首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three types of palladium(II) halide complexes of quinolinylaminophosphonates have been synthesized and studied. Diethyl and dibutyl [α-anilino-(quinolin-2-ylmethyl)]phosphonates (L1, L2) act as N,N-chelate ligands through the quinoline and aniline nitrogens giving complexes cis-[Pd(L1/L2)X2] (X═Cl, Br) (1-4). Their 3-substituted analogues [α-anilino-(quinolin-3-ylmethyl)]phosphonates (L3, L4) form dihalidopalladium complexes trans-[Pd(L3/L4)2X2] (5-8), with trans N-bonded ligand molecules only through the quinoline nitrogen. Dialkyl [α-(quinolin-3-ylamino)-N-benzyl]phosphonates (L5, L6) give tetrahalidodipalladium complexes [Pd2(L5/L6)3X4] (9-12), containing one bridging and two terminal ligand molecules. The bridging molecule is bonded to the both palladium atoms, one through the quinoline and the other through the aminoquinoline nitrogen, whereas terminal ligand molecules are coordinated each only to one palladium via the quinoline nitrogen. Each palladium ion is also bonded to two halide ions in a trans square-planar fashion. The new complexes were identified and characterized by elemental analyses and by IR, UV-visible, 1H, 13C and 31P nuclear magnetic resonance and ESI-mass spectroscopic studies. The crystal structures of complexes 1-4 and 6 were determined by X-ray structure analysis. The antitumor activity of complexes in vitro was investigated on several human tumor cell lines and the highest activity with cell growth inhibitory effects in the low micromolar range was observed for dipalladium complexes 11 and 12 derived from dibutyl ester L6. The antimicrobial properties in vitro of ligands and their complexes were studied using a wide spectrum of bacterial and fungal strains. No specific activity was noted. Only ligands L3 and L4 and tetrahalidodipalladium complexes 9 and 11 show poor activities against some Gram positive bacteria.  相似文献   

2.
We report the synthesis of the Schiff base ligands, 4-[(4-bromo-phenylimino)-methyl]-benzene-1,2,3-triol (A1), 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,2,3-triol (A2), 3-(p-tolylimino-methyl)-benzene-1,2-diol (A3), 3-[(4-bromo-phenylimino)-methyl]-benzene-1,2-diol (A4), and 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,3-diol (A5), and their Cd(II) and Cu(II) metal complexes, stability constants and potentiometric studies. The structure of the ligands and their complexes was investigated using elemental analysis, FT-IR, UV-Vis, 1H and 13C NMR, mass spectra, magnetic susceptibility and conductance measurements. In the complexes, all the ligands behave as bidentate ligands, the oxygen in the ortho position and azomethine nitrogen atoms of the ligands coordinate to the metal ions. The keto-enol tautomeric forms of the Schiff base ligands A1-A5 have been investigated in polar and non-polar organic solvents. Antimicrobial activity of the ligands and metal complexes were tested using the disc diffusion method and the strains Bacillus megaterium and Candida tropicalis.Protonation constants of the triol and diol Schiff bases and stability constants of their Cu2+ and Cd2+ complexes were determined by potentiometric titration method in 50% DMSO-water media at 25.00 ± 0.02 °C under nitrogen atmosphere and ionic strength of 0.1 M sodium perchlorate. It has been observed that all the Schiff base ligands titrated here have two protonation constants. The variation of protonation constant of these compounds was interpreted on the basis of structural effects associated with the substituents. The divalent metal ions of Cu2+ and Cd2+ form stable 1:2 complexes with Schiff bases.The Schiff base complexes of cadmium inhibit the intense chemiluminescence reaction in dimethylsulfoxide (DMSO) solution between luminol and dioxygen in the presence of a strong base. This effect is significantly correlated with the stability constants KCdL of the complexes and the protonation constants KOH of the ligands; it also has a nonsignificant association with antibacterial activity.  相似文献   

3.
The reactions of [Ru(PPh3)3Cl2], N-(benzoyl)-N′-(5-R-salicylidene)hydrazines (H2bhsR, R = H, OCH3, Cl, Br and NO2) and triethylamine (1:1:2 mole ratio) in methanol afford mononuclear ruthenium(III) complexes having the general formula trans-[Ru(bhsR)(PPh3)2Cl]. In the case of R = H, a dinuclear ruthenium(III) complex of formula [Ru2(μ-OCH3)2(bhsH)2(PPh3)2] has been isolated as a minor product. The complexes are characterized by elemental analysis, magnetic, spectroscopic and electrochemical measurements. The crystal structures of the dinuclear complex and two mononuclear complexes have been determined. In the dinuclear complex, each metal centre is in distorted octahedral NO4P coordination sphere constituted by the two bridging methoxide groups, one PPh3 molecule and the meridionally spanning phenolate-O, imine-N and amide-O donor bhsH2−. The terminal PPh3 ligands are trans to each other. In the mononuclear complexes, bhsR2− and the chlorine atom form an NO2Cl square-plane around the metal centre and the P-atoms of the two PPh3 molecules occupy the remaining two axial sites to complete a distorted octahedral NO2ClP2 coordination sphere. All the complexes display ligand-to-metal charge transfer bands in the visible region of the electronic spectra. The cryomagnetic measurements reveal the antiferromagnetic character of the diruthenium(III) complex. The low-spin mononuclear ruthenium(III) complexes as well as the diruthenium(III) complex display rhombic EPR spectra in frozen solutions. All the complexes are redox active in CH2Cl2 solutions. Two successive metal centred oxidations at 0.69 and 1.20 V (versus Ag/AgCl) are observed for the dinuclear complex. The mononuclear complexes display a metal centred reduction in the potential range −0.53 to −0.27 V. The trend in these potential values reflects the polar effect of the substituents on the salicylidene moiety of the tridentate ligand.  相似文献   

4.
The synthesis, structure and spectroscopic properties of novel palladium(II) chloro complexes with a series of (aminoalkyloxymethyl)dimethylphosphine oxides (AOPO) are reported. The complexes with general formula PdCl2(N,N′-AOPO2) were obtained by the reaction of PdCl2(CH3CN)2 with the ligands in dry ethanol. The crystal structure of the trans-bis[2-(dimethylphosphinoylmethoxy-1,1-dimethylethylamine)]palladium(II) dichloride has been determined from single-crystal X-ray diffraction data. The compound crystallizes in monoclinic crystal system with P21/n space group. The square-planar coordination sphere of palladium consists of two N atoms from two aminoalkyldimethylphosphine ligands and two Cl atoms in trans-arrangement. The AOPO ligand has monodentate coordination through the NH2 group. The Pd-N and Pd-Cl distances are 2.0610(14) and 2.3225(4) Å, respectively. The preparation of complexes with a composition PdCl2(AOPO)2 in chloroform solution are also reported.  相似文献   

5.
A series of ortho-metallated Pd and Pt complexes containing dimeric liquid crystals Schiff base as cyclometallated ligands and N-benzoyl thiourea derivatives as co-ligands were prepared and investigated for their liquid crystalline properties. Their structures were assigned based on elemental analysis, IR and 1H NMR spectroscopy while the mesogenic properties were investigated by DSC and polarising optical microscopy. The complexes show either monotropic or enantiotropic transitions with nematic and smectic A phases being displayed, with the mesomorphic behaviour strongly related to the type of N-benzoyl thiourea as well as the metal center used. The structure of a palladium(II) complex has been solved by X-ray diffraction.The platinum(II) complexes show photoluminescence properties both in solution and in solid state at room temperature, with the emission band centered around 600 nm. These are the first examples of metallomesogens based on Schiff base cyclometallated ligands that display luminescence properties.  相似文献   

6.
Yu Sun 《Inorganica chimica acta》2006,359(15):4807-4810
3(5)-Pyrazolyl substituted triphenylphosphines have been investigated as ligands for the palladium catalyzed Heck reaction of aryl halides with styrene. Catalysts formed in situ from those phosphines and PdII(OAc)2 are comparable in activity and selectivity with the corresponding pre-synthesized Pd(II) complexes, while Pd2(dba)3 has turned out to be a less suitable palladium source. Among the ligands investigated, the bidentate P,N-ligand 2-[3(5)-pyrazolylphenyl]diphenylphosphine has shown the highest activities for the coupling of bromobenzene with styrene in the presence of PdII(OAc)2. In the presence of 1 equiv. of nBu4NI as the additive, unreactive 4-chloroacetophenone also undergoes Heck coupling with styrene.  相似文献   

7.
The synthesis and structural characterization of NiII, CuII and ZnII complexes of two chelating 1,2,4-oxadiazole ligands, namely 3,5-bis(2′-pyridyl)-1,2,4-oxadiazole (bipyOXA) and 3-(2′-pyridyl)5-(phenyl)-1,2,4-oxadiazole (pyOXA), is here reported. The formed hexacoordinated metal complexes are [M(bipyOXA)2(H2O)2](ClO4)2 and [M(pyOXA)2(ClO4)2], respectively (M = Ni, Cu, Zn). X-ray crystallography, 1H and 13C NMR spectroscopy and C, N, H elemental analysis data concord in attributing them an octahedral coordination geometry. The two coordinated pyOXA ligands assume a trans coplanar disposition, while the two bipyOXA ligands are not. The latter result is a possible consequence of the formation of H-bonds between the coordinated water molecules and the nitrogen atom of the pyridine in position 5 of the oxadiazole ring. The expected splitting of the d metal orbitals in an octahedral ligand field explains the observed paramagnetism of the d8 and d9 electron configuration of the nickel(II) and copper(II) complexes, respectively, as determined by the broadening of their NMR spectra.  相似文献   

8.
《Inorganica chimica acta》2001,312(1-2):111-116
The first structurally characterized, quadruply bonded complexes containing chiral diamine ligands, [Mo2(O2CCF3)2(S,S-dach)2(CH3CN)2][BF4]2 (1), and [Mo2(O2CCF3)2(R,R-dach)2(CH3CN)2][BF4]2 (2); (dach=1,2-diaminocyclohexane) were prepared by reactions of [Mo2(O2CCF3)2(CH3CN)6][BF4]2 with S,S-dach and R,R-dach, respectively, in CH3CN. Their UV–Vis and circular dichroism (CD) spectra have been recorded and their structures determined by X-ray crystallography. Crystals of complexes 1 and 2 conform to the space groups P2 with two independent half molecules in the asymmetric unit. The two molecules have a similar structure consisting of a Mo2 unit bridged by two cis-trifluoroacetate ligands and chelated by two dach ligands. Two acetonitrile molecules are coordinated to the Mo centers along the MoMo bond. The absorption wavelength at 507 nm for both 1 and 2 can be assigned to δxy→δxy* transitions. The solution CD spectra of these two complexes show two prominent bands at 525 and 385 nm and form mirror images of each other. The solid CD spectra of complexes 1 and 2 show marked red-shift in the absorption energies as compared with those measured in solution. The one-electron static coupling mechanism was invoked to explain the CD spectra for these complexes and the second lowest energy bands were assigned to be δxy→δx2y2 transitions.  相似文献   

9.
Photolysis of the allenylidene pentacarbonyl chromium complexes [(CO)5CrCCC(R1)R2] (R1=NMe2, NPh2; R2=NMe2, OMe, Ph) in THF in the presence of equimolar amounts of XR3 (XR3=various phosphanes, P(OMe)3, AsPh3, SbPh3) affords cis-allenylidene tetracarbonyl XR3 complexes, cis-[(CO)4(XR3)CrCCC(R1)R2]. When in the photolysis of [(CO)5CrCCC(NMe2)Ph], the phosphanes PR3 (R=C6H4F-p, C6H4Cl-p, OMe) are used in excess (three equivalents) two carbonyl ligands are displaced and the mer-tricarbonyl complexes mer-[(CO)3(PR3)2CrCCC(NMe2)Ph] are formed both PR3 ligands being mutually trans. The structure of the new complexes is established by IR, NMR, and UV-Vis spectroscopy, that of cis-[(CO)4(PPh3)CrCCC(NMe2)Ph] additionally by an X-ray structural analysis. As indicated by the spectroscopic data of the compounds, these complexes are best described as hybrids of allenylidene and zwitterionic alkynyl complexes with delocalization of the electron pair at nitrogen bonded to the Cγ atom of the allenylidene ligand towards the metal center. The relative contribution of the allenylidene and zwitterionic alkynyl resonance forms is influenced by XR3. Increasing the donor properties of XR3 favors the allenylidene resonance form.  相似文献   

10.
A new NNS tridentate ligand, S-allyl-3-(2-pyridyl-methylene)dithiocarbazate (HL) has been prepared. Three coordination complexes, Mn(L)2 (1), [Co(L)2]NO3 (2) and Ni(L)2 (3) (L is the deprotonated monoanionic form of HL) have been synthesized and characterized by elemental analysis, molar conductivity, FT-IR, 1H NMR and UV-Vis spectroscopy. 1 and 3 are neutral complexes, while 2 is cationic with nitrate as the counter ion. Single crystal X-ray diffraction analysis shows that bis-chelate complexes have a distorted octahedral geometry in which two ligands in thiolate tautomeric form coordinate to the metal center through N atoms of the pyridine and imino moieties and one S atom. Molecular geometry from X-ray analysis, molecular geometry optimization, atomic charges distribution and bond analysis of the ligand and complexes have been performed using the density functional theory (DFT) with the B3LYP functional.  相似文献   

11.
The potentially tridentate ligand 2,6-bis[(3-methylimidazolium-1-yl)methyl]pyridine dibromide reacts readily with silver(I) oxide in dichloromethane or dimethylsulfoxide to give a dinuclear silver(I)-carbene complex that was isolated as the tetrafluoroborate salt. Single crystal X-ray crystallography shows that each silver(I) ion is bridged by two ligands bonding through the carbene donors. Treatment of the silver(I) complex with suitable palladium(II) precursors gave the complexes PdCl[(CNC)]BF4 and [PdMe(CNC)]BF4 (CNC=2,6-bis[(3-methylimidazolin-2-yliden-1-yl)methyl]pyridine), in which the pyridyl and both carbene moieties are coordinated to a single palladium(II). The palladium(II) complexes have been fully characterised, including X-ray crystallography, and exhibit good activities in the Heck coupling reaction of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

12.
Reaction of the ligands 3-phenyl-5-(2-pyridyl)pyrazole (HL1), 3,5-bis(2-pyridyl)pyrazole (HL2), 3-methyl-5-(2-pyridyl)pyrazole (HL3) and 3-methyl-5-phenylpyrazole (HL4) with [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) or [PdCl2(cod)] gives complexes with stoichiometry [PdCl2(HL)2] (HL = HL1, HL2, HL3), [Pt(L)2] (L = L1, L2, L3) and [MCl2(HL4)2] (M = Pd(II), Pt(II)). The new complexes were characterised by elemental analyses, conductivity measurements, infrared and 1H NMR spectroscopies. The crystal and molecular structure of [PdCl2(HL1)] was resolved by X-ray diffraction, and consists of monomeric cis-[PdCl2(HL1)] molecules. The palladium centre has a typical square planar geometry, with a slight tetrahedral distortion. The tetra-coordinated metal atom is bonded to one pyridine nitrogen, one pyrazolic nitrogen and two chloro ligands in a cis disposition. The ligand HL1 is not completely planar.  相似文献   

13.
Organometallic complexes of Re(I) with ligands having opposite redox properties have been synthesized and structurally characterized. X-ray crystal structures of the complexes show typical fac-ReI(CO)3 coordination to the redox active ligands. Complete electrochemical and spectroelectrochemical studies on the ligands and the metal complexes were performed. The IR-spectroelectrochemical responses were monitored using the fac-Re(CO)3 unit as a probe. The 15-20 cm−1 hypsochromic or bathochromic shift of the νCO bands upon reduction or oxidation is attributed to ligand-centered processes.  相似文献   

14.
α,ω-Bis(diphenylphosphino)alkane and α,ω-bis(diphenylphosphino)(poly)ether ligands can be prepared in very high yields via reaction of the appropriate dihalide with two equivalents of LiPPh2. For the [Rh(COD)(P P)][ClO4] complexes of these ligands, the P P ligands with five or less atoms in the alkane or ether bridge form monomeric complexes via η2-coordination. In general the ligands with eight or more atoms in the bridge give di- or polynuclear species. In addition the long chain diphosphino-polyethers form – to a small extent – monomeric species by η2-coordination.  相似文献   

15.
Three new coordination polymers [M(Pht)(1-MeIm)2]n (where M=Cu (1), Zn (2), Co (3); Pht2−=dianion of o-phthalic acid; 1-MeIm=1-methylimidazole) and two compounds [M(1-MeIm)6](HPht)2 · 2H2O (M=Co (4), Ni (5)) have been synthesized and characterized by X-ray crystallography. The structures of 1-3 (2 is isostructural to 3) consist of [M(1-MeIm)2] building units connected by 1,6-bridging phthalate ions to form infinite chains. In complex 1, each copper(II) center adopts a square coordination mode of N2O2 type by two O atoms from different phthalate ions and two N atoms of 1-MeIm, whereas in 3 two independent metal atoms are tetrahedrally (N2O2) coordinated to a pair of Pht ligands and a pair of 1-MeIm molecules. There are only van der Waals interactions between the chains in 1, while the three-dimensional network in 3 is assembled by C-H?O contacts. In contrast to polymers 1-3 the structures of 4 and 5 (complexes are also isostructural) are made up of the [M(1-MeIm)6]2+ cation, two hydrogen phthalate anions (HPht) and two H2O solvate molecules. The coordination around each metal(II) atom is octahedral with six nitrogen atoms of 1-MeIm. Extended hydrogen bonding networks embracing the solvate water molecules and a phthalate residue as well as the weak C-H?O interactions stabilize the three-dimensional structures. Magnetic studies clearly show that the magnetic ions do not interact with each other. Furthermore, in compound 4 we have another example of a highly anisotropic Co2+ ion with a rhombic g-tensor and large zero-field-splitting. The complexes were also characterized by IR and 1H NMR spectroscopy, thermogravimetric analysis, and all data are discussed in the terms of known structures.  相似文献   

16.
The copper(II) and nickel(II) complexes of three new 1,2-bis(1,4,7-triazacyclononane) ligands containing unsaturated four carbon bridging groups is studied by continuous variation UV-Vis spectroscopic and pH potentiometric equilibrium experiments. The cis-butene-2 (LC) linked ligand may form monomeric MN6-type complexes while the trans-butene-2 (LT) and butyne-2 (LY) ligands are prevented by their stereochemistry from forming monomeric complexes and form oligomeric complexes. It is determined that the stability of the CuLC2+ complex is not appreciably different from the oligomeric complexes of LT and LY. Single-crystal X-ray structure determinations are made on three square pyramidal Cu2L4+ complexes: [Cu2LCCl4] (1), [Cu2LYCl4] (2), and [Cu2LT(NO3)2(H2O)2](NO3)2 (3). The structure of [Ni2(LC)2](ClO4)4 · 2H2O (4) is a binuclear dimer that contains two nickel(II) ions sandwiched between two ligands, indicating that bis([9]aneN3) ligands with four linker atom chains may form either monomeric or oligomeric structures.  相似文献   

17.
One of the equatorially coordinated terminal phosphorus atoms of tris(2-(diphenylphosphino)ethyl)phosphine (pp3) ligand on the five-coordinate trigonal-bipyramidal palladium(II) complex, [Pd(4-Cltp)(pp3)](BF4) (4-Cltp = 4-chlorothiophenolate), was selectively oxidized by photolysis to form the four-coordinate square-planar complex. Further selective oxidation of another coordinated terminal phosphorus atom proceeded quantitatively by the substitution reaction with 4-chlorothiophenolate. The solid state structures of these stepwise-oxidized square-planar complexes were determined by X-ray crystal structure analyses, and the structures of the starting trigonal-bipyramidal and the oxidized complexes in solution have been characterized by 31P NMR spectroscopy.  相似文献   

18.
The reaction between an equimolecular mixture of isocyanide CNR (CNR = di-methylphenyl isocyanide (DIC), tert-butyl isocyanide (TIC), triphenyl phosphane (PPh3) and a dechlorinated solution of the palladium allyl dimers [Pd(η3-allyl)Cl]2 (allyl = 2-Meallyl, 1,1-Me2allyl) in stoichiometric ratio yields the mixed derivative [Pd(η3-allyl)(CNR)(PPh3)] only. Apparently, the mixed derivative represents the most stable species among all the possible ones that might be formed under those experimental conditions. Theoretical calculations are in agreement with the experimental observation and the energy stabilization of the mixed species with respect to the homoleptic derivatives is traced back to an overall push-pull effect exerted by the isocyanide and the phosphane acting synergically. Similar behavior is observed in the case of the synthesis of the palladacyclopentadienyl complexes [Pd(C4(COOMe)4)(CNR)(PPh3)] and of the palladium(0) olefin complexes whose synthesis invariably yields the mixed [Pd(η2-olefin)(CNR)(PPh3)] derivatives. The paper includes studies on the reactivity toward allylamination in the case of the palladium(II) allyl complexes. A diffractometric investigation on the solid state structures of four different palladium isocyanide-phosphane complexes is also included.  相似文献   

19.
The synthesis of diethyl (pyridin-2-, -3-, -4-ylmethyl)phosphate (2-pmOpe, 3-pmOpe, 4-pmOpe) ligands and their palladium (II) complexes of general formula trans-[PdCl2L2] (L = 2-pmOpe, 3-pmOpe,4-pmOpe) has been described. Pyridine phosphate derivatives were synthesized via the condensation of phosphorochloridic acid diethyl ester with an appropriate pyridinylmethanol in the presence of triethylamine. The compounds have been identified and characterized by IR, far-IR, 1H NMR, 31P NMR, 31P CP-MAS NMR and elemental analyses. The crystal and molecular structures of palladium (II) complexes, i.e., [PdCl2(2-pmOpe)2] and [PdCl2(4-pmOpe)2] determined by the X-ray diffraction method, are presented. In both structures, Pd(II) ions are four-coordinated by two chlorine atoms and two pyridine nitrogen atoms. The geometry of complexes is square-planar and adopt a trans configuration, which is consistent with preparation method.  相似文献   

20.
《Inorganica chimica acta》1986,114(2):111-117
Some uranyl(VI) complexes with new acyclic and cyclic Schiff base compartmental ligands have been prepared and characterized. The ligands have been obtained by reaction of 4-chloro-2,6-diformylphenol and polyamines of the type NH2(CH2)2X (CH2)2NH2 (X= NH, S). The structure of the uranyl(VI) complex with the ligand 1,7,15,21-tetra- aza-4,18-dithia-11,25-dichloro 8,22-bis-metadiphenyl cyclophane-gb-7,14,21,28 has been determined by X-ray crystallography. The compound crystallizes in the orthorhombic space group Pbca with eight formula units in a cell of dimensions a = 26.654(3), b = 22.871(3), c = 8.875(5) Å. The structure was solved by standard methods and refined by full- matrix least squares to the conventional R index of 4.6% for 2678 independent observed reflexions. Five donor atoms (including sulphur) of the ligand are equatorially bonded to the uranyl group to form discrete monomeric molecules with the seven-coordinated metal in the usual distorted pentagonal bipyramidal coordination geometry. Selected bond distances are: UO (equatorial), 2.22(1) and 2.25(1) Å; UN, 2.60(1) and 2.59(1) Å; US, 3.018(4) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号