首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we report the syntheses and crystal structures of two intercluster salt compounds, [Al13O4(OH)24(H2O)12][H2W12O40](OH) · 20H2O (1) and [Al13O4(OH)24(H2O)12][H2W12O40](OH) · 24H2O (2). The crystal structures of these compounds show that they are polymorphs to each other with different modes of packing of the and ions. The structures of 1 and 2 can be described as alternating arrangements of ionic clusters that optimize electrostatic interactions and hydrogen bonds between them. The structure of 1 is analogous to the PtS structure and that of 2 is similar to the β-BeO structure with the clusters forming tetrahedral or square planar coordination geometries to each other.  相似文献   

2.
One-pot reaction between MnCl2·4H2O, K2tcpd (tcpd2− = [C10N6]2− = (C[C(CN)2]3)2− = 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide anion) and 2,2′-bipyrimidine (bpym = C8H6N4) in aqueous solution yields the new compound [Mn2(bpym)3(tcpd)2(H2O)2] (1). The molecular structure of 1 consists of a centrosymmetrical binuclear complex which includes unprecedented unidentate tcpd ligands with two bidentate and a bis-chelate bpym units. Examination of the intermolecular distances reveals that the dinuclear units are held together by hydrogen bonds involving coordinated water molecules and two nitrile groups of the tcpd ligand, giving rise to a 2D structure overall. Variable-temperature magnetic susceptibility data show the occurrence of slight antiferromagnetic coupling (J = −0.58 cm−1) between the Mn(II) ions through bridging bpym (the exchange Hamiltonian being defined as ).  相似文献   

3.
The reaction of with Co(dmgBF2)2(H2O)2 in 1.0 M HClO4/LiClO4 was found to be first-order in both reactants and the [H+] dependence of the second-order rate constant is given by k2obs = b/[H+], b at 25 °C is 9.23 ± 0.14 × 102 s−1. The [H+] dependence at lower temperatures shows some saturation effect that allowed an estimate of the hydrolysis constant for as Ka = 9.5 × 10−3 M at 10 and 15 °C. Marcus theory and the known self-exchange rate constant for Co(OH2)5OH2+/+ were used to estimate an electron self-exchange rate constant of k22 = 1.7 × 10−4 M−1 s−1 for .  相似文献   

4.
Hydrothermal chemistry was used to prepare the bimetallic organic-inorganic hybrid oxide [Cu(I)Cu(II)2(trz)2Mo4O13(OH)] · 6H2O (1 · 6H2O). The structure consists of chains linked through into a three-dimensional framework. The structures of the simple metal-triazole phases [MoO3(Htrz)0.5] (2) and [Cu(trz)] (3) are also reported. Compound 2 is two-dimensional, constructed from corner-sharing {MoO5N} octahedra. Compound 3 consists of {Cu(trz)}n chains linked through weak Cu?Cu contacts into a virtual layer.  相似文献   

5.
Reaction of 4-amino-6-methyl-1,2,4-triazin-thione-5-one (AMTTO, 1) with 2-thiophenecarboxaldehyde and 2-furaldehyde led to the corresponding iminic compounds 6-methyl-4-[thiophene-2-yl-methylene-amino]-3-thioxo-[1,2,4]-triazin-3,4-dihydro(2H)-5-one (TAMTTO, 2) and 4-[furan-2-yl-methylene-amino]-6-methyl-3-thioxo-[1,2,4]-triazin-3,4-dihydro(2H)-5-one (FAMTTO, 3). Treatment of 2 with AgNO3 gave the complex [Ag2(TAMMTO)4](NO3)2 · 4MeOH (4) and of 2 and 3 with [Ag(PPh3)2]NO3 gave the complexes [Ag(TAMTTO)(PPh3)2]NO3 · 1.5THF (5) and [Ag(FAMTTO)(PPh3)2]NO3 (6), respectively. All the compounds have been characterized by elemental analyses, IR spectroscopy and mass spectrometry. Compound 2 and all the complexes have been characterized by X-ray diffraction studies, respectively. In addition, 5 and 6 have been characterized by 31P NMR spectroscopy. Crystal data for 2 at −80 °C: monoclinic, space group C2/c, a=2319.6(2), b=609.8(1), c=1673.6(2) pm, β=106.14(1)°, Z=8, R1=0.0523; for 4 at −80 °C: triclinic, space group , a=877.6(1), b=1085.2(1), c=1557.7(2) pm, α=77.14(1)°, β=80.87(1)°, γ=78.18(1)°, Z=1, R1=0.0407; for 5 at 20 °C: triclinic, space group , a=1151.1(2), b=1225.1(2), c=1887.4(3) pm, α=78.04(1)°, β=86.20(1)°, γ=76.03(1)°, Z=2, R1=0.0662; for 6 at −80 °C: triclinic, space group , a=1189.7(2), b=1387.8(2), c=1410.9(2) pm, α=94.74(2)°, β=95.12(2)°, γ=112.41(2)°, Z=2, R1=0.0511.  相似文献   

6.
Two new tetrahedral tungsten cyanide cluster compounds, [Cu(dien)]3[W4Te4(CN)12] · 9H2O (1) (dien=diethylenetriamine) and [Ni(en)(NH3)]3[W4Se4(CN)12] · 7.5H2O (2) (en=ethylenediamine), were synthesized by treating aqueous solutions of the saltlike cluster compound K6[W4Te4(CN)12] · 5H2O/K6[W4Se4(CN)12] · 6H2O with copper(II)/nickel(II) chloride in aqueous ammonia containing dien/en. The cyano-bridged layered coordination polymeric compounds were characterized by single-crystal X-ray diffraction analysis: monoclinic, space group P21 for 1; trigonal, space group for 2. Structures of 1 and 2 consist of infinite neutral layers of cluster components {W4Te4(CN)12}/{W4Se4(CN)12} connected, one another by {Cu(dien)} or {Ni(en)(NH3)} fragments, respectively.  相似文献   

7.
The complex [Mn(mesalim)2Cl] (1), (Hmesalim = methyl salicylimidate) has been synthesized and fully characterized. The manganese(III) complex is formed by the reaction of the ligand Hmesalim with manganese(II) chloride. Complex 1 is mononuclear and crystallizes in the space group . Electrochemical studies were performed for complex 1, as well as for the related complexes [Mn(mesalim)2(OAc)(MeOH] · MeOH (2) and [Mn2(etsalim)4(Hetsalim)2](ClO4)2 (3), (Hetsalim = ethyl salicylimidate). The complexes display intricate oxidation-reduction behaviour, and coulometric analyses in combination with electrochemical analyses have been used to understand the electron transfer mechanisms occurring at the electrodes.  相似文献   

8.
The dimethylaminopyridine (DMAP) promoted reaction between [Os(bpy)2(CO)(OTf)]OTf (where ) and methylene chloride is reported. C-Cl bond breaking of a solvent molecule leads to the formation of the [Os(bpy)2(CO)(Cl)]OTf complex. The reactivity and redox properties of [Os(bpy)2(CO)(OTf)]OTf were investigated by means of room- and low-temperature electrochemical experiments. In CH2Cl2, at low temperature, the complex undergoes two 1e electrochemical and chemical reversible reductions (ErEr mechanism), but at room temperature a more complex electrochemical mechanism is observed, leading to the electro-synthesis of [Os(bpy)2(CO)(Cl)]OTf via electrochemical reversible and chemical irreversible reduction processes (ErCi mechanism). The DMAP nucleophilicity was used to produce the new [Os(bpy)2(CO)(Br)]OTf and [Os(bpy)2(CO)(I)]OTf complexes which have been fully characterized.  相似文献   

9.
Structural changes between [OsIIL3]2+ and [OsIIIL3]3+ (L: 2,2′-bipyridine; 1,10-phenanthroline) and molecular and electronic structures of the OsIII complexes [OsIII(bpy)3]3+ and [OsIII(phen)3]3+ are discussed in this paper. Mid-infrared spectra in the ν(bpy) and ν(phen) ring stretching region for [OsII(bpy)3](PF6)2, [OsIII(bpy)3](PF6)3, [OsII(phen)3](PF6)2, and [OsIII(phen)3](PF6)3 are compared, as are X-ray crystal structures. Absorption spectra in the UV region for [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 are dominated by very intense absorptions (ε = 40 000-50 000 M−1 cm−1) due to bpy and phen intra-ligand π → π transitions. In the visible region, relatively narrow bands with vibronic progressions of ∼1500 cm−1 appear, and have been assigned to bpy or phen-based, spin-orbit coupling enhanced, 1π → 3π electronic transitions. Also present in the visible region are ligand-to-metal charge transfer bands (LMCT) arising from π(bpy) → t2g(OsIII) or π(phen) → t2g(OsIII) transitions. In the near infrared, two broad absorption features appear for oxidized forms [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 arising from dπ-dπ interconfigurational bands characteristic of dπ5OsIII. They are observed at 4580 and 5090 cm−1 for [OsIII(bpy)3](PF6)3 and at 4400 and 4990 cm−1 for [OsIII(phen)3](PF6)3. The bpy and phen infrared vibrational bands shift to higher energy upon oxidation of Os(II) to Os(III). In the cation structure in [OsIII(bpy)3](PF6)3, the OsIII atom resides at a distorted octahedral site, as judged by ∠N-Os-N, which varies from 78.78(22)° to 96.61(22)°. Os-N bond lengths are also in general longer for [OsIII(bpy)3](PF6)3 compared to [OsII(bpy)3](PF6)2 (0.010 Å), and for [OsIII(phen)3](PF6)3 compared to [OsII(phen)3](PF6)2 (0.014 Å). Structural changes in the ligands between oxidation states are discussed as originating from a combination of dπ(OsII) → π (bpy or phen) backbonding and charge redistribution on the ligands as calculated by natural population analysis.  相似文献   

10.
The ligand exchange reaction of the anionic binuclear rhenium complexes (R = H (1) or Me (2)) has been studied with the carboxylic acids; benzoic acid (3, 4, and 5), fumaric acid (6), and terephthalic acid (7). The exchange with benzoic acid can be controlled by stoichiometry to one, two, or three substitutions. The doubly (4) and triply (5) substituted complexes represent new structural motifs for the triply bridged Re2(CO)6 unit. The dicarboxylic acids fumaric and terephthalic bridge two dirhenium centers. Crystal structure determinations have been carried out for the new complexes synthesized.  相似文献   

11.
The kinetics of the reduction of by Co(dmgBF2)2(H2O)2 in 0.041 M HNO3/NaNO3 was found to be first-order in both the oxidizing and reducing agents and the second-order rate constant is given by kobs = k1 + k2K[Cl], with k1=1.59 × 106 M−1 s−1and k2K = 1.83 × 108 M−2 s−1, at 25 °C. The term that is first-order in [Cl] is attributed to the formation of an ion-pair between and Cl. For k1, the activation parameters ΔH* and ΔS* are 2.22 ± 0.02 kcal mol−1 and −22.7 ± 0.8 cal mol−1 K−1, respectively. The self-exchange rate constant of k22 ≈ 8.7 × 10−3 M−1 s−1 for was estimated using Marcus theory and the known self-exchange rate constant for .  相似文献   

12.
The reaction of the bisguanidine copper(I) compounds [Cu(btmgp)I] and [Cu2(btmgp)2][PF6]2 with molecular oxygen afforded at low temperatures complexes containing the bis-μ-oxo dicopper(III) core, which is capable to hydroxylate one of the N-CH3-groups of the {bis(tetramethyl)guanidino}propane ligands. The formation of the novel ligand {bis(trimethylmethoxy)guanidino}propane (btmmO) is reported as it represents the first hydroxylation of a N-methyl group. The products of this reaction are novel alkoxo-bridged binuclear copper complexes, namely [Cu2(btmmO)2I]+ containing an iodide ion in a novel bridging situation, as well as [Cu2(btmmO)2]2+ which have been identified in their complex salts and [Cu2(btmmO)2][PF6]2 · 2MeCN, respectively. Concomitantly, the hydroxo-bridged binuclear copper compounds [Cu2(btmgp)2(μ-OH)2]I2 and [Cu2(btmgp)2(μ-OH)2][PF6]2 are formed as couple products. The formation of the bis-μ-oxodicopper(III) complexes was monitored by UV/Vis-spectroscopy, and the reaction products were characterised by X-ray diffraction, vibrational spectroscopy and elemental analysis.  相似文献   

13.
A trinuclear copper(II) complex, [Cu3(2,5-pydc)2(Me5dien)2(BF4)2(H2O)2] · H2O 1, has been constructed from 2,5-pyridine-dicarboxylato bridges (2,5-pydc2−) and N,N,N′,N″,N″-pentamethyl-diethylenetriamine (Me5dien) acting as a blocking ligand. The copper ions, within the centrosymmetric trinuclear cations, are connected by two 2,5-pydc2− bridges, with an intramolecular Cu···Cu separation of 8.432 Å. The central copper ion exhibits an elongated octahedral geometry, with semicoordinated ions, while the terminal ones are pentacoordinated (distorted square-pyramidal geometry). The cryomagnetic investigation of 1 reveals an antiferromagnetic coupling of the copper(II) ions (J = −5.9 cm−1, H = −JSCu1SCu2 − JSCu2SCu1a).  相似文献   

14.
A novel three-dimensional organically templated zincophosphite, [C6N2H18] · [Zn3(HPO3)4], was synthesized under milder hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction, differential thermal-thermogravimetric analysis, powder X-ray diffraction, 31P MAS NMR spectrum, and IR spectroscopy. It crystallizes in the monoclinic system, space group C2/c with cell parameters: a = 8.7820(4) Å, b = 14.9417(7) Å, c = 15.4943(5) Å, β = 92.940(2)°, and Z = 4. The structure consists of a network of strictly alternating ZnO4 tetrahedra and pseudo-pyramid, forming 4-membered ring chains. The structure has a 4.8.16-net and 8- and 16-membered ring channels where completely protonated N,N,N′,N′-tetramethylenediamine cations are encapsulated. The structure is stabilized by template-to-framework hydrogen bonding. In phosphites system, this compound possesses extra-large-pores.  相似文献   

15.
Two new rhenium(IV) mononuclear compounds of formula NBu4[ReBr4(OCN)(DMF)] (1) and (NBu4)2[ReBr(OCN)2(NCO)3] (2) (NBu4 = tetrabutylammonium cation, OCN = O-bonded cyanate anion, NCO = N-bonded cyanate anion and DMF = N,N-dimethylformamide) have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. 1 crystallizes in the monoclinic system with the space group P21/n, whereas 2 crystallizes in the triclinic one with as space group. In both complexes the rhenium atom is six-coordinated, in 1 by four Br atoms in the equatorial plane, and two trans-oxygen atoms, one of a DMF molecule and another one from a cyanato group, while in 2 by one bromide anion and five cyanate ligands, two of which are O-bonded and three N-bonded, forming a somewhat distorted octahedral surrounding. Magnetic susceptibility measurements on polycrystalline samples of 1 and 2 in the temperature range 1.9-300 K are interpreted in terms of magnetically isolated spin quartets with large values of the zero-field splitting (|2D| is ca. 41.6 and 39.2 cm−1 for 1 and 2, respectively).  相似文献   

16.
The electrochemical reduction in aprotic media of -[ReI(CO)3L]+ pendants in poly-4-vinylpyridine polymers is compared to that of [ReI(CO)3L]+ complexes (L = 5-nitro-1,10-phenanthroline and 3,4,7,8-tetramethyl-1,10-phenanthroline). The UV-Vis absorption spectra of the reduced radical anions of 5-nitro-1,10-phenanthroline (NO2-phen) and 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) were obtained by spectro-electrochemistry of [ReI(CO)3(NO2-phen)(CH3CN)]+ and [ReI(CO)3(tmphen)(CH3CN)]+, respectively. Similar spectra were obtained for the radical anions -phen and tmphen after pulse radiolysis experiments with -[ReI(CO)3L]+-containing polymers. The analysis of the time-resolved difference spectra was performed using “multivariate curve resolution” (MCR) techniques. Unlike , CH2OH radicals were unable to reduce tmphen ligands. The reaction of and/or CH2OH with -[ReI(CO)3(NO2-phen)]+-containing polymers generates -[ReI(CO)3(-phen)] pendants which after disproportionation give rise to products with λmax = 380 nm. The kinetic behavior of -[ReI(CO)3(-phen)] pendants under different experimental conditions is discussed.  相似文献   

17.
The compound [ArZn(OH)]4 (Ar = 2,4,6-(CF3)3C6H2), formed by aggregation of the hydrolysis product of ArZnCl, has a cubane-like structure at 120 K; this is the first structurally characterised example of such a zinc(II) derivative with a simple aromatic group on Zn, and with the bridges formed by -OH rather than -OR groups. It crystallises as a hemisolvate in the triclinic system , with a single molecule in the asymmetric unit, together with one CHCl3 (or CDCl3) molecule per two molecules of the tetramer.  相似文献   

18.
Lewis acid catalysts [Eu(NTf2)3] and [Yb(NTf2)3] can be easily crystallized from a p-xylene solution in the presence of carboxylic acids and a small amount of water to give a trihydrate and a pentahydrate, respectively. In the crystallization of [Eu(NTf2)3(H2O)3], linear molecules such as n-alkanes and n-alkanoic acids act as templates to form crystals belonging to the trigonal space group with a hexagonal cylindrical structure, which is constructed by 3D hydrogen bonding network. On the other hand, [Eu(NTf2)3(H2O)3] crystallized in the cubic space group P213 in the presence of a bulkier carboxylic acid, cyclohexanecarboxylic acid. In both [Eu(NTf2)3(H2O)3] crystals, ligands act as bidentate ligands coordinating to the Eu atom through two oxygen atoms. [Yb(NTf2)3] crystallized as a pentahydrate in the monoclinic space group P21/n, in which ligands coordinated to the Yb atom with only one oxygen atom.  相似文献   

19.
A seven-coordinate FeIII complex, [Fe(oda)(H2O)2(NO3)], was obtained after dissolving Fe(NO3)3 · 9H2O in an aqueous solution of oxydiacetic acid (H2oda) at room temperature. In the solid state, the FeIII center adopts a pentagonal bipyramid geometry with an {FeO7} core formed by a tridentate oda2− and a bidentate in the equatorial plane, and two axial water molecules. Magnetic measurements and EPR spectra revealed the presence of S = 5/2 FeIII centers with rhombic zero field splitting parameters (D = 0.81 cm−1, E/D = 0.33 ). Weak antiferromagnetic interactions with J ≈ −0.06 cm−1 operating between neighboring Fe ions connected through Fe-O-C-O?H-O-Fe paths are estimated using the molecular field approximation.  相似文献   

20.
The organometallic Lewis acid, [CpFe(CO)2]+ (Cp = η5-C5H5) reacts with excess dry diethyl ether at low temperatures to form the labile complex [CpFe(CO)2(Et2O)]+[BF4] (1) which is stable at low temperatures and has been fully characterized. Complex 1 in turn reacts with 1-aminoalkanes and α,ω-diaminoalkanes to form new complexes of the type [CpFe(CO)2NH2(CH2)nCH3]BF4 (n = 2-6) (2) and [{CpFe(CO)2}2μ-(NH2(CH2)nNH2)](BF4)2 (n = 2-4) (3), respectively. These complexes have been fully characterized and the mass spectral patterns of complexes 2 are reported. The structures of compounds 2a (n = 2) and 2b (n = 3) have been confirmed by single crystal X-ray crystallography. The single crystal X-ray diffraction data show that complex 2a, [CpFe(CO)2NH2(CH2)2CH3]BF4, crystallizes in a triclinic space group while 2b, [CpFe(CO)2NH2(CH2)3CH3]BF4, crystallizes in an orthorhombic Pca21 space group with two crystallographically independent molecular cations in the asymmetric unit. Furthermore, the reaction of 1 with 1-alkenes gives the η2-alkene complexes in high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号