首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new complex of zinc with a Schiff base, zinc(N,N′-bis(salicylidene)-3, 6-dioxa-1, 8-diaminooctane monohydrate) (ZnBSO · H2O), was synthesized and characterized by means of elemental analyses, IR spectra and DTA-TG. Its structure was determined by X-ray single crystal analysis. It was demonstrated that the zinc atom is coordinated by the two oxygen atoms in phenolate and two nitrogen atoms in imine of the ligand in a slightly distorted tetrahedral geometry, while the two oxygen atoms from the oxa-alkyl chain are not coordinated to Zn(II) atom. The energy levels of the HOMO, LUMO and the electrochemical band gap were determined by cyclic voltammeter. The electroluminescent devices with the complex as the emitter showed bright blue emission with a peak at 450 nm, which is same as the fluorescence of the complex in both solution and solid states.  相似文献   

2.
This work summarizes the results of our studies on the structural, spectral and redox properties of a mononuclear zinc(II) complex with the new H2L ligand (H2L = N,N′,N,N′-bis[(2-hydroxy-3,5-di-tert-butylbenzyl)(2-pyridylmethyl)]-ethylene diamine). The crystal structure of the complex [ZnII(HL)] · ClO4 (1) was determined by X-ray crystallographic analysis. The structure of this complex consists of a discrete mononuclear cation [ZnII(HL)]+, in a strongly distorted geometry with a slight tendency toward a distorted square pyramidal geometry, as reflected by the structural index parameter τ of 0.44. The zinc(II) cation is coordinated to one oxygen and four nitrogen atoms: the pyridine nitrogen atoms (N22 and N32), tertiary amine nitrogen atoms (N1 and N4) and phenolate oxygen atom (O10). 1H and 13C NMR spectral data show a rigid solution structure for 1 in agreement with X-ray structure. Potentiometric studies of complex 1 were also performed and revealed three titratable protons which are attributed to the protonation/deprotonation of two phenol groups (p[K]a1 = 4.04 and p[K]a3 = 11.34) and dissociation of a metal-bound water molecule (p[K]a2 = 7.8). The phenolate groups in complex 1 are suitably protected by bulky substituents (tert-butyl) in the ortho- and para-positions, which through electrochemical oxidation generate a one-electron oxidized phenoxyl species in solution. This radical species was characterized by UV-Vis, EPR and electrochemical studies. The Zn(II)-phenoxyl radical species is of bioinorganic relevance, since its spectroscopic, redox and reactivity properties can be used to establish the role of phenoxyl radicals in biological and catalytical systems.  相似文献   

3.
We present here the syntheses of two dinuclear iron(III) complexes with the polydentate N,O-donor ligand H2BPClNOL (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2- hydroxy)]propylamine). The reaction between FeIII(ClO4)3 · 9H2O, the title ligand and two equivalents of NaOAc · 3H2O resulted in the complex . When the synthesis was performed with a lesser amount of NaOAc · 3H2O (half equivalent), the complex without bridging acetate, was obtained. The complexes were characterized by X-ray structural analysis, magnetochemistry, Mössbauer and UV-Vis spectroscopies, and electrochemistry. Complex 2 was also characterized in solution through potentiometric titration. Both complexes crystallize in the monoclinic system. Complex 2 has one water molecule coordinated to each iron centre. Their pKa values are 5.00 and 7.03 for the first protonation/deprotonation equilibrium of each coordinated water molecule. The UV-Vis and electrochemical techniques showed that the absence of an acetate bridge in 2 results in a significant difference in the Lewis acidity of both iron centres, when compared with 1. The lack of an acetate bridge in 2 also results in changes in the anti-ferromagnetic coupling as revealed by magnetic measurements. Complex 2 is an interesting structural model for the active site of iron containing PAPs, since it has an Fe(-alkoxo)2Fe core with an FeIII?FeIII distance of 3.122(1) Å, containing phenolate and water molecules coordinated to the iron centres and is soluble in aqueous solutions. Furthermore, the UV-Vis properties of 2 are similar to those of PAPs, since the complex absorbs at 580 nm in the oxidized form (550-570 nm for PAPs) and at 499 nm in the mixed-valence form (505-510 nm for PAPs) as revealed through spectroelectrochemical studies. Finally, complex 2 successfully promoted the hydrolytic cleavage of plasmid DNA under aerobic and anaerobic conditions, producing single and double DNA strand breaks at biological pH values.  相似文献   

4.
Some cobalt carboxylate (both mononuclear as well as binuclear) complexes have been prepared by using hindered hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (TpiPr2) as supporting ligand. The reaction of [TpiPr2Co(NO3)] (2) with sodium benzoate resulted in the formation of acetonitrile coordinated complex [TpiPr2Co(OBz)(CH3CN)] (3) whereas the reaction of 2 with sodium fluorobenzoate gave coordinately unsaturated five coordinate complex of the type [TpiPr2Co(F-OBz)] (4). The oxidation of compound 4 in the presence of 3,5-diisopropylpyrazole resulted in the formation of a unique compound (5) where only one methine carbon of isopropyl group on pyrazole ring of hydrotris(3,5-diisopropyl-1-pyrazolyl)borate oxidized and coordinated with cobalt center. In compound 5, the binding behavior of fluorobenzoate also changes from bidentate to monodentate and the nonbonded oxygen atom formed intramolecular hydrogen bond with the hydrogen atom of the NH fragment of the coordinated . X-ray crystallography and IR studies confirmed the existence of hydrogen bonding in complex 5. The pyrazolato bridged binuclear cobalt(II) complex (6) was prepared by the reaction of hydrated cobalt(II) nitrate, 3,5-diisopropylpyrazole and sodium nitrobenzoate where, each cobalt is four coordinate. The X-ray structure of 6 showed that the NH fragment of terminally coordinated formed intramolecular hydrogen bonding with nonbonded oxygen atom of monodentately coordinated nitrobenzoate.  相似文献   

5.
Two benzoate complexes namely tetrakis(μ2-benzoato-O,O)-bis(μ2-benzoato-O,O)-bis(nicotinamide-N)-tri-zinc(II), [Zn3(benz)6(nia)2] (I) and bis(benzoato-O)-bis(methyl-3-pyridylcarbamate-N)-zinc(II), [Zn(benz)2(mpcm)2] (II) (benz=benzoate anion, nia=nicotinamide, mpcm=methyl-3-pyridylcarbamate) were prepared and characterised by elemental analysis, IR spectroscopy, thermal analysis and X-ray structure determination. The structure of the complex I is centrosymmetric, formed by a linear array of three zinc atoms. The central zinc atom shows octahedral coordination and is bridged to each of the terminal zinc atoms by three benzoate anions. Two of them act as bidentate, one as monodentate ligand. By additional coordination of the nia ligand, the terminal Zn atoms adopt tetrahedral surrounding. The structure of complex II contains two crystallographically independent [Zn(benz)2(mpcm)2] molecules. In each molecule, the zinc atom is tetrahedrally coordinated by two monodentate benzoate and two methyl-3-pyridylcarbamate ligands. Intermolecular hydrogen bonds of the N-H?O type connect molecules in the structures of complexes I and II to form a two-dimensional network. The three different types of carboxylate binding found in the complexes were distinguished also by values of carboxylate stretching vibrations in FT-IR spectra as well as by thermal decomposition of the complexes in nitrogen.  相似文献   

6.
A dinuclear ferric complex with the redox-active ligand (LCl2)2- (H2LCl2 = N,N′-dimethyl-bis(3,5-dichloro-2-hydroxybenzyl)-1,2-diaminoethane), was synthesized and characterized. The two iron(III) ions are six-coordinate in a distorted octahedral environment of the donor set of one (LCl2)2− and one amine and one phenolate donor of a second (LCl2)2−, which bridges the two complex halves. The relatively low-symmetric complex 1 crystallizes in the space group R. The crystal structure contains hexagonal, one-dimensional channels parallel to the c axis with diameters of ∼13 Å. The absorption spectrum of 1 exhibits strong characteristic features of pπ  dπ, pπ  dσ, phenolate-to-metal CTs, and π  π ligand transitions. Electrochemical studies on 1 reveal the redox-activity of the coordinated ligand (LCl2)2− by showing irreversible oxidative electron-transfer waves. The reductive electron transfers at negative potentials seem to originate from metal-centered processes. A detailed comparison to complexes with similar donor sets provides new insights into the electrochemical properties of these kinds of complexes.  相似文献   

7.
A series of binuclear iron compounds has been synthesized using diamide, bis-phenolate ligands in which the carbon-linker between the amide nitrogen atoms has been varied. Two diferrous compounds in the series, along with their two-electron oxidized, di-μ-methoxy-bridged counterparts, have been crystallographically characterized, as have the di-μ-methoxy compounds (H2Hbab = 1,2-bis(2-hydroxybenzamido) benzene, H2Hbach = trans-1,2-bis(2-hydroxybenzamido) cyclohexane, H2Hbame = 1,2-bis(2-hydroxybenzamido) ethane, H2Hbap = 1,3-bis(2-hydroxybenzamido) propane, H2Hbabn = 1,4-bis(2-hydroxybenzamido) butane, H2Hbapen = 1,5-bis(2-hydroxybenzamido) pentane, N-MeIM = N-methylimidazole and OMe = methoxide). are structurally very similar to previously reported diferrous compounds of this family of ligands that have been shown to be active as oxygen atom transfer catalysts. Flexibility in the carbon-linker allows some variability in the orientation of the phenolate arms of the ligands in the diferric di-μ-methoxy compounds, but the Fe2O2 core remains largely unchanged across the series. Two-electron oxidation of the ferrous compounds in methanol shows a substantial ligand rearrangement that is consistent with other spectroscopic, electrochemical and kinetic investigations. The loss of both phenolate bridges upon oxidation is reminiscent of the “carboxylate shift” observed in binuclear non-heme enzymes and could provide insight into the driving force behind this family of compounds’ function as a catalyst.  相似文献   

8.
The synthesis, by fixation of SO2, the unusual crystal structure, and the spectral and redox properties of the new compound [Cu4(TPPNOL)2(μ-SO4)2](ClO4)2 (1) [HTPPNOL (N,N,N′-tris-(2-pyridylmethyl)-1,3-diaminopropan-2-ol)] are reported. In 1, the copper(II) ions are bridged by the alkoxo oxygen atoms of the HTPPNOL ligand and by exogenous sulfate bridges. The structure of 1 consists of a centro-symmetric tetranuclear core or a “Dimer of Dimers” complex, in which a μ-O,O′ sulfate oxygen atom is further coordinated to the copper centre of another similar dinuclear unit through a μ-O,O, sulfate bridge resulting in a tetranuclear arrangement. Thus, the dinuclear units are linked by two μ-O,O sulfate bridges. The simultaneous presence of two distinct coordination modes for the sulfate group in this structure is rare and 1 represents the first coordination compound presenting μ-O,O′ and μ-O,O type structures. The SO2 fixation was monitored by changes in the electronic spectra which indicated the formation of the intermediate hydroxo complex [Cu2(TPPNOL)(OH)2]+, in basic medium, which, we propose, acts as the nucleophile in the SO2 fixation mechanism.  相似文献   

9.
Using a racemic mixture of the tridentate ligand, (((2-pyridyl)ethylamine)methyl)phenolate ion (L) and , NCS, (NC)2N, OAc as coligands, complexes having the formula [Ni(L)(N3)] (1), [Ni(L)(NCS)]2 (2), [Ni2(L)2(OAc)(N(CN)2)]n (3) were prepared and structurally characterized. In 1, Ni(II) has a square planar geometry and phenolate oxygen is involved in dipolar ?Nδ+ interaction with electrophilic central nitrogen atom of coordinated azide ion. Complex 2 is dimeric in nature and nickel(II) is penta-coordinated. Compounds 1 and 2 exist as centrosymmetric dimers made up of a pair of R and S enantiomers of L. In 3, an acetate and phenoxo bridged dinickel complex is present which is further linked to a zig-zag coordination polymer by the dicyanamide ion. In a given chain of 3, both L have same enantiomeric form and either RR or SS dimers are repeated along the chain. The magnetic properties are described.  相似文献   

10.
A new mononuclear Cu(II) complex, [CuL(ClO4)2] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N′-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography.The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions.Reactions of 1 with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N3)]ClO4 (2), [CuL(SCN)]ClO4 (3) or [CuL(NO2)]ClO4 (4), respectively, all of which have been characterized by X-ray analysis.The geometries of the penta-coordinated copper(II) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (τ) 0.47, 0.45 and 0.58, respectively.In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the O atoms of the nitrite occupy one axial site.Complex 1 shows distinct preference for the anion in the order in forming the complexes 2-4 when treated with a mixture. Electrochemical electron transfer study reveals CuIICuI reduction in acetonitrile solution.  相似文献   

11.
A series of novel copper(II) complexes, L2Cu with newly synthesized 3,5--salicylaldimine (or 5--salicylaldimine) ligands derived from 2,4-di-tert-butyl phenol (or 4-tert-butyl phenol) and alkyl (aryl) amines have been prepared and their spectroscopic (IR, UV-Vis, ESI-MS), X-ray, magnetic and redox properties have been investigated. The X-ray crystallography analysis shows that all complexes are monomeric and their copper(II) centers are surrounded by phenolate oxygens and imine nitrogen atoms. Therefore, the coordination sphere around the copper atoms is N2O2 as seen in galactose oxidase active site. In addition, the geometric configurations of all complexes are square planar or slightly distorted square planar. The crystal system for all complexes is monoclinic, except for which is orthorhombic. The temperature dependence of magnetic susceptibility of complexes confirms the mononuclear structure of complexes. Oxidation of the Cu(II) complexes yielded the corresponding Cu(II)-phenoxyl radical species during the cyclic voltammetry experiments.  相似文献   

12.
In quest of complexes having [MN3S2] cores in the monomeric form and trans-thiolate donor atoms, the new pentadentate thiolate amine pytBuN2H2S2-H2 [] has been synthesized.The template condensation reaction of bis(2-mercapto-3,5-di-tert-butylaniline)zinc (II)[Zn(tBu2ma)2] and pyridine-2,6-dicarbaldehyde in methanol at 40 °C leads to the formation of imine zinc complex [Zn(pytBuN2S2)] (7), which is very unstable and decomposes to give thiazole 5. However, if the template condensation is followed by in situ reduction with an excess of NaBH4, the stable saturated amine complex [Zn(pytBuN2H2S2)] (8) is formed. Demetallation of zinc complex 8 under acidic conditions leads to the formation of the desired dithiolate pytBuN2H2S2-H2 ligand (9).  相似文献   

13.
A mesogenic Schiff base, N,N′-di-(4-hexadecyloxysalicylidene)diaminoethane, H2dhdsde (abbreviated as H2L1) that exhibit smectic-C (SmC) mesophase, was synthesized and its structure studied by elemental analyses, mass, NMR & IR spectra and single crystal XRD (triclinic space group with Z = 1) techniques. Bi-dentate bonding of the Schiff base in the mesogenic LaIII complex was implied on the basis of IR & NMR spectral data. As per the spectral studies of the complexes, the Zwitterionic species of the ligand (H2L1) coordinates to LnIII ion through two phenolate oxygens rendering the overall geometry around the metal ion to distorted square antiprism (Ln = La, Pr, Nd, Sm, Eu) and monocapped octahedron (Ln = Gd, Tb, Dy, Ho).  相似文献   

14.
Solid complexes of lanthanide picrates with a new podand-type ligand, 2,2′-[(1,2-phenylene)bis(oxy)]bis(N-benzylacetamide) (L) have been prepared and characterized by elemental analysis, conductivity measurements, IR, electronic and 1H NMR spectroscopies. The crystal and molecular structures of the complex NdL(Pic)3 have been determined by single-crystal X-ray diffraction. The crystal structure shows that the Nd(III) ion is coordinated with four oxygen atoms of the ligand L and six oxygen atoms of three bidentate picrates. Furthermore, the NdL(Pic)3 complex units are linked by the intermolecular hydrogen bonds to form a three-dimensional (3-D) netlike supermolecule. Under excitation, Eu complex exhibited characteristic emissions. The lowest triplet state energy level of the ligand indicates that the triplet state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion.  相似文献   

15.
In this study we synthesized bis (2,2′-bipyridine) nitratocopper(II) nitrate in order to examine its the crystal structure, optical property and application to dye-sensitized solar cells (DSSCs). Single X-ray analysis results revealed that the acquired complex exhibited five-coordination with four nitrogen atoms of bipyridine and the oxygen bond of the ion. The reflectance UV-Vis absorptions showed three absorptions that were assigned to ligand-to-ligand at around 230-350 nm, metal-to-ligand charge transfer at around 350-600 nm, and d-d transfer at around ∼650 nm. Cyclic voltammetry in acetonitrile revealed a reversible Cu(I) → Cu(II) oxidation process at a highest occupied molecular orbital (HOMO) and a lowest unoccupied molecular orbital (LUMO) levels of −4.692 and −4.071 eV, respectively. The photoelectric efficiency in DSSCs was approximately 0.032% with the nanometer-sized TiO2 in the condition of an open-circuit voltage (Voc) of 0.346 V, a short-circuit current density (Jsc) of 0.166 mA/cm2 at an incident light intensity of 100 mW/cm2.  相似文献   

16.
Syntheses, spectroscopic and thermal characterization are reported for the potentially tetradentate bis(O,O′-4-acyl-5-pyrazolone) pro-ligands HQ3QH and HQ4QH (in detail HQ3QH: 1,5-bis(5-hydroxy-1-phenyl-3-methyl-1H-pyrazol-4-yl)pentane-1,5-dione, HQ4QH: 1,6-bis(5-hydroxy-1-phenyl-3-methyl-1H-pyrazol-4-yl)hexane-1,6-dione) and their di-n-butyltin(IV) derivatives and . Single crystal X-ray structural characterizations of the proligand HQ4QH and of the binuclear tin(IV) complex are also reported; both the ligand and complex molecules are centrosymmetric, the latter having two independent molecules in the structure. Sn-C, O(acyl), O(pz) distances (〈 〉) are 2.121(3), 2.119(6) and 2.37(4) Å.  相似文献   

17.
Excited state transitions and energies of a series of [Ru(bpy)3]2+ type complexes incorporating the ligand, 4,4′-bis-phosphonato(methyl)-2,2′-bipyridine (dmpbpy) was investigated, and the influence of this organometallic ligand on the electronic structure of the complexes was examined using Time-Dependent Density Functional Theory (TD-DFT). Experimental data and the theoretical TD-DFT calculations were presented to support the effect of non-equivalent ligand substitution on spectral and molecular orbital (MO) energy properties on this class of tris-chelate surface sensitisers. For the series of complexes studied, it was identified that the lowest lying LUMO states were consistently found to reside on the ligand 2,2′-bipyridine (bpy) for gas phase calculations. As an implication of this, it was suggested that this could impact the effectiveness of these complexes as surface sensitisers in PEC cell applications such as the dye-sensitised solar cell (DSC) due to the lower probability of the excited state electron residing on a ligand anchored to the semiconductor substrate. However, further calculations in a solvation medium showed that the electron withdrawing nature of PO3H2 on dmpbpy saw the lowest lying LUMO states are populated on dmpbpy. This inhomogeneous distribution of electron density across non-equivalent ligands may have implications for further ‘spectral tuning’ of surface sensitisers. Despite the TD-DFT gas phase calculations not being corrected for solvent/media effects, the three longest wavelength bands associated with known charge transfer phenomena were identified. The symmetry allowed MLCT in the visible region was assigned as a  ←  transition, the mid-UV spectrum LC was assigned  ← π in origin. Whilst the near-UV shoulder on the blue side of MLCT showed  ←  and π∗ ←  transitional character and was tentatively described as MC/MLCT. UV-Vis absorption spectra calculated for solvated analogues containing dmpbpy indicated that the low energy transitions associated with the MLCT are subject to bathochromic shift due to solvent polarity by 0.062 eV (500 cm−1) compared with the gas phase calculations, which is more highly correlated to the observed experimental transitions.  相似文献   

18.
The neutral mononuclear zinc complexes with the quinolone antibacterial drug oxolinic acid in the absence or presence of a nitrogen donor heterocyclic ligand 2,2′-bipyridine or 1,10-phenanthroline have been synthesized and characterized. The experimental data suggest that oxolinic acid is on deprotonated mode acting as a bidentate ligand coordinated to the metal ion through the ketone and one carboxylato oxygen atoms. The crystal structures of (chloro)(oxolinato)(2,2′-bipyridine)zinc(II), 2, and bis(oxolinato)(1,10-phenanthroline)zinc(II), 3, have been determined with X-ray crystallography. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies. UV studies of the interaction of the complexes with DNA have shown that they can bind to CT DNA and the DNA-binding constants have been calculated. Competitive studies with ethidium bromide (EB) have shown that complex 3 exhibits the ability to displace the DNA-bound EB indicating that it binds to DNA in strong competition with EB.  相似文献   

19.
A facile synthetic procedure has been used to prepare one five-coordinate and four six-coordinate copper(II) complexes of 4′-chloro-2,2′:6′,2″-terpyridine (tpyCl) ligand with different counterions (, , , , and ) in high yields. They are formulated as [Cu(tpyCl-κ3N,N,N′′)(SO4-κO)(H2O-κO)] · 2H2O (1), trans-[Cu(tpyCl-κ3N,N,N″)(NO3-κO)2(H2O-κO)] (2), [Cu(tpyCl-κ3N,N,N″)2](BF4)2 (3), [Cu(tpyCl-κ3N,N,N″)2](PF6)2 (4) and [Cu(tpyCl-κ3N,N,N″)2](ClO4)2 (5) and versatile interactions in supramolecular level including coordinative bonding, O-H?O, O-H?Cl, C-H?F, and C-H?Cl hydrogen bonding, π-π stacking play essential roles in forming different frameworks of 1-5. It is concluded that the difference of coordination abilities of the counterions used and the experimental conditions codominate the resulting complexes with 1:1 or 1:2 ratio of metal and ligand.  相似文献   

20.
Optical sensing of F, Cl, Br, I, OAc, , , and by cis-dithiocyanatobis(2,2′-bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) (N3) and bis(tetrabutylammonium) cis-dithiocyanatobis(2,2′-bipyridine-4-COOH,4′-COO)ruthenium(II) (N719) have been investigated in dimethyl sulfoxide (DMSO), by means of UV-Vis absorption and emission spectrophotometric titrations. Additions of F, OAc, and in DMSO solution caused obvious UV-Vis spectral changes with appearance of several isosbestic points, and remarkable emission enhancements along with large blue shifts in emission bands. The values of F-induced emission intensity enhancement factor (emission quantum yield enhancement factor), I/I0 (φ/φ0), were found to be 40 (86) and 38 (58) for N3 and N719, respectively. No obvious spectral changes were observed upon addition of Cl, Br, I, and in DMSO solutions. Luminescent F sensing in DMSO/H2O (4:1, v/v) has also been demonstrated to be operative with a luminescence enhancement factor of 12, indicating that N3 is very potential for practical application as fluorescent anion sensor in aqueous solution. An interaction mechanism of anion-induced deprotonation of N3 and N719 was confirmed, and the deprotonation reaction equilibrium constants of N3 and N719 were derived as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号