首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of [κ2(C1,C4)-CRCRCRCR](PPh3)2Ir(Cl) (9, R = CO2Me) with propargyl alcohol derivatives (2-propyn-1-ol, 2-methyl-3-butyn-2-ol, 1-ethynylcyclopentanol, and 1-ethynylcyclooctanol), in the presence of water leads to the formation of iridium(III)-vinyl complexes bearing the general structure [κ2(C1,C4)-CRCRCRCR](PPh3)2Ir(CO)(κ1-vinyl) where vinyl = -CHCH2, -(E)-CHCHMe, -CHC(CH2)4, or -CHC(CH2)7. In these, the CO ligand was derived from the terminal carbon of the starting alkyne and the oxygen atom from water. Under anhydrous conditions, 9 undergoes reaction with 2-propyn-1-ol to give trimethyl 1,3-dihydro-3-oxo-4,5,6-isobenzofurantricarboxylate, the result of a cycloaromatization/transesterification involving the buta-1,3-dien-1,4-diyl ligand in 9 and 2-propyn-1-ol.  相似文献   

2.
The aminoallenylidene(pentacarbonyl)chromium complexes [(CO)5CrCCC(NR1R2)Ph] (1a-c) react with dimethylamine by addition of the amine to the C1C2 bond of the allenylidene ligand to give alkenyl(amino)carbene complexes [(CO)5CrC(NMe2)CHC(NR1R2)Ph] (2a-c) (R1 = Me: R2 = Me (a), Ph (b); R1 = Et: R2 = Ph (c)). In contrast, addition of a large excess (usually 20 equivalents) of ammonia or primary amines, H2NR, to solutions of [(CO)5CrCCC(NMe2)Ph] (1a) affords the aminoallenylidene complexes [(CO)5CrCCC(NHR)Ph] (1d-w) in which the dimethylamino group is replaced by NH2 or NHR, respectively. In addition to simple amines such as methylamine, butylamine, and aniline, amines carrying a functional group (allylamine, propargylamine) and amino acid esters as well as amino terpenes and amino sugars can be used to displace the NMe2 substituent. Usually the Z isomer (with respect to the partial C3-N double bond) is formed exclusively. Products derived from addition of H2NR to the C1C2 bond of 1a are not observed. The amino group in 1d-w is rapidly deprotonated by excess of amine to form iminium alkynyl chromates [1d-w], thus protecting 1d-w from addition of free amine to either C3 or across the C1C2 bond. The iminium alkynyl chromates are readily reprotonated by acids or by chromatography on wet SiO2 to reform 1d-w.  相似文献   

3.
Kinetics of ferric Mycobacterium leprae truncated hemoglobin O (trHbOFe(III)) oxidation by H2O2 and of trHbOFe(IV)O reduction by NO and NO2 are reported. The value of the second-order rate constant for H2O2-mediated oxidation of trHbOFe(III) is 2.4 × 103 M−1 s−1. The value of the second-order rate constant for NO-mediated reduction of trHbOFe(IV)O is 7.8 × 106 M−1 s−1. The value of the first-order rate constant for trHbOFe(III)ONO decay to the resting form trHbOFe(III) is 2.1 × 101 s−1. The value of the second-order rate constant for NO2-mediated reduction of trHbOFe(IV)O is 3.1 × 103 M−1 s−1. As a whole, trHbOFe(IV)O, generated upon reaction with H2O2, catalyzes NO reduction to NO2. In turn, NO and NO2 act as antioxidants of trHbOFe(IV)O, which could be responsible for the oxidative damage of the mycobacterium. Therefore, Mycobacterium leprae trHbO could be involved in both H2O2 and NO scavenging, protecting from nitrosative and oxidative stress, and sustaining mycobacterial respiration.  相似文献   

4.
The tetragonal-pyramidal VO2+ complexes [VO{(RSC-S)N-NX}2] (1-6) were synthesised by the reactions of VO(OCHMe2)3 with the dithiocarbazate ligands RSC(S)-NH-NX, where X = cyclo-pentyl, cyclo-hexyl or 4-Me2N-C6H4-CH, and R = CH3 or CH2C6H5. The compounds were characterised by elemental analysis, IR- and mass spectrometries, and in cases of compounds 1, 3, 4 and 5, by X-ray diffraction. The chiral compound 4 (X = cyclo-hexyl, R = CH2C6H5) crystallises in the C configuration. In compound 5, the VO moiety is disordered (83.3:16.7%) with respect to the plane spanned by the four equatorial ligand functions.  相似文献   

5.
A series of triphenylphosphine coordinated silver α,β-unsaturated carboxylates of type [Ag(O2CR)(PPh3)n: n = 1, R = CH3CHCH (2a), (CH3)2CCH (2b), CH3CH2CHCH (2c), CH3CH2CH2CHCH (2d), PhCHCH (2e), CH2CH (2f); n = 2, CH3CHCH (3a), (CH3)2CCH (3b), CH3CH2CHCH (3c), CH3CH2CH2CHCH (3d)] were prepared by reaction of relative silver carboxylates (1a-1f) with triphenylphosphine in chloroform. These complexes were obtained in high yields and characterized by elemental analysis, 1H NMR, 13C NMR, 31P NMR and IR spectroscopy. Thermal stability of the complexes has been determined by TG analysis. The molecular structure of [Ag((O2CCHC(CH3)2))(PPh3)2] (3b) shows that the senecioato ligand is chelated with silver atom and generate, a distorted tetrahedron.  相似文献   

6.
During infection, Mycobacterium leprae is faced with the host macrophagic environment limiting the growth of the bacilli. However, (pseudo-)enzymatic detoxification systems, including truncated hemoglobin O (Ml-trHbO), could allow this mycobacterium to persist in vivo. Here, kinetics of peroxynitrite (ONOOH/ONOO) detoxification by ferryl Ml-trHbO (Ml-trHbOFe(IV)O), obtained by treatment with H2O2, is reported. Values of the second-order rate constant for peroxynitrite detoxification by Ml-trHbOFe(IV)O (i.e., of Ml-trHbOFe(III) formation; kon), at pH 7.2 and 22.0 °C, are 1.5 × 104 M−1 s−1, and 2.2 × 104 M−1 s−1, in the absence of and presence of physiological levels of CO2 (∼1.2 × 10−3 M), respectively. Values of kon increase on decreasing pH with a pKa value of 6.7, this suggests that ONOOH reacts preferentially with Ml-trHbOFe(IV)O. In turn, peroxynitrite acts as an antioxidant of Ml-trHbOFe(IV)O, which could be responsible for the oxidative damage of the mycobacterium. As a whole, Ml-trHbO can undertake within the same cycle H2O2 and peroxynitrite detoxification.  相似文献   

7.
Transmetallation reactions of ortho-mercurated iminophosphoranes (2-ClHgC6H4)Ph2PNR with [AuCl4] gives new cycloaurated iminophosphorane complexes of gold(III) (2-Cl2AuC6H4)Ph2PNR [R = (R,S)- or (S)-CHMePh, p-C6H4F, tBu], characterised by NMR and IR spectroscopies, ESI mass spectrometry and an X-ray structure determination on the chiral derivative R = (S)-CHMePh. The chloride ligands of these complexes can be readily replaced by the chelating ligands thiosalicylate and catecholate; the resulting derivatives show markedly higher anti-tumour activity versus P388 murine leukaemia cells compared to the parent chloride complexes. Reaction of (2-Cl2AuC6H4)Ph2PNPh with PPh3 results in displacement of a chloride ligand giving the cationic complex [(2-Cl(PPh3)AuC6H4)Ph2PNPh]+, indicating that the PN donor is strongly bonded to the gold centre.  相似文献   

8.
[AuTl(C6F5)2(en)] (en = ethylenediamine) reacts with cyclic ketones as cyclopentanone (Cy5O), cyclohexanone (Cy6O) or cycloheptanone (Cy7O) in 1:1 or 1:2 molar ratio leading to products of stoichiometry [AuTl(C6F5)2{CyxN(CH2)2NH2}] (x = 5 1, 6 2 or 7 3), or [AuTl(C6F5)2{CyxN(CH2)2NCyx}] (x = 5 4, 6 5 or 7 6). Addition of ethylenediamine to the ketimine complexes in chloroform regenerates [AuTl(C6F5)2(en)], the starting material, and the free ketimines, as their NMR and mass spectra evidenced. The ketimine complexes display luminescence in solid state at room temperature and at 77 K at higher wavelengths than the diamine starting product (505 nm). The excited states responsible for this behaviour are assigned to orbitals due to the gold-thallium interactions.  相似文献   

9.
A phylloquinone molecule (2-methyl, 3-phytyl, 1, 4-naphthoquinone) occupies the A1 binding site in photosystem 1 particles from Synechocystis sp. 6803. In menB mutant photosystem 1 particles from the same species, plastoquinone-9 occupies the A1 binding site. By incubation of menB mutant photosystem 1 particles in the presence of phylloquinone, it was shown in another study that phylloquinone will displace plastoquinone-9 in the A1 binding site. We describe the reconstitution of unlabeled (16O) and 18O-labeled phylloquinone back into the A1 binding site in menB photosystem 1 particles. We then produce time-resolved Fourier transform infrared (FTIR) difference spectra for these menB photosystem 1 particles that contain unlabeled and 18O-labeled phylloquinone. By specifically labeling only the phylloquinone oxygen atoms we are able to identify bands in FTIR difference spectra that are due to the carbonyl (CO) modes of neutral and reduced phylloquinone. A positive band at 1494 cm−1 in the FTIR difference spectrum is found to downshift 14 cm−1 and decreases in intensity on 18O labeling. Vibrational mode frequency calculations predict that an antisymmetric vibration of both CO groups of the phylloquinone anion should display exactly this behavior. In addition, phylloquinone that has asymmetrically hydrogen bonded carbonyl groups is also predicted to display this behavior. The positive band at 1494 cm−1 in the FTIR difference spectrum is therefore due to the antisymmetric vibration of both CO groups of one electron reduced phylloquinone. Part of a negative band at 1654 cm−1 in the FTIR difference spectrum downshifts 28 cm−1 on 18O labeling. Again, vibrational mode frequency calculations predict this behavior for a CO mode of neutral phylloquinone. The negative band at 1654 cm−1 in the FTIR difference spectrum is therefore due to a CO mode of neutral phylloquinone. More specifically, calculations on a phylloquinone model molecule with the C4O group hydrogen bonded predict that the 1654 cm−1 band is due to the non hydrogen bonded C1O mode of neutral phylloquinone.  相似文献   

10.
Rhodium(III) and iridium(III) octahedral complexes of general formula [MCl3{R2PCH2C(But)NNC(But)CH2PR2}] (M = Rh, Ir; R = Ph, c-C6H11, Pri, But; not all the combinations) were prepared either from the corresponding diphosphinoazines and RhCl3 · 3H2O or by the oxidation of previously reported bridging complexes [{MCl(1,2-η:5,6-η-CHCHCH2CH2CHCHCH2CH2)}2{μ-R2PCH2C(But)NNC(But)CH2PR2}] with chlorine-containing solvents. Depending on the steric properties of the ligands, complexes with facial or meridional configuration were obtained. Crystal and molecular structures of three facial and two meridional complexes were determined by X-ray diffraction. Hemilability of ligand in the complex fac-[RhCl3{(C6H11)2PCH2C(But)NNC(But)CH2P(C6H11)2}] consisting in reversible decoordination of the phosphine donor group in the six-membered ring was observed as the first step of isomerization between fac and mer isomers.  相似文献   

11.
We present a comparative study using femtosecond pump/probe spectroscopy in the visible and infrared of the early photodynamics of solubilized proteorhodopsin (green absorbing variant) in D2O with deprotonated (pD 9.2) and protonated (pD 6.4) primary proton acceptor Asp-97. The vis-pump/vis-probe experiments show a kinetic isotope effect that is more pronounced for alkaline conditions, thus decreasing the previously reported pH-dependence of the primary reaction of proteorhodopsin in H2O. This points to a pH dependent H-bonding network in the binding pocket of proteorhodopsin, that directly influences the primary photo-induced dynamics. The vis-pump/IR-probe experiments were carried out in two different spectral regions and allowed to monitor the retinal CC (1500 cm−1-1580 cm−1) and CN stretching vibration as well as the amide I mode of the protein (1590 cm−1-1680 cm−1). Like the FTIR spectra of the K intermediate (PRK-PR difference spectra) in this spectral range, the kinetic parameters and also the quantum efficiency of photo-intermediate formation are found to be virtually independent of the pD value.  相似文献   

12.
The addition reactions of zinc(II) chloride to N-substituted pyridine-2-carbaldimines [Py-CHNR, R = Me (1a), Ph (1b), Bz (1c), allyl (1d)] lead to different complexes dependent on the N-bound substituent R. The 1:1 complexes show molecular structures of the type [(Py-CHNR)ZnCl2] for R = methyl (2a), phenyl (2b), and allyl (2d) with a distorted tetrahedral environment for the zinc atom. The zinc complex with the N-methylated pyridine-2-carbaldimine also forms a dimer of the type [(Py-CHNR)ZnCl2]2 (2a)2 with a square pyramidal coordination sphere of zinc. A 3:2 stoichiometry is observed for R = benzyl and an ion pair of the type [Zn(Py-CHNR)3]2+ [ZnCl4]2− (2c) is found in the solid state.  相似文献   

13.
Molecular structures of dimethylbis(trimethylsilylketyl)silane (Me2Si[C(SiMe3)CO]2), dimethylbis(trimethylgermylketyl)silane (Me2Si[C(GeMe3)CO]2), and dimethylbis(trimethylstannylketyl)germane (Me2Ge[C(SnMe3)CO]2) have been studied in the gas phase by electron diffraction accompanied by high level ab initio and DFT calculations. Extensive theoretical conformational analyses of the molecules in the vapour predicted a possibility of existence of two types of conformers with small energy differences. The first type had gauche-gauche arrangements of the ketenyl groups in the central C(CO)XC(CO) fragments directed away from each other. The second type had nearly syn-gauche arrangements of the ketenyl groups. In addition, the energy differences were found to depend on the level of computations used. The experimental analysis, in turn, was unable to distinguish between different conformers due to the large number of similar overlapping distances. The experimental data were fitted by an averaged single-conformer model, which nevertheless allowed reliable determination of bonds and bonded angles in the molecules. Main experimental (rh1) structural parameters for Me2Si[C(SiMe3)CO]2, Me2Si[C(GeMe3)CO]2, and Me2Ge[C(SnMe3)CO]2, i.e. Me2X[C(YMe3)CO]2 (X,Y = Si, Ge, Sn), are (X-C)mean 187.7(1) pm, 194.6(2) pm, 216.1(3) pm; (Y-C)mean, 187.7(1) pm, 188.8(8) pm, 194.6(4) pm; (CC)mean, 135.3(5) pm, 131.6(5) pm, 131.5(13) pm; (CO)mean, 117.0(7) pm, 117.4(7) pm, 119.0(11) pm; (C-H)mean, 110.6(7) pm, 110.0(4) pm, 109.1(13) pm; (X(Y)-CC)mean, 114.4(2)°, 115.6(1)°, 115.6(2)°; (C-X(Y)-CMe)mean, 108.3(3)°, 108.4(3)°, 108.9(13)°; C(2)-C(1)-Y(4)-C(10), −19(6)°, 5(4)°, −9(10)°; C(7)-C(6)-Y(9)-C(38),−22(7)°, −32(3)°, −9(10)°; C(2)-C(1)-X(5)-C(6), 128(4)°, 142(1)°, 108(9)°; C(7)-C(6)-X(5)-C(1), 92(6)°, 115(2)°, 108(9)°, respectively.  相似文献   

14.
The iridium 1,1,1-tris(diphenylphosphinomethyl)ethane (triphos) complexes [{κ2(C1,C4)-CRCRCRCR}{CH3C(CH2PPh2)3}Ir(NCMe)]BF4 (2-NCMe, R = CO2Me) and [{κ2(C1,C4)-CRCRCRCR}{CH3C(CH2PPh2)3}Ir(CO)]BF4 (2-CO, R = CO2Me) serve as models for proposed iridium-vinylidene intermediates of relevance to the [2 + 2 + 1] cyclotrimerization of alkynes. The solid-state structures of 2-NCMe, 2-CO, and [κ2(C1,C4)-CRCRCRCR]{CH3C(CH2PPh2)3}Ir(Cl) (2-Cl), were determined by X-ray crystallography.  相似文献   

15.
Bis(ferrocenyl)-substituted allenylidene complexes, [(CO)5MCCCFc2] (1a-c, Fc = (C5H4)Fe(C5H5), M = Cr (a), Mo (b), W (c)) were obtained by sequential reaction of Fc2CO with Me3Si-CCH, KF/MeOH, n-BuLi, and [(CO)5M(THF)]. For the synthesis of related mono(ferrocenyl)allenylidene chromium complexes, [(CO)5CrCCC(Fc)R] (R = Ph, NMe2), three different routes were developed: (a) reaction of the deprotonated propargylic alcohol HCCC(Fc)(Ph)OH with [(CO)5Cr(THF)] followed by desoxygenation with Cl2CO, (b) Lewis acid induced alcohol elimination from alkenyl(alkoxy)carbene complexes, [(CO)5CrC(OR)CHC(NMe2)Fc], and (c) replacement of OMe in [(CO)5CrCCC(OMe)NMe2] by Fc. Complex 1a was also formed when the mono(ferrocenyl)allenylidene complex [(CO)5CrCCC(Fc)NMe2] was treated first with Li[Fc] and the resulting adduct then with SiO2. The replacement route (c) was also applied to the synthesis of an allenylidene complex (7a) with a CC spacer in between the ferrocenyl unit and Cγ of the allenylidene ligand, [(CO)5CrCCC(NMe2)-CCFc]. The related complex containing a CHCH spacer (9a) was prepared by condensation of [(CO)5CrCCC(Me)NMe2] with formylferrocene in the presence of NEt3. The bis(ferrocenyl)-substituted allenylidene complexes 1a-c added HNMe2 across the Cα-Cβ bond to give alkenyl(dimethylamino)carbene complexes and reacted with diethylaminopropyne by regioselective insertion of the CC bond into the Cβ-Cγ bond to afford alkenyl(diethylamino)allenylidene complexes, [(CO)5MCCC(NEt2)CMeCFc2]. The structures of 5a, 7a, and 9a were established by X-ray diffraction studies.  相似文献   

16.
Eu(III) and every newly synthesized ligand can form a binuclear Eu(III) complex with a 1:1 metal to ligand stoichiometry and nine-coordinate at Eu(III) center. Every ligand acts as a dibasic tetradentate ligand, binding to Eu(III) through the phenolate oxygen atom, nitrogen atom of quinolinato unit, the CN group (methylene) and O-CN- group (enolized and deprotonated from OC-NH- group) of the aroylhydrazine side chain. One DMF (N,N-dimethylformamide) molecule is binding orthogonally to the ligand-plane from one side to the metal ion, while another DMF and a nitrate anion (bidentate) are binding from the other. Dimerization of the monomeric unit occurs through the phenolate oxygen atoms leading to a central planar four-membered (EuO)2 ring. On the other hand, all the ligands and Eu(III) complexes may be used as potential anticancer drugs, binding to Calf thymus DNA through intercalations at the order of magnitude 105-107 M−1. All the ligands and Eu(III) complexes are strong scavengers of hydroxyl radicals and superoxide radicals, but Eu(III) complex containing active phenolic hydroxyl group shows stronger scavenging effects for hydroxyl radicals than others, and Eu(III) complex containing N-heteroaromatic substituent shows stronger scavenging effects for superoxide radicals than others.  相似文献   

17.
The single crystal X-ray structure of DmpPPDmp (1, Dmp = 2,6-Mes2C6H3), which was previously reported to have a relatively short PP bond distance of 1.985(2) Å at room temperature, has been reexamined at variable temperatures. Crystallographic analyses of 1 at 100 K allow for resolution of disorder of the two phosphorus atoms (which is unresolvable from room temperature diffraction data), and for determination of a more conventional PP bond length of 2.029(1) Å. Single crystals of the closely related diphosphene DxpPPDxp (2, Dxp = 2,6-(2,6-Me2C6H3)2C6H3) show similar disorder in one of two crystallographically independent molecules in the unit cell. A value of 2.0276(4) Å is found for the non-disordered PP bonds at 100 K for 2. A new diphosphene Ar′PPAr′ (3, Ar′ = 2,6-Mes2-4-OMe-C6H3) has been prepared and its structure has also been examined. The PP bond length for 3 was determined to be 2.0326(9) Å and relatively free of the effects of disorder.  相似文献   

18.
Bis(alkoxy)allenylidene complexes, [(CO)5MCCC(OR′)OR], as well as mono(alkoxy)allenylidene complexes, [(CO)5MCCC(OR′)Ph], of chromium and tungsten are accessible from propynones [HCCC(O)Ph] or propynoic acid esters [HCCC(O)OR; R = Et, (−)-menthyl, endo-bornyl] by the following reaction sequence: (a) deprotonation of the alkynes, (b) reaction with [(CO)5M-THF] (M = Cr, W), and (c) alkylation of the resulting alkynyl metallate, [(CO)5MCCC(O)R], with Meerwein salts. Vinylidene complexes, [(CO)5MCC(R′)C(O)OR], are formed as a by-product by Cβ-alkylation of the alkynyl metallate. Dimethylamine displaces one alkoxy substituent of the bis(alkoxy)allenylidene complexes to give dimethylamino(alkoxy)allenylidene complexes, [(CO)5MCCC(OR)NMe2]. The analogous reaction of dimethylamine with a mono(alkoxy)-substituted allenylidene complex affords the aminoallenylidene complex [(CO)5CrCCC(NMe2)Ph]. When the amine is used in large excess, the α,β-unsaturated aminocarbene complex [(CO)5CrC(NMe2)C(H)C(NMe2)Ph] is additionally formed by addition of the amine across the CαCβ-bond of the allenylidene ligand. The reaction of [(CO)5MCCC(OEt)2] with dimethyl ethylenediamine offers access to bis(amino)allenylidene complexes, in which Cγ is part of a five-membered heterocycle. Photolysis of bis(alkoxy)allenylidene complexes in the presence of triphenylphosphine yields tetracarbonyl- and tricarbonyl{bis(phosphine)}allenylidene complexes. Diethylaminopropyne inserts into the CβCγ bond of [(CO)5MCCC(OEt)OMethyl] to give alkenylallenylidene complexes. Subsequent acid-catalyzed intramolecular cyclization affords a pyranylidene complex.  相似文献   

19.
The reaction of the chelating P,N ligand RNC(But)CH(R)PPh2 (R = SiMe3) (1) with CuCl and CuCl2 (probably by way of reduction to Cu(I) by the phosphine ligand) or Cu(NCCH3)4ClO4 yielded the dimeric 1:1 complex [Cu{PPh2CH(R)C(But)NR}Cl]2 (2) or the monomeric 2:1 complex [Cu{PPh2CH(R)C(But)NR}2]ClO4 (3), respectively. The presence of trace amounts of water during the reaction resulted in the successive cleavage of the two trimethylsilyl groups of the ligand and the formation of the monomeric chelate complexes [Cu{PPh2CH(R)C(But)NH}2]ClO4 (4) and [Cu{PPh2CH2C(But)NH}2]ClO4 (5). Oxidation of 5 by atmospheric oxygen led to small quantities of the blue Cu(II) complex [Cu{(O)PPh2CH2C(But)NH}2](ClO4)2 (6). The dimeric gold complexes [Au{PPh2CH2C(But)NH}]2X2 (X = BF4, ClO4) (7) were similarly obtained from the previously described Au{PPh2CH(R)C(But)NR}Cl by replacing the covalently bound chlorine with the weakly coordinating anions in the presence of small quantities of water. The solution and solid state structures (except 5) of all complexes were determined by NMR spectroscopy and X-ray crystallography.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号