首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Three mono oxovanadium(V) complexes of tridentate Schiff base ligands [VO(OMe)L1] (1), [VO(OMe)L2] (2) and [VO(OMe)L3] (3) obtained by monocondensation of 3-hydroxy-2-naphthohydrazide and aromatic o-hydroxyaldehydes have been synthesized (H2L1 = (E)-3-hydroxy-N′-(2-hydroxy-3-methoxybenzylidene)-2-naphthohydrazide, H2L2 = (E)-3-hydroxy-N′-(2-hydroxybenzylidene)-2-naphthohydrazide and H2L3 = (E)-N′-(5-bromo-2-hydroxybenzylidene)-3-hydroxy-2-naphthohydrazide). The complexes were characterized by spectroscopic methods in the solid state (IR) and in solution (UV-Vis, 1H NMR). Single crystal X-ray analyses were performed with 1 and 2. The catalytic potential of these complexes has been tested for the oxidation of cyclooctene using H2O2 as the terminal oxidant. The effects of various parameters including the molar ratio of oxidant to substrate, the temperature, and the solvent have been studied. The catalyst 2 showed the most powerful catalytic activity in oxidation of various terminal, cyclic and phenyl substituted olefins. Excellent conversions have been obtained for the oxidation of cyclic and bicyclic olefins.  相似文献   

2.
Mixed-chelate complexes of ruthenium have been synthesized using tridentate Schiff-base ligands (TDLs) derived by condensation of aldehydes (salicyldehyde, 2-pyridinecarboxaldehyde) with 2-aminobenzoic acid, and bidentate ligands (2,2-bipyridine or picolinic acid). [RuIII(cpsd)(bipy)(H2O)]+ (1), [RuIII(cpsd)(pic)(H2O)] (2), [RuIII(cppc)(bipy)(H2O)]2+ (3) and [RuIII(cppc)(pic)(H2O)]+ (4) complexes (where, cpsd2−=(N-(2-carboxyphenyl)salicylaldiminato); cppc=N-2-carboxyphenylpyridine-2-carboxaldiminato; bipy=2,2-bipyridine and pic=picolinate) were characterized by analytical, spectral (IR and UV-Vis), conductance, magnetic moment and electrochemical studies. Catalysis of hydrocarbon oxidations for cyclohexene, cyclohexane, cyclohexanol, toluene, benzyl alcohol, and tetrahydrofuran have been studied using various O-atom transfer agents (t-BuOOH, H2O2, NaOCl, KHSO5 and pyridinium-N-oxide). The influence of product yield as a function of solvent was evaluated for CH2Cl2, CH3CN, and 1,4-dioxane. Coordinating solvents suppress the reactivity by inhibiting coordination of t-BuOOH, and compete for the RuVO group through their own intrinsic C-H reactivity. The main pathway transfers the oxo group from the [RuO(TDL)(XY)] intermediate, TDL=cpsd2− and cppc2−; XY=bipy or pic, with insertion of the oxo group into a C-H bond of all substrates tested (rather than olefin epoxidation for cyclohexene). A mechanism involving intermediacy of a high valent Ru(V)-oxo species is proposed for the catalytic oxidation processes.  相似文献   

3.
An electron-rich iron(III) porphyrin complex (meso-tetramesitylporphinato)iron(III) chloride [Fe(TMP)Cl], was found to catalyze the epoxidation of olefins by aqueous 30% H2O2 when the reaction was carried out in the presence of 5-chloro-1-methylimidazole (5-Cl-1-MeIm) in aprotic solvent. Epoxides were the predominant products with trace amounts of allylic oxidation products, indicating that Fenton-type oxidation reactions were not involved in the olefin epoxidation reactions. cis-Stilbene was stereospecifically oxidized to cis-stilbene oxide without giving isomerized trans-stilbene oxide product, demonstrating that neither hydroperoxy radical (HOO·) nor oxoiron(IV) porphyrin [(TMP)FeIV=O] was responsible for the olefin epoxidations. We also found that the reactivities of other iron(III) porphyrin complexes such as (meso-tetrakis(2,6-dichlorophenyl)porphinato)iron(III) chloride [Fe(TDCPP)Cl], (meso-tetrakis(2,6-difluorophenyl)porphinato)iron(III) chloride [Fe(TDFPP)Cl], and (meso-tetrakis(pentafluorophenyl)porphinato)iron(III) chloride [Fe(TPFPP)Cl] were significantly affected by the presence of the imidazole in the epoxidation of olefins by H2O2. These iron porphyrin complexes did not yield cyclohexene oxide in the epoxidation of cyclohexene by H2O2 in the absence of 5-Cl-1-MeIm in aprotic solvent; however, addition of 5-Cl-1-MeIm to the reaction solutions gave high yields of cyclohexene oxide with the formation of trace amounts of allylic oxidation products. We proposed, on the basis of the results of mechanistic studies, that the role of the imidazole is to decelerate the O–O bond cleavage of an iron(III) hydroperoxide porphyrin (or H2O2–iron(III) porphyrin adduct) and that the intermediate transfers its oxygen to olefins prior to the O–O bond cleavage.  相似文献   

4.
New potentially heptadentate compartmental ligands have been prepared by reaction of o-acetoacetylphenol or 3-formylsalycilic acid with diethylenetriamine or bis-3-aminopropyl-phenylphosphine.These Schiff bases contain an inner O2N2X (X = N, P) and an outer O2O2 coordination site which can bond, in close proximity, two similar or dissimilar metal ions.With some metal salts (nickel(II), copper(II) and uranyl(VI) acetates) mononuclear, homo- and heterodinuclear complexes have been synthesized. The spectroscopic, magnetic and electrochemical properties of these complexes have been studied. The catalytic activity of a binuclear copper(II) complex towards the oxidation of 3,5-di-t-butylcatechol to the corresponding quinone was also investigated.  相似文献   

5.
Cobalt [(OH)2-salophen] (N,N′-bis(4-hydroxysalicylidene)phenylene-1,2-diamine) complex was covalently grafted on the chemical modification of multi-wall carbon nanotubes (MWNTs); [Co((OH)2-salophen)]@MWNTs]. The as-products were characterized by spectroscopy (FT-IR, Raman, and UV–Vis), TGA, and TEM. The cobalt(II) Schiff-base complex covalently anchored on modified MWNTs was characterized by different techniques. The catalytic activity of the novel nanotubes based materials was tested in the epoxidation of cyclohexene in the iso-butyraldehyde/air system using acetonitrile as solvent and very high conversion was obtained. The experimental results indicated very good catalytic activity and selectivity in the epoxidation of cyclohexene. Repeated runs of the catalysts were carried out three times and the results indicated that the catalyst was stable for the epoxidation of cyclohexene.  相似文献   

6.
A series of dimolybdenum complexes containing mixed formamidinate ligand are discussed. The reactions of trans-Mo2(O2CCH3)2(o-DMophF)2 [o-HDMophF=N,N-di(2-methoxyphenyl)formamidine] with N,N-di(2-pyridyl)formamidine (HDpyF), N,N-di(2-pyrimidyl)formamidine (HDpmF) and N,N-di(6-methyl-2-pyridyl)formamidine (HDMepyF), in refluxing CH2Cl2 afforded the complexes, trans-Mo2(O2CCH3)(DpyF)(o-DMophF)2 (1), trans-Mo2(O2CCH3)(DpmF)(o-DMophF)2 (2), and trans-Mo2(O2CCH3)(DMepyF)(o-DMophF)2 (3), respectively. The o-DMophF and DMepyF ligands in these complexes adopt the s-cis, s-trans conformation, resulting in Mo-O short distances [2.889 (3) and 2.861(2) Å for 1; 2.880(3) and 3.024(4) Å for 2], while the DpyF ligand adopts the s-cis, s-trans conformation, resulting in a Mo-N [3.208(4) Å] and a Mo-H [2.90 (3) Å] short distances. The reactions of trans-Mo2(O2CCH3)2(o-DMophF)2 with HDMepyF in CH3CN gave complexes 3, trans-Mo2(O2CCH3)(DMepyF)2(o-DMophF) (4), and trans-Mo2(DMepyF)2(o-DMophF)2 (5). The o-DMophF ligands in 4 and 5 adopt the s-cis, s-cis conformation while DMepyF assumes an s-cis, s-trans conformation. Complexes 1-5 are the first dimolybdenum complexes containing mixed formamidinate ligands.  相似文献   

7.
A new heptadentate Schiff base, containing an inner N3O2 and an outer O2O2 site, has been obtained by the reaction of 3-formylsalicylic acid and diethylenetriamine. By reaction of this ligand with copper(II), nickel(II) or uranyl(VI) salts, mononuclear and dinuclear complexes have been synthesized. The mononuclear complexes can act as ligands towards a second metal ion giving rise to homodinuclear or heterodinuclear complexes. The enlargement of the inner coordination chamber allows the synthesis of dinuclear uranyl(VI) species, impossible to obtain with the inner N2O2 site of the ligands previously employed. The equatorial pentacoordination of the UO22+ group in the outer O2O2 chamber is reached with the coordination of a solvent molecule to the central metal ion. The electrochemical behaviour of some complexes prepared is also reported.  相似文献   

8.
New cationic hydride complexes of rhodium(III) with PR3 and R-DAB ligands have been prepared and characterised. The tertiary phosphines employed were PPh3, PMePh2, PEt3 and the R-DAB ligands, (RN:CR′CR′:NR), c-Hex-DAB, Ph-DAB, NH2-DAB-(CH3,CH3). Hexacoordinate-dihydride complexes, characterized by 1H and 31P NMR, with stoichiometry [RhH2(R-DAB)(PR3)2]X were obtained. Compounds with other stoichiometries (R-DAB/PR3=1 or 2) are also possible. Preliminary studies of the catalytic activity in hydrogenation of olefins have been carried out.  相似文献   

9.
Copper(II)-sparteine complexes, [CuII{(-)Sp}(NO2)Cl] (1) and [CuII{(−)Sp}(NO3)Cl] (2) (Sp = sparteine) with chelating nitrite and nitrate ligands, respectively, have been synthesized and structurally characterized. The penta-coordinated 1 or 2 exhibits distorted square pyramidal geometry and shows characteristic EPR spectra with g||: 2.27 and g: 2.06. 1 and 2 behave similarly towards the catalytic epoxidation of alkenes as well as oxidation of alcohols. Though the epoxidation of cyclohexene using 1 or 2 as a catalyst and tertiarybutyl hydroperoxide (TBHP) as an oxidant at 298 K in acetonitrile results in 100% cyclohexene oxide product, under identical reaction conditions styrene selectively transforms to benzaldehyde (∼90%) instead of any styrene oxide. However, at higher temperature (353 K) the selectivity of cyclohexene to corresponding epoxide formation decreases appreciably and additional products, cyclohexanol and cyclohexanone are formed. Furthermore, 1 or 2 effectively catalyzes the oxidation of benzyl alcohol to benzoic acid and cyclohexanol to cyclohexanone in presence of molecular oxygen (O2) as an oxidant at 353 K in acetonitrile.  相似文献   

10.
A family of complexes containing the {VO(OMe)}2+ motif with the O,N,S-donor Schiff bases (H2tbhsR) derived from thiobenzhydrazide and 5-substituted salicylaldehydes has been reported. Reactions of [VO(acac)2] with H2tbhsR in methanol provide the complexes having the general formula [VO(OMe)(tbhsR)] (R = H, OMe, Cl, Br and NO2) in 40-53% yields. Microanalytical, various spectroscopic (IR, UV-Vis and NMR) and electrochemical measurements have been used for the characterization of the complexes. All the complexes are redox active and display a near reversible metal centred reduction in the potential range 0.20-0.47 V (versus Ag/AgCl). The trend in these potential values reflects the polar effect of the substituent on the salicylidene fragment of tbhsR2−. The X-ray crystal structures of all the complexes have been determined. In each of the complexes where R = H, OMe, Cl and Br, the metal ion is in a distorted square-pyramidal O3NS coordination sphere assembled by the O,N,S-donor tbhsR2−, the methoxo and the oxo groups. The complex where R = NO2, crystallizes as a hexacoordinated species due to coordination of a methanol O-atom at the vacant sixth site. The bond parameters associated with the metal ions and the physical properties of the complexes are consistent with the +5 oxidation state of the metal ion in all the complexes. Scrutiny of crystal packing reveals dimeric, one-dimensional and two-dimensional self-assembled structures via intermolecular C-H?O and O-H?O interactions. The two-dimensional network contains the cyclic tetramer of methanol.  相似文献   

11.
Mononuclear Zn(II) and Ni(II) complexes have been prepared from two new Schiff base ligands in which two alternative co-ordination sites (N2O2 or O2O2) occur. The first ligands is the Schiff base derived from 1,2-diaminobenzene and 2-hydroxy-3-carboxyl-1-napthaldehyde (bopaH4). The complexes of this ligand contain the metal ions in the N2O2 coordination site as a result of the steric requirements of the co-ordinated ligand. The second ligand series are derivatives of X-substituted 1,2-diaminobenzenes, 2-hydroxy-3-carboxy-1-naphthaldehyde and 2-hydroxy-5-methyl isophthaldehyde (X-bolaH3). In this case Ni(II) occupies the N2O2 site in its complexes with the X-bolaH3 ligands, whereas the Zn(II) complexes are co-ordinate through the O2O2 site since the steric restrictions are less severe.  相似文献   

12.
Mononuclear nonheme oxoiron(IV) complexes bearing 15-membered macrocyclic ligands were generated from the reactions of their corresponding iron(II) complexes and iodosylbenzene (PhIO) in CH(3)CN. The oxoiron(IV) species were characterized with various spectroscopic techniques such as UV-vis spectrophotometer, electron paramagnetic resonance, electrospray ionization mass spectrometer, and resonance Raman spectroscopy. The oxoiron(IV) complexes were inactive in olefin epoxidation. In contrast, when iron(II) or oxoiron(IV) complexes were combined with PhIO in the presence of olefins, high yields of epoxide products were obtained. These results indicate that in addition to the oxoiron(IV) species, there must be at least one more active oxidant (e.g., Fe(IV)-OIPh adduct or oxoiron(V) species) that effects the olefin epoxidation. We have also demonstrated that the ligand environment of iron catalysts is an important factor in controlling the catalytic activity as well as the product selectivity in the epoxidation of olefins by PhIO.  相似文献   

13.
Five dissymmetric tridentate Schiff base ligands, containing a mixed donor set of ONN and ONO were prepared by the reaction of benzhydrazide with the appropriate salicylaldehyde and pyridine-2-carbaldehyde and characterized by FT-IR, 1H and 13C NMR. The complexes of these ligands were synthesized by treating an ethanolic solution of the appropriate ligand and one equivalent Et3N with an equimolar amount of MnCl2 · 4H2O or alternatively by a more direct route in which an ethanolic solution of benzhydrazide was added to ethanolic solution of appropriate salicylaldehyde and MnCl2 · 4H2O solution to yield [MnCl(L1)(H2O)2], [Mn(L2)2(H2O)2], [MnCl(L3)], [MnCl(L4)] and [MnCl2(H2O)(L5)]. The hydrazone Schiff base ligands and their manganese complexes including HL1-4 and L5 (HL1 = benzoic acid (2-hydroxy-3-methoxy-benzylidene)-hydrazide, HL2 = benzoic acid (2,3-dihydroxy-benzylidene)-hydrazide, HL3 = benzoic acid (2-hydroxy-benzylidene)-hydrazide, HL4 = benzoic acid (5-bromo-2-hydroxy-benzylidene)-hydrazide, L5 = benzoic acid pyridine-2-yl methylene-hydrazide) were characterized on the basis of their FT-IR, 1H and 13C NMR, and molar conductivity. The crystal structures of HL1 and [MnCl2(H2O)L5] have been determined. The results suggest that the Schiff bases HL1, HL2, HL3, and HL4 coordinate as univalent anions with their tridentate O,N,O donors derived from the carbonyl and phenolic oxygen and azomethine nitrogen. L5 is a neutral tridentate Schiff base with N,N,O donors. ESI-MS for the complexes Mn-L2,3,5 provided evidence for the presence of multinuclear complexes in solution. Catalytic ability of Mn-L1-5 complexes were examined and found that highly selective epoxidation (>95%) of cyclohexene was performed by iodosylbenzene in the presence of these complexes and imidazole in acetonitrile.  相似文献   

14.
A 1D-coordination polymer [{Mn3(C6H5COO)6(BPNO)2(MeOH)2}(MeOH)2]n (1) having benzoate as the anionic ligand and 4,4′-bipyridyl-N,N′-dioxide (BPNO) as bridging ligand is synthesized by reacting benzoic acid with manganese(II) acetate tetrahydrate followed by reaction with 4,4′-bipyridyl-N N′-dioxide. The bridging bidentate BPNO ligands in this coordination polymer along with the benzoate bridges hold the repeated units. The chain like structure in one dimension by benzoate bridges are connected to each other through the μ321 bridges of BPNO ligands. This coordination polymer can be transformed to a molecular complex [Mn(H2O)6](C6H5COO)2.4BPNO (2). In this complex the BPNO remains outside the coordination sphere but they are hydrogen bonded to water molecules to form self assembled structure. The reaction of 3,5-pyrazoledicarboxylic acid (L1H2) and BPNO with manganese(II) acetate or zinc(II) acetate led to molecular complexes with composition [M2(L1)2(H2O)6].BPNO·xH2O {where M = Mn(II) (3), Zn(II)(4)}. These molecular complexes of BPNO are characterised by X-ray crystallography. The complexes 3-4 are binuclear carboxylate complexes having M2O2 core formed from carboxylate ligands with two metal ions.  相似文献   

15.
A series of 2-(2-benzothiazolyl)-6-(1-(arylimino)ethyl)pyridines and their metal (Fe or Co) complexes were prepared. All organic compounds were fully characterized by NMR, FT-IR spectra and elemental analysis, and all metal complexes were identified by FT-IR spectroscopic and elemental analysis. The molecular structures of representative metal complexes were confirmed by single-crystal X-ray diffraction and displayed the distorted trigonal bipyramid geometry. Upon activation with modified methylaluminoxane (MMAO), the iron pro-catalysts showed good catalytic activities up to the range of 107 g mol−1(Fe) h−1 in ethylene reactivity with the high selectivity for the vinyl-type products of both oligomers and polyethylene waxes; whereas the cobalt pro-catalysts showed moderate activities towards ethylene oligomerization. The correlations between metal complexes and their catalytic activities and products were investigated in detail under various reaction parameters and discussed.  相似文献   

16.
A new NNS tridentate ligand, S-allyl-3-(2-pyridyl-methylene)dithiocarbazate (HL) has been prepared. Three coordination complexes, Mn(L)2 (1), [Co(L)2]NO3 (2) and Ni(L)2 (3) (L is the deprotonated monoanionic form of HL) have been synthesized and characterized by elemental analysis, molar conductivity, FT-IR, 1H NMR and UV-Vis spectroscopy. 1 and 3 are neutral complexes, while 2 is cationic with nitrate as the counter ion. Single crystal X-ray diffraction analysis shows that bis-chelate complexes have a distorted octahedral geometry in which two ligands in thiolate tautomeric form coordinate to the metal center through N atoms of the pyridine and imino moieties and one S atom. Molecular geometry from X-ray analysis, molecular geometry optimization, atomic charges distribution and bond analysis of the ligand and complexes have been performed using the density functional theory (DFT) with the B3LYP functional.  相似文献   

17.
trans-Dioxoruthenium(VI) porphyrin complexes have been developed as one of the best-characterized model systems for heme-containing enzymes. Traditionally, this type of compounds can be prepared by oxidation of ruthenium(II) precursors with peroxyacids and other terminal oxidants under different conditions, depending on the porphyrin ligands. In this work, a new photochemical generation of trans-dioxoruthenium(VI) porphyrins has been developed by extension of the known photo-induced ligand cleavage reactions. Refluxing ruthenium(II) carbonyl porphyrins [RuII(Por)(CO)] in carbon tetrachloride afforded dichlororuthenium(IV) complexes [RuIV(Por)Cl2]. Facile exchange of the counterions in [RuIV(Por)Cl2] with Ag(ClO3) or Ag(BrO3) gave the corresponding dichlorate [RuIV(Por)(ClO3)2] or dibromate [RuIV(Por)(BrO3)2] salts. Visible-light photolysis of the photo-labile porphyrin-ruthenium(IV) dichlorates or dibromates resulted in homolytic cleavage of the two O-Cl or O-Br bonds in the axial ligands to produce trans-dioxoruthenium(IV) species [RuVI(Por)O2] bearing different porphyrin ligands.  相似文献   

18.
[1+1] macrocyclic and [1+2] macroacyclic compartmental ligands (H2L), containing one N2O2, N3O2, N2O3, N4O2 or O2N2O2 Schiff base site and one O2On (n=3, 4) crown-ether like site, have been prepared by self-condensation of the appropriate formyl- and amine precursors. The template procedure in the presence of sodium ion afforded Na2(L) or Na(HL) · nH2O. When reacted with the appropriate transition metal acetate hydrate, H2L form M(L) · nH2O, M(HL)(CH3COO) · nH2O, M(H2L)(X)2 · nH2O (M=Cu2+, Co2+, Ni2+; X=CH3COO, Cl) or Mn(L)(CH3COO) · nH2O according to the experimental conditions used. The same complexes have been prepared by condensation of the appropriate precursors in the presence of the desired metal ion. The Schiff bases H2L have been reduced by NaBH4 to the related polyamine derivatives H2R, which form, when reacted with the appropriate metal ions, M(H2R)(X)2 (M= Co2+, Ni2+; X=CH3COO, Cl), Cu(R) · nH2O and Mn(R)(CH3COO) · nH2O. The prepared ligands and related complexes have been characterized by IR, NMR and mass spectrometry. The [1+1] cyclic nature of the macrocyclic polyamine systems and the site occupancy of sodium ion have been ascertained, at least for the sodium (I) complex with the macrocyclic ligand containing one N3O2 Schiff base and one O2O3 crown-ether like coordination chamber, by an X-ray structural determination. In this complex the asymmetric unit consists of one cyclic molecule of the ligand coordinated to a sodium ion by the five oxygen atoms of the ligand. The coordination geometry of the sodium ion can be described as a pentagonal pyramid with the metal ion occupying the vertex. In the mononuclear complexes with H2L or H2R the transition metal ion invariantly occupies the Schiff base site; the sodium ion, on the contrary, prefers the crown-ether like site. Accordingly, the heterodinuclear complexes [MNa(L)(CH3COO)x] (M=Cu2+, Co2+, Ni2, x=1; M=Mn3+, x=2) have been synthesised by reacting the appropriate formyl and amine precursors in the presence of M(CH3COO)n · nH2O and NaOH in a 1:1:1:2 molar ratio. The reaction of the mononuclear transition metal complexes with Na(CH3COO) · nH2O gives rise to the same heterodinuclear complexes. Similarly [MNa(R)(CH3COO)x] have been prepared by reaction of the appropriate polyamine ligand H2R with the desired metal acetate hydrate and NaOH in 1:1:2 molar ratio.  相似文献   

19.
A series of palladium complexes, trans-[1-(R)-pz3,5-Me2]2PdCl2 {R = CH2CONH(2,6-i-Pr2-C6H3) (1b) and 2-(OH)-C6H10 (2b)}, supported over N/O-functionalized pyrazole derived ligands effectively catalyzed the more challenging Suzuki-Miyaura cross-coupling of a variety of activated aryl chlorides with phenyl boronic acid in air in a mixed-aqueous medium (DMF:H2O, v/v = 9:1) in moderate to excellent yields. Besides the commonly encountered Csp2-Csp2 coupling, the 1b and 2b precatalysts also catalyzed the relatively difficult Csp2-Csp3 coupling of benzyl chloride with phenyl boronic acid. The 1b and 2b complexes were synthesized by the direct reaction of the respective N/O-functionalized pyrazolyl ligands, 1a and 2a, with (COD)PdCl2 in 62-66% yields. The stability of the pyrazole-palladium interaction in the 1b and 2b complexes has been attributed to the deeply buried Npyrazole-Pd interaction as evidenced from the density functional theory (DFT) studies.  相似文献   

20.
The formation of Cd(II) and Co(II) complexes with N-methylethylenediamine (men) has been studied at 298 K in dimethylsulfoxide (dmso) in an ionic medium set to 0.1 mol dm−3 with Et4NClO4 in anaerobic conditions by means of potentiometric, UV-Vis, calorimetric and FT-IR technique. Mononuclear MLj (M=Cd, Co; j=1-3) complexes are formed in exothermic reactions, whereas the entropy changes oppose the complexes formation. The results are discussed in terms of different basicities and steric requirements and the whole of the thermodynamic data reported till now for the two ions with a number of diamines are summarized to visualize the selectivity of the ligands. The dioxygen uptake of Co(men)2 species has also been studied by means of UV-Vis and EPR techniques. The kinetic parameters and stability constants obtained for the formation of the superoxo and μ-peroxo species are discussed in terms of solvent effect and steric hindrance due to methyl group.Cyclic voltammetry was used to confirm the stability constant for the Co(dmen)2 (dmen=N,N-dimethylethylenediamine) superoxo adduct formation but was not successful to investigate this Co(men)2-O2 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号