首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

2.
The main antioxidant properties of five new 4-hydroxy-bis-coumarins during bulk lipid autoxidation at 80 °C and 0.1 mM and 1.0 mM concentrations were studied and compared with 4-hydroxy-2H-chromen-2-one (1). These compounds are: 3,3′-((3,4-dihydroxy-phenyl) methylene) bis (4-hydroxy-2H-chromen-2-one) (2), 3,3′-((3,4-dimethoxyphenyl) methylene) bis (4-hydroxy-2H-chromen-2-one) (3), 3,3′-((4-hydroxy-3,5-dimethoxy-phenyl) methylene) bis(4-hydroxy-2H-chromen-2-one) (4) 3,3′-((3,4,5- trimethoxyphenyl) methylene) bis (4-hydroxy-2H-chromen-2-one) (5) 3,3′-((4-hydroxy-3-methoxy-5-nitrophenyl) methylene) bis (4-hydroxy-2H-chromen-2-one) (6), It was found that compound 2 with a catecholic structure in the aromatic nucleus showed the strongest antioxidant activity. Compound 4 showed a moderate antioxidant activity, and all the other compounds didn't show any capacity as chain-breaking antioxidants. Both 4-hydroxy-bis-coumarins (2 and 4) demonstrated also stronger radical scavenging activity towards DPPH radical by using TLC DPPH rapid test, than compound 1. The other compounds (3, 5, 6) didn't show any capacity as radical scavengers. The structure–activity relationship was discussed on the base of comparable kinetic analysis of studied 4-hydroxy-bis-coumarins with the known and standard antioxidants as α-tocopherol (TOH), caffeic acid (CA), sinapic acid (SA), ferulic acid (FA), and p-coumaric acid (p-CumA). In order to study the possible synergism between two phenolic antioxidants, the antioxidant efficiency and reactivity of two equimolar binary mixtures of coumarins and TOH (2 + TOH and 4 + TOH) and of corresponding cinnamic acid with TOH (CA + TOH and SA + TOH) were also tested and compared. The oxidation stability of the lipid substrate in presence of binary mixtures CA + TOH, SA + TOH and 2 + TOH appeared to be higher than that of the individual antioxidants. However, no synergism was obtained for all tested binary mixtures.  相似文献   

3.
Mercury(II) acetate reacts with the 1-alkyl-2-(arylazo)imidazoles [RaaiR′ where R = H (a), Me (b); R′ = Me (1/3/5), Et (2/4/6)] and sodium azide in methanol solution to afford azido bridged polymeric complexes [Hg(RaaiR′)(N3)2]n (3/4). On setting up similar reaction condition, the reaction of Hg(OAc)2 with RaaiR′ and NH4SCN has yielded, instead of polymer, an ion-pair [Hg(RaaiR′)4][Hg(SCN)4] (5/6). The complexes are characterised by elemental analysis, IR, UV-Vis, 1H NMR spectral data and single-crystal X-ray structures of [Hg(HaaiEt)(μ-1,1-N3)2]n (4a) and [Hg(HaaiEt)4][Hg(SCN)4] (6a). The complex 4a is a coordination polymer with end-on (μ-1,1) azido bridge and 6a has tetrahedral structure.  相似文献   

4.
N,N′-Dilithiated 1,1′-bis(trimethylsilylamino)ferrocene (2) reacts with boron halide adducts (HBBr2-SMe2; BF3-OEt2 and BBr3-SMe2), boron halides (BCl3, BBr3, BCl2(OPh) and BCl2(Ph)) and 1,1-bis(dimethylamino)dichlorodiborane(4) to give the corresponding 1,3-bis(trimethylsilyl)-1,3,2-diazabora-[3]ferrocenophanes (3)-(8) and the 2,3-bis(dimethylamino)-1,4-bis(trimethylsilyl)-1,4,2,3-diazadibora-[4]ferrocenophane (9). All new complexes were characterised by multinuclear magnetic resonance spectroscopy in solution, and the solid-state molecular structures of the hydride (3), fluoride, chloride (4, 5), and of the phenoxy and phenyl derivatives (7, 8) were determined by X-ray analysis.  相似文献   

5.
A series of coordination polymers have been prepared by the combination of flexible ligand 1,1′-biphenyl-2,2′-dicarboxylic acid (H2dpa) and different types of nitrogen-containing ligands, with various metal ions such as Co(II), Zn(II) and Cd(II). The single-crystal structure analyses reveal that the above complexes possess different structure features with the introduction of different nitrogen-containing ligands. When auxiliary linear ligand 4,4′-bipyridine (4,4′-bpy) is introduced, two-dimensional layered complex, [Co2(dpa)2(4,4′-bpy)2(H2O)]n (1) is formed. Whereas if chelating ligand, 1,10-phenanthroline (1,10′-phen) and 2,2′-bipyridine (2,2′-bpy) are introduced, one-dimensional complex [Zn(dpa)(1,10′-phen)]n (2) and discrete complexes [Co2(dpa)2(2,2′-bpy)2(H2O)2] (3), [Co3(dpa)3(1,10′-phen)6(H2O)2] (4), [Cd(dpa)(1,10′-phen)2][(H2dpa)2(H2O)2] (5) are synthesized. To our interest, 1 and 2 crystallize in homochiral spacegroup. Furthermore, the magnetic property of complex 1 and the fluorescent properties of complexes 2 and 5 are studied.  相似文献   

6.
The bis-phosphines, 1,1′-[1,2-phenylenebis(methylene)]bis-3,5-diaza-1-azonia-7-phosphatricyclo[3.3.1.1]decane dibromide (1), 1,1′-[1,3-arenebis(methylene)]bis-[3,5-diaza-1-azonia-7-phosphatricyclo [3.3.1.1]decane dibromide (arene = phenyl (2), tolyl (3), anisolyl (4)), and 1,1′-[1,4-phenylenebis(methylene)]bis-3,5-diaza-1-azonia-7-phosphatricyclo[3.3.1.1]decane dibromide (5) were prepared in over 90% yield by refluxing 1,2-bis(bromomethyl)benzene, 1,3-bis(bromomethyl)benzene, 1,3-bis(bromomethyl)-5-methyl-benzene, 1,3-bis(bromomethyl)-5-methoxy-benzene, and 1,4-bis(bromomethyl)benzene with 1,3,5-triaza-7-phosphaadamantane (PTA) in acetone or chloroform. Compounds 1-5 are the first phosphines reported that contain two PTA moieties. All five compounds were characterized by ESI-MS, elemental analysis, 1H, 13C, and 31P NMR spectroscopy, while 3 and 4 were additionally analyzed via single crystal X-ray diffraction. The relative positions of the PTA units on the aromatic ring as well as the substituents of the ring had a pronounced effect on the water-solubilities of the systems. The ortho compound (1, 2000 mg/mL) was more than two orders of magnitude more soluble than the para compound (5, 12.5 mg/mL). The meta substituted phenyl (2) and tolyl (3) compounds had solubilities (810 mg/mL) that were more than triple that of PTA (235 mg/mL) while the anisolyl analog (4) was half as soluble (121 mg/mL).  相似文献   

7.
Bioassay-guided extraction of the stem bark of Knema laurina showed the acetylcholinesterase (AChE) inhibitory activity of DCM and hexane fractions. Further repeated column chromatography of hexane and DCM fractions resulted in the isolation and purification of five alkenyl phenol and salicylic acid derivatives. New compounds, (+)-2-hydroxy-6-(10′-hydroxypentadec-8′(E)-enyl)benzoic acid (1) and 3-pentadec-10′(Z)-enylphenol (2), along with known 3-heptadec-10′(Z)-enylphenol (3), 2-hydroxy-6-(pentadec-10′(Z)-enyl)benzoic acid (4), and 2-hydroxy-6-(10′(Z)-heptadecenyl)benzoic acid (5) were isolated from the stem bark of this plant. Compounds (1-5) were tested for their acetylcholinesterase inhibitory activity. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and chemical derivatizations. Compound 5 showed strong acetylcholinesterase inhibitory activity with IC50 of 0.573 ± 0.0260 μM. Docking studies of compound 5 indicated that the phenolic compound with an elongated side chain could possibly penetrate deep into the active site of the enzyme and arrange itself through π-π interaction, H-bonding, and hydrophobic contacts with some critical residues along the complex geometry of the active gorge.  相似文献   

8.
Dilithiated 1,1-bis(trimethylsilylamino)ferrocene (1) reacts with aminoboron dihalides (2) X2B-N(R)R [X=Br, R=R=Et (2a); X=Cl, R=Me, R=CH2Ph (2b), X=Cl, R=Et, R=Ph (2c)] to give 2-amino-1,3,2-diazabora-[3]ferrocenophanes (3a-c) for the first time. The steric constraints exerted by the [3]ferrocenophane unit and the presence of the N-SiMe3 groups cause rather different B-N bonding situations in these tri(amino)boranes. The boron atom has the choice between three nitrogen atoms for BN(pp)π bonding: in the cases of 3a and 3b, it prefers the NEt2 and the N(Me)CH2Ph group, respectively, over the N-SiMe3 groups, whereas in 3c the N(Et)Ph group appears to be the weaker π-donor. This can be concluded from the X-ray structural analyses carried out for 3a and 3c, and from the low temperature 1H, 13C, and 29Si NMR spectra of 3a-3c.  相似文献   

9.
Biomimetic-type reactions of the tricyclic pyridone alkaloid, (−)-fusoxypyridone [(−)-4,6′-anhydrooxysporidinone] (1), recently encountered in an endophytic strain of Fusarium oxysporum, and (−)-oxysporidinone (2) afforded (−)-sambutoxin (3) and an analogue of 1, identified as (−)-1′(6′)-dehydro-4,6′-anhydrooxysporidinone (4), thus confirming the structure previously proposed for 1 and suggesting that 1-3 bear the same relative stereochemistry. Oxidation of 4 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) yielded a hitherto unknown sambutoxin analogue, (−)-4,2′-anhydrosambutoxin (5).  相似文献   

10.
The crystalline compounds [LnCl2(L)(thf)2] [Ln = Ce (1), Tb (2), Yb (3)], [NdI2(L)(thf)2] (4), [LnCl(L′)2] [Ln = Tb (5), Yb (6) (a known compound)] and [YbCl(L′′)(μ-Cl)2Li(OEt2)2] (7) have been prepared [L = {N(C6H3Pri2-2,6)C(H)}2CPh, L′ = {N(SiMe3)C(Ph)}2CH, L′′ = {N(SiMe3)C(C6H4Ph-4)}2CH]. The X-ray molecular structures of 2-7 have been established; in each, the monoanionic ligand L, L′ or L′′ is N,N′-chelating and essentially π-delocalised. Each of 1-7 was prepared from the appropriate LnCl3, or for 4 [NdI3(thf)2], and an equivalent portion of the appropriate alkali metal [Li for 7, Na for 2, 3 and 5, or K for 1, 4 and 6] β-diiminate in thf; the isolation of exclusively 5 and 6 (rather than the L′ analogues of 2 or 3) is noteworthy, as is the structure of 7 which has no precedent in Group 3 or 4f metal β-diiminato chemistry.  相似文献   

11.
Seven copper complexes [Cu(L1)I2] (1), [Cu2(L1)2I2]2[Cu2(μ-I)2I2] (2), [Cu(L2)I2] (3), [Cu2(L2)(μ-I)I(PPh3)] (4), [Cu4(L2)2(μ-I)2I2] (5), {[Cu(L2)I]2[Cu2(μ-I)2I2]}n (6) and [Cu2(L2)(μ-I)2]n (7) have been prepared by reactions of ligands: 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine (L1) and 4′-(3-pyridyl)-2,2′:6′,2″-terpyridine (L2) with CuI in hydrothermal conditions, respectively. By alternating the oxidations states of the metal centers, increasing stoichiometric metal/ligand ratio and introducing a second ligand, the compounds, were successfully developed from mononuclear (1 and 3) to multinuclear (2, 4 and 5) and polymers (6 and 7). The synthesis of these compounds may provide an approach for the construction of coordination compounds of 4′-pyridyl terpyridine with different nuclearity.  相似文献   

12.
The preparation of 1,1′-bis(β-hydroxyethyl)ferrocene (1) by oxidation of 1,1′-divinylferrocene is described. Compound 1 has been characterized by 1H and 13C{1H} NMR, and cyclic voltammetry. The electrochemical data are compared to ferrocene and the closely related 2-ferrocenylethanol, 2.  相似文献   

13.
Four halogenated cyclopropane derivatives with a side chain containing a primary (1 and 2) or secondary (3 and 4) alcohol moiety were subject to kinetic resolution catalyzed by lipases. Two of them containing secondary alcohol groups gave excellent results with Candida antarctica lipase B with E-values around 1000. Two enantiopure alcohols and two enantiopure butanoates are described: (1S,1S)-1-(2′,2′-dichloro-3′,3′-dimethylcyclopropyl) ethanol (3), the corresponding (1R,1R)-butanoate (3b) and (1S,1S)-1-(1′-methyl-2′,2′-dibromocyclopropyl) ethanol (4) and the corresponding (1R,1R)-butanoate (4b).  相似文献   

14.
Two new Mn(II) coordination polymers with bis(5-tetrazolyl)methane (H2btm), [Mn(btm)(phen)(H2O)] · H2O (1) and [Mn(btm)(2,2′-bpy)] · 1.5H2O (2), have been synthesized and their structures determined by X-ray diffraction. In complex 1, the btm ligands assume the μ2-1,1′:4 coordination mode and interlink Mn(II) ions into infinite one-dimensional chains. The chains are assembled into a three-dimensional architecture via hydrogen bonds and π-π interactions. For 2, Mn(II) ions are connected by btm ligands in the μ3-1,1′:2:3′ mode to produce two-dimensional (6,3) coordination network. Magnetic investigations revealed that interactions through the btm bridges in both 1 and 2 are antiferromagnetic.  相似文献   

15.
Reaction of [Mn(2,2′-bpy)2(OAc)](ClO4)(H2O) with a series of aromatic carboxylic acids yields new Mn(II)carboxylates [Mn(2,2′-bpy)2(L)](ClO4)}2 (1-3), [Mn(2,2′-bpy)2(L)2] (4-5) and [Mn(2,2′-bpy)2(L)(H2O)](ClO4) (6) (L = 2-aminobenzoate (2-aba) (1), 4-hydroxybenzoate (4-hba) (2), thiophene-2-carboxylate (2-tca) (3), 2-hydroxynapthoate (2-hnapa) (4), 3,5-diisopropylsalicylic acid (dipsa) (5), 2,4,6-triisopropylbenzoate (tipba) (6)). The new compounds have been characterized with the aid of elemental analysis, spectroscopy, and single-crystal X-ray diffraction studies. Compounds 1-3, which have been synthesized from less bulky carboxylic acids, are dimeric in the solid-state. Compounds 4-6, which are derived from more bulkier aromaric carboxylic acids, exist as monomeric complexes. In the case of 6, where very bulky 2,4,6-triisopropyl benzoic acid is used as the starting material, only one carboxylate ligand binds to the metal, resulting in a cationic complex. Interestingly in all the six complexes, the C-H hydrogen atoms of the 2,2′-bpy ligands are involved in extensive hydrogen bonding with the carboxylate oxygen atoms of the adjacent molecules and hence form non-covalent 1-D or 2-D aggregates in the solid state.  相似文献   

16.
Six 2D and 3D supramolecular complexes [Cu(L1)(O2CCH3)2] · H2O (1), [Cu2(L2)22-O2CCH3)2](BF4)2 (2), [Cu2(L1)2(BDC)(NO3)2] · 0.5H2O (3) [Cu2(L2)2(BDC)(NO3)2] (4), [Cu2(L3)2(BDC)(NO3)2] · 0.5H2O (5) and [Cu2(L2)2(BDC)(H2O)2](BDC) · 8H2O (6) (L1 = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, L2 = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine, L3 = 4′-phenyl-2,2′:6′,2″-terpyridine, BDC = 1,4-benzenedicarboxylate), have been prepared and structurally characterized by X-ray diffraction crystallography. In complexes 1, 3, and 4, 1D channels are formed through C-H?O and C-H?N hydrogen-bonding interactions, and further linked into 3D structure via C-H?O and O-H?O interactions. Complex 2 is a 2D layer constructed from intermolecular C-H?F and π-π stacking interactions. In the structure of 6, the BDC2− ions and solvent water molecules form a novel 2D layer containing left- and right-handed helical chains via hydrogen-bonds, and an unusual discrete water octamer is formed within the layer. In 2, 4, 6 and [Ag2(L2)2](PF6)2 (7) the bonding types of pendent pyridines of L2 depending on the twist about central pyridines are involved in intramolecular (2 and 4), intermolecular (6) or coordination bonds (7) in-twist-order of 5.8°, 3.7°, 28.2° and 38.0°, respectively. Differently, the pendent pyridines of L1 in 1 and 3 form intermolecular hydrogen bonds despite of distinct corresponding twist angles of 25.1° (1) and 42.6°(3). Meanwhile, π-π stacking interactions are present in 1-6 and responsible for the stabilization of these complexes.  相似文献   

17.
In our efforts to investigate the factors that affect the formation of coordination architectures, such as secondary coordination donors and pendant skeletons of the carboxylic acid ligands, as well as H-bonding and other weak interactions, two kinds of ligands: (a) 3-(2-pyridyl)pyrazole (L1) with a non-coordinated N atom as a H-bonding donor, a 2,2′-bipyridyl-like chelating ligand, and (b) four carboxylic ligands with different secondary coordination donors and/or pendant skeletons, 1,4-benzenedicarboxylic acid (H2L2), 4-sulfobenzoic acid (H2L3), quinoline-4-carboxylic acid (HL4) and fumaric acid (H2L5), have been selected to react with Mn(II) salts, and five new complexes, [Mn(L1)2(SO4)]2 (1), [Mn(L1)2(L2)] (2), [Mn(L1)(HL3)2] (3), Mn(L1)2(L4)2 (4), and [Mn(L1)2(L5)] (5), have been obtained and structurally characterized. The structural differences of 1-5 can be attributed to the introduction of the different carboxylic acid ligands (H2L2, H2L3, HL4, and H2L5) with different secondary coordination donors and pendant skeletons, respectively. This result also reveals that the typical H-bonding (i.e. N-H?O and O-H?O) and some other intra- or inter-molecular weak interactions, such as C-H?O weak H-bonding and π?π interactions, often play important roles in the formation of supramolecular aggregates, especially in the aspect of linking the multi-nuclear discrete subunits or low-dimensional entities into high-dimensional supramolecular networks.  相似文献   

18.
Using the principle of crystal engineering, six metal-organic coordination polymers, [Cd(bdc)(3-pytpy)]n · 2nH2O (1), [Cd(bdc)0.5(3-pytpy)]n · n(ClO4) (2), Cd(ndc)0.5(3-pytpy)]n · n(ClO4) (3), [Zn(ndc)(3-pytpy)]n (4), [Cd(bqdc)(3-pytpy)]n (5), and [Zn(pam)(3-pytpy)]n · 2nH2O (6) (H2bdc = benzene-1,4-dicarboxylic acid, H2ndc = naphthalene-2,6-dicarboxylic acid, H2bqdc = 2,2′-biquinoline-4,4′-dicarboxylic acid, H2pam = pamoic acid), were synthesized and structurally characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray diffraction analyses. Compounds 1-6 crystallize in the presence of organic-acid linkers as well as multi-functional N-donor ligand 4′-(3-pyridyl)-2,2′:6′,2′′-terpyridine (3-pytpy). In complexes 1, 4, 5, and 6, the dicarboxylate as bridging ligand connects metal atoms to form the main body of 1D zigzag chains for 1 and 4, nearly linear chain for 5 and helical chain for 6, while 3-pytpy as tridentate chelating ligand is just like lateral arm grafting on both sides of these chains. In complexes 2 and 3, both the dicarboxylate and 3-pytpy as bridging ligands connect metal atoms into 2D polymeric structure for 2 and 1D chain of alternating loops and rods for 3. The weak interactions such as hydrogen bonding and π···π stacking were investigated on the formation of superamolecular structures and the influence of organic acid on the formation of the final structures was discussed. In addition, the photoluminescent properties of 1-6 were also determined.  相似文献   

19.
2,2-Dichloro-4,4,6,6-bis[spiro(2′,2′′-dioxy-1′,1′′-biphenylyl]cyclotriphosphazene (2) was obtained from the reaction of hexachlorocyclotriphosphazene (1) with biphenyl-2,2′-diol. 2,2-Bis(4-formylphenoxy)-4,4,6,6-bis[spiro(2′,2′′-dioxy-1′,1′′-biphenylyl]cyclotriphosphazene (3) was synthesized from the reaction of 2 with 4-hydroxybenzaldehyde. The novel oxime-cyclophosphazene containing dioxybiphenyl groups (4) was synthesized from the reaction of 3 with hydroxylaminehydrochloride in pyridine. The reactions of this oxime-cyclophosphazene with propanoyl chloride, allyl bromide, acetyl chloride, methyl iodide, benzoyl chloride, 4-methoxybenzoyl chloride, benzenesulfonyl chloride, chloroacetyl chloride, ethyl bromide, benzyl chloride and 2-chlorobenzoyl chloride were studied. Disubstituted compounds were obtained from the reactions of 4 with propanoyl chloride, allyl bromide, acetyl chloride, methyl iodide, benzoyl chloride, 4-methoxybenzoyl chloride, chloroacetyl chloride, ethyl bromide, and 2-chlorobenzoyl chloride, however, the oxime groups on 4 rearranged to nitrile (11) in the reaction of 4 with benzenesulfonyl chloride. A monosubstituted compound was obtained from the reaction of 4 with benzyl chloride. All products were generally obtained in high yields. The structures of the compounds were defined by elemental analysis, IR, 1H, 13C and 31P NMR spectroscopy.  相似文献   

20.
From the methanol extract of Cardamine diphylla rhizome, 5′-O-β-d-glucopyranosyl-dihydroascorbigen (1) and 6-hydroxyindole-3-carboxylic acid 6-O-β-d-glucopyranoside (2) were isolated. The structures of the compounds were elucidated using spectroscopic methods. This is the second report on the presence of a glucosylated indole ascorbigen in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号