obtained from September to February. The carrageenan yield, 3,6-anhydrogalactose and gel strength of the three morphotypes showed little variation, with the highest values obtained in November–December. At the 30-day sampling point, the brown morphotype had a higher lectin content (167–302 μg g−1 dry alga) from August to March and a lower lectin content (23–104 μg g−1 dry alga) from April to July. High lectin contents were recorded for the red (139–338 μg g−1 dry alga) and green (124–259 μg g−1 dry alga) morphotypes from September to February. This study shows that the different morphotypes of K. alvarezii can be grown in the tropical waters of the Camranh during the northeast monsoon, and part of the southwest monsoon, especially the brown morphotype, which can be grown during any season.  相似文献   

5.
Aqueous extracts of Ascophyllum nodosum and several other brown seaweeds are manufactured commercially and widely distributed for use on agricultural crops. The increasingly regulated international trade in such products requires that they be standardized and defined to a degree not previously required. We examined commercially available extracts using quantitative 1H NMR and principal components analysis (PCA) techniques. Extracts manufactured over a 4-year period using the same process exhibited characteristic profiles that, on PCA, clustered as a discrete group distinct from the other commercial products examined. In addition to recognizing extracts made from different seaweeds, analysis of the 1H spectra in the 0.35–4.70 ppm region allowed us to distinguish amongst extracts produced from the same algal species by different manufacturers. This result established that the process used to make an extract is an important variable in defining its composition. A comparison of the 1H NMR integrals for the regions 1.0–3.0 ppm and 3.0–4.38 ppm revealed small but significant changes in the A. nodosum spectra that we attribute to seasonal variation in gross composition of the harvested seaweed. Such changes are reflected in the PCA scores plots and contribute to the scatter observed within the data point cluster observed for Acadian soluble extracts when all data are pooled. Quantitative analysis using 1H NMR (qNMR) with a certified external standard (caffeine) showed a linear relationship with extract concentration over at least an order of magnitude (2.5–33 mg/mL; R 2 > 0.97) for both spectral regions integrated. We conclude that qNMR can be used to profile (or “fingerprint”) commercial seaweed extracts and to quantify the amount of extract present relative to a suitably chosen standard. Issued as NRCC no. 42,652.  相似文献   

6.
The distribution of neodymium, lead, thorium and uranium was investigated in about 100 samples of 12 different species of common, edible and non-edible mushrooms collected in unpolluted areas in the province of Ciudad Real, Central Spain. The quantitative analysis of heavy metals was performed by X-ray fluorescence spectrometry (a simple, accurate and non-destructive method). The concentration of these elements was related to three factors: mushroom specie, life style/substrate and study area. The results reveal considerable amounts of the four metals in all species analyzed as well as significant differences on the capability to accumulate these elements. The maximum absorption of Nd and Pb was found in the ectomycorrhizal Cantharellus cibarius, reaching values of 7.10 and 4.86 μg g−1, respectively. Thorium and uranium were mainly accumulated (3.63 and 4.13 μg g−1, respectively) in Hypholoma fasciculare although it is an epiphyte species, isolated from the mineral particles of soil. The distribution patterns of these metals in sporocarps of different habitats and locations showed no significant differences, except for thorium, mainly accumulated in mushrooms living on wood regarding these living on soil organic matter. The species-specific is therefore the determining factor for accumulation of Nd, Pb, Th and U, more than substrate, in this study.  相似文献   

7.
A flow cytometry method, to monitor peripheral lymphocytes phospholipidosis, has been set up using a single staining with Nile red and double staining with Nile red and anti-CD3 monoclonal antibody. Blood has been collected from rats treated with amiodarone (phospholipidogenic antiarrhythmic drug). By flow cytometer, it is possible to detect phospholipids, using Nile red, a probe for intracellular lipids staining, changing its fluorescence on the stained lipid basis. CD3 antigen has been selected to focus on T cells, to evaluate whether these cells are the target of phospholipidosis amiodarone-dependent. In the study A, Sprague–Dawley rats were treated with three different doses (75, 150, and 300 mg kg−1 day−1) of amiodarone or vehicle alone, for 14 days, followed by 14 days of recovery: Data obtained show that by flow cytometry, with Nile red alone, it is possible to detect a dose- and time-related response of phospholipidosis-positive lymphocytes; a partial recovery is also assessed. In the study B, Sprague–Dawley rats were treated with a single dose (300 mg kg−1 day−1) of amiodarone, for 14 days: Data obtained show that animals treated with amiodarone have a significant increase of phospholipidosis-positive lymphocytes (p = 0.008), in particular of CD3+ cells (p = 0.0056). Transmission electron microscopy analysis confirmed data obtained by flow cytometry. This work shows that flow cytometry with Nile red could be a good tool to monitor ex vivo phospholipidosis in lymphocyte cells of animals treated with amiodarone: The phospholipidogenic effect is more evident focusing on CD3+ T lymphocytes, thus suggesting that these cells are probably the target of phospholipidosis.  相似文献   

8.
The relationship between O2-based gross photosynthesis (GP) and in vivo chlorophyll fluorescence of Photosystem II-based electron transport rate (ETR) as well as the relationship between effective quantum yield of fluorescence (ΦPSII) and quantum yield of oxygen evolution (ΦO_2) were examined in the green algae Ulva rotundata and Ulva olivascens and the red alga Porphyra leucosticta collected from the field and incubated for 3 days at 100 μmol m−2 s−1 in nutrient enriched seawater. Maximal GP was twice as high in Ulva species than that measured in P. leucosticta. In all species ETR was saturated at much higher irradiance than GP. The initial slope of ETR versus absorbed irradiance was higher than that of GP versus absorbed irradiance. Only under absorbed irradiances below saturation or at values of GP <2 μmol O2 m−2 s−1 a linear relationship was observed. In the linear phase, calculated O2 evolved /ETR molar ratios were closed to the theoretical value of 0.25 in Ulva species. In P. leucosticta, the estimated GP was associated to the estimated ETR only at high irradiances. ETR was determined under white light, red light emitting by diodes and solar radiation. In Ulva species the maximal ETR was reached under red light and solar radiation whereas in P. leucosticta the maximal ETR was reached under white light and minimal under red light. These results are in agreement with the known action spectra for photosynthesis in these species. In the case of P. leucosticta, GP and ETR were additionally determined under saturating irradiance in algae pre-incubated for one week under white light at different irradiances and at white light (100 μmol m−2 s−1) enriched with far-red light. GP and growth rate increased at a growth irradiance of 500 μmol m−2 s−1 becoming photoinhibited at higher irradiances, while ETR increased when algae were exposed to the highest growth irradiance applied (2000 μmol m−2 s−1). The calculated O2 evolved /ETR molar ratios were close to the theoretical value of 0.25 when algae were pre-incubated under 500–1000 μmol m−2 s−1. The enrichment by FR light provoked a decrease in both GP and ETR and an increase of nonphotochemical quenching although the irradiance of PAR was maintained at a constant level. In addition to C assimilation, other electron sinks, such as nitrogen assimilation, affected the GP–ETR relationship. The slopes of GP versus ETR or ΦPSII versus ΦO_2 were lower in the algae with the highest N assimilation capacity, estimated as nitrate reductase activity and internal nitrogen contents, i.e., Ulva rotundata and Porphyra leucosticta, than that observed in U. olivascens. The possible mechanisms to explain this discrepancy between GP and ETR are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

10.
Previous studies showed that cabbage leaf extract (CLE) added to the growth medium can noticeably promote the degradation of nitro aromatic compounds by specific consortium of bacteria upon their growth. For further development of the approach for contaminated soil remediation it was necessary to evaluate the qualitative and/or quantitative composition of different origin CLE and their relevance on the growth of explosives-degrading bacteria. Six CLE (different by species, cultivars and harvesting time) were tested and used as additives to the growth medium. It was shown that nitro aromatic compounds can be identified in the FT-IR absorption spectra by the characteristic band at 1,527 cm−1, and in CLE by the characteristic band at 1,602 cm−1. The intensity of the CLE band at 1,602 cm−1 correlated with the concentration of total nitrogen (R 2 = 0.87) and decreased upon the growth of bacteria. The content of nitrogen in CLE differed (0.22–1.00 vol.%) and significantly influenced the content of total carbohydrates (9.50–16.00% DW) and lipids [3.90–9.90% dry weight (DW)] accumulated in bacterial cells while the content of proteins was similar in all samples. Though this study showed quantitative differences in the composition of the studied CLE and the response of bacterial cells to the composition of the growth media, and proved the potential of this additive for remediation of contaminated soil. It was shown that analysis of CLE and monitoring of the conversion of nitro aromatic compounds can be investigated by FT-IR spectroscopy as well as by conventional chemical methods.  相似文献   

11.
The peculiarities of osmoregulation of circulating red blood cells of the stenohaline giant gobyGobius cobitis and the euryhaline toad gobyGobius batrachocephalus have been studied under experimental conditions. In the giant goby, volume of the red blood cells increased steadily by 10.6–18.1% (p < 0.05) after reduction of the medium salinity from 15–17 to 6.0–6.8‰ and this volume increase remained during the entire experimental period (40–45 days). Lysis of red blood cells was noticed in some cases, which was indicated by a decrease of the number of red blood cells and an increase of concentration of free hemoglobin in the blood plasma. No similar reactions were observed in the euryhaline toad goby; the mean cell volume did not change statistically significantly. The volume regulation resulted in K+ efflux from red blood cells. The blood red cells of the toad goby had a high resistance to osmotic stress. The Na+,K+-ATPase activity in the red blood cell membranes of the toad goby was higher by 18.8% (p < 0.001) than in the giant goby.  相似文献   

12.
Overexploitation of forests to increase wood production has led to the replacement of native forest by large areas of monospecific tree plantations. In the present study, the effects of different monospecific tree cover plantations on density and composition of the indigenous soil microbial community are described. The experimental site of “Breuil-Chenue” in the Morvan (France) was the site of a comparison of a similar mineral soil under Norway spruce (Picea abies), Douglas fir (Pseudotuga menziesii), oak (Quercus sessiflora), and native forest [mixed stand dominated by oak and beech (Fagus sylvatica)]. Sampling was performed during winter (February) at three depths (0–5, 5–10, and 10–15 cm). Abundance of microorganisms was estimated via microbial biomass measurements, using the fumigation–extraction method. The genetic structure of microbial communities was investigated using the bacterial- and fungal-automated ribosomal intergenic spacer analysis (B-ARISA and F-ARISA, respectively) DNA fingerprint. Only small differences in microbial biomass were observed between tree species, the highest values being recorded under oak forest and the lowest under Douglas fir. B- and F-ARISA community profiles of the different tree covers clustered separately, but noticeable similarities were observed for soils under Douglas fir and oak. A significant stratification was revealed under each tree species by a decrease in microbial biomass with increasing depths and by distinct microbial communities for each soil layer. Differences in density and community composition according to tree species and depth were related to soil physicochemical characteristics and organic matter composition.  相似文献   

13.
Tolstykh  E. I.  Shagina  N. B.  Peremyslova  L. M.  Degteva  M. O. 《Biophysics》2011,56(1):148-156
Operation of the Mayak plutonium production association resulted in radioactive contamination of a part of Chelyabinsk Region in the 1950–1960s. Significant gas-aerosol emission of 131I occurred since 1948; in 1957, a radiation accident resulted in 90Sr contamination of large territories. This paper presents comparison of the bone mineral density of persons who lived on territories with different levels of 90Sr-soil contamination with that of a control group. It was found that in 1970–1975, the bone mineral density, estimated from the mineral content in bone samples, in residents of contaminated areas born in 1936–1952 was significantly lower compared to the control group. For persons born in 1880–1935, such differences were not found. It was shown that the decrease in the bone mineral density was not related to 90Sr exposure of osteogenic cells in the dose range from 0.1 to 1300 mGy: the coefficient of correlation between individual 90Sr doses and bone mineral contents is not significant. The decrease in bone mineral density of persons born in 1936–1952 may be associated with exposure of the thyroid and parathyroid glands (systemic regulators of calcium metabolism) to 131I from gas-aerosol emissions from Mayak. The highest levels of gas-aerosol emissions occurred in 1948–1954 and coincided with the growth and development of the thyroid gland, characterized by intensive accumulation of 131I, and with the growth and maturation of the skeleton of persons born in the given calendar years.  相似文献   

14.
We report here a comparative analysis of the effect of blue (450 nm), red (660 nm), and white light (400–700 nm) on the protein profile of cyanobacteria Synechococcus sp. PCC 7942. In vivo labeling of cells with [35S] methionine and their subsequent analysis by two-dimensional gel electrophoresis (2-DGE) showed that eight polypeptides were unique to dark adapted cells, ten were blue light specific, and four were specifically induced in red light. The results show that Synechococcus sp. respond to various light treatments rapidly and synthesize new polypeptides in dark and blue/red light. Received: 12 October 1999 / Accepted: 16 November 1999  相似文献   

15.
Fractionation of stable carbon isotopes 12C and 13C by three pure cultures of photoautotrophic purple sulfur bacteria (Ectothiorhodospira shaposhnikovii, Lamprocystis purpureus, and Thiocapsa sp.) (PSB) and the green sulfur bacterium Prosthecochloris sp. (GSB) was investigated in 13–15-day experiments. The cultivation was carried out in a luminostat (2000 lx) on mineral media with 1–1.5 g/l NaHCO3 (inoculum) with the subsequent transfer to the medium with up to 10 g/l NaHCO3. For PSB, the difference in the quantitative characteristics of the isotopic composition of suspended carbon (including bacterial cells) and mineral carbon of the medium (Δ13C = δ13Csubstrate − δ13Cbiomass) changed from 15.0 to 34.3‰. For GSB, the range of Δ13C changes was significantly less (18.3–22.7‰). These data suggested the possibility of a pool of soluble mineral carbon in PSB cells. The pool of intracellular mineral carbon was calculated; depending on the PSB species and growth stage, it varied from 0 to 68% of the total cell carbon. The α coefficients reflecting the carbon isotope fractionation by PSB and GBS and calculated from the changes of the bicarbonate carbon isotopic composition in the medium depending on its consumption were 1.029 ± 0.003 and 1.019 ± 0.001, respectively. These α values did not depend on the growth rate. CO2 fixation on ribulose-bisphosphate was shown to be the major factor determining the carbon isotope fractionation by PSB; at the stage of CO2 penetration into the cell, fractionation was insignificant. In GSB, fractionation occurred mostly at CO2 penetration into the cell, while it was insignificant at the stage of carbon dioxide fixation in the reverse TCA cycle. Analysis of the isotopic data of the photosynthesis by PSB and GSB in meromictic lakes also revealed that in PSB-dominated natural communities suspended organic matter was more enriched with light 13C (Δ13C = 23.4−24.6‰) than in the communities with more active GSB (Δ13C = 10.2−14.0‰)  相似文献   

16.
Nitrogen isotope measurements may provide insights into changing interactions among plants, mycorrhizal fungi, and soil processes across environmental gradients. Here, we report changes in δ15N signatures due to shifts in species composition and nitrogen (N) dynamics. These changes were assessed by measuring fine root biomass, net N mineralization, and N concentrations and δ15N of foliage, fine roots, soil, and mineral N across six sites representing different post-deglaciation ages at Glacier Bay, Alaska. Foliar δ15N varied widely, between 0 and –2‰ for nitrogen-fixing species, between 0 and –7‰ for deciduous non-fixing species, and between 0 and –11‰ for coniferous species. Relatively constant δ15N values for ammonium and generally low levels of soil nitrate suggested that differences in ammonium or nitrate use were not important influences on plant δ15N differences among species at individual sites. In fact, the largest variation among plant δ15N values were observed at the youngest and oldest sites, where soil nitrate concentrations were low. Low mineral N concentrations and low N mineralization at these sites indicated low N availability. The most plausible mechanism to explain low δ15N values in plant foliage was a large isotopic fractionation during transfer of nitrogen from mycorrhizal fungi to plants. Except for N-fixing plants, the foliar δ15N signatures of individual species were generally lower at sites of low N availability, suggesting either an increased fraction of N obtained from mycorrhizal uptake (f), or a reduced proportion of mycorrhizal N transferred to vegetation (T r). Foliar and fine root nitrogen concentrations were also lower at these sites. Foliar N concentrations were significantly correlated with δ15N in foliage of Populus, Salix, Picea, and Tsuga heterophylla, and also in fine roots. The correlation between δ15N and N concentration may reflect strong underlying relationships among N availability, the relative allocation of carbon to mycorrhizal fungi, and shifts in either f or T r. Received: 14 December 1998 / Accepted: 16 August 1999  相似文献   

17.
The peculiarities of osmoregulation of circulating red blood cells of the stenohaline giant gobyGobius cobitis and the euryhaline toad gobyGobius batrachocephalus have been studied under experimental conditions. In the giant goby, volume of the red blood cells increased steadily by 10.6–18.1% (p (WENA) 0.05) after reduction of the medium salinity from 15–17 to 6.0–6.8‰ and this volume increase remained during the entire experimental period (40–45 days). Lysis of red blood cells was noticed in some cases, which was indicated by a decrease of the number of red blood cells and an increase of concentration of free hemoglobin in the blood plasma. No similar reactions were observed in the euryhaline toad goby; the mean cell volume did not change statistically significantly. The volume regulation resulted in K+ efflux from red blood cells. The blood red cells of the toad goby had a high resistance to osmotic stress. The Na+,K+-ATPase activity in the red blood cell membranes of the toad goby was higher by 18.8% (p (WENA) 0.001) than in the giant goby.  相似文献   

18.
A halophilic nonpigmented rod-shaped (0.8–1.0 × 2.0–2.5 μm), gram-negative bacterium with a single polar flagellum (strain RS91) was isolated from acidic brines of flotation enrichment of potassium minerals (Silvinit Co., Solikamsk, Russia). The strain grew in the media with 2 to 25% NaCl (optimum at 10–12%), 20–45°C (optimum at 37°C), and pH 5.5–8.5 (optimum 6.5–7.5). It was an aerobe or facultative anaerobe incapable of fermentation. The strain was characterized by the absence of growth on glucose, fructose, and citrate, extensive aerobic growth on n-hexadecane and in the mineral medium with H2 + O2 + CO2 in the gas phase, anaerobic nitrate reduction with acetate or hydrogen (under H2 + CO2 + N2), and variable fatty acid composition. The DNA G+C content was 68.2 mol %. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that while strain RS91 was most closely related to Arhodomonas aquaeolei HA-1T (98.3%) and Nitrococcus mobilis (98.1%), it was only remotely related to the halophilic phototroph Halorhodospira halophila (90.6%). Based on the combination of its phenotypic and genotypic characteristics, the organism was classified as a new species of the genus Arhodomonas, family Ectothiorhodospiraceae with the proposed name Arhodomonas recens sp. nov. The type strain is RS91T (= IEGM 796T = VKPM B-11280T).  相似文献   

19.
The effects of UVB on the kinetics of stem elongation of wild type (WT) and photomorphogenic mutants of tomato were studied by using linear voltage transducers connected to a computer. Twenty-one or twenty-six-day-old plants, grown in 12 h white light (150 μmol m−2 s−1 PAR)/12 h dark cycles, were first transferred to 200 μmol m−2 s−1 monochromatic yellow light for 12 h, then irradiated with 0.1 or 4.5 μmol m−2 s−1 UVB for 12 h and finally kept in darkness for another 24 h. The measurements of the kinetics of stem elongation started after 4 h under yellow light. Significant differences in stem growth during the irradiation with yellow light, as well as during the dark period, were found between the genotypes. In darkness, the magnitude of stem growth followed the order: tri > AC = fri > MMau > hp1. Two factors determined the large differences of growth in darkness: 1) the different stem elongation rate (SER) and 2) the different duration of the growing phase among the genotypes. In darkness the stem growth of au and hp1 mutants lasted for about 18 h, whereas it continued for the whole experimental period (36 h) in the other genotypes. UVB irradiation substantially reduced elongation growth of all genotypes (4.5 μmol m−2 s−1 being more effective than 0.1 μmol m−2 s−1). Both fluence rates of UVB induced a detectable reduction of SER already after 15 min of irradiation. Red light inhibited, while far red light promoted stem growth of all the genotypes tested. fri (phyA null), tri (phyB1 null), hp1 (exhibiting exaggerated phytochrome responses) mutants and WT tomato showed similar levels of UVB–induced inhibition of growth, while the aurea mutant showed the largest growth inhibition during the 12 h of irradiation. These results indicate that phytochrome is not directly involved in UVB control of stem elongation. The results of dichromatic irradiations UVB + red or UVB + far red indicate the presence of distinct and additive action of UVB photoreceptor and of the phytochrome system in the photoregulation of stem growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Summary Field studies were conducted to assess the mineral nutrition and growth of Colorado spruce (Picea pungens Engln) seedlings (2–4 yr) from provenances selected for superior growth on calcareous prairie soils. Tissue nutrient concentrations and response to nitrogen were determined by use of foliar analysis and growth pattern studies. Soil conditions ranged from 7.6–7.8 for pH, 12–23% for total CaCO3, and 5–6% for active CaCO3. Foliage mineral composition showed relatively low phosphorus (0.09–0.15%) and high calcium (0.45–1.52%) assimilation. Seasonal growth and seedling response to added nitrogen was not adversely affected by the calcareous soil condition. Levels of nitrogen in the foliage required for optimum growth ranged from 1.5–2.0% and were similar to that of other conifer species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号