首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reaction of the racemic chiral methyl complex (η5-C5H5)Re(NO)(PPh3)(CH3) (1) with CF3SO3H and then NH2CH2C6H5 gives [(η5-C5H5)Re(NO)(PPh3)(NH2CH2C6H5)]+ ([4a-H]+; 73%), and deprotonation with t-BuOK affords the amido complex (η5-C5H5)Re(NO)(PPh3)(NHCH2C6H5) (76%). Reactions of 1 with Ph3C+ X and then primary or secondary amines give [(η5-C5H5)Re(NO)(PPh3)(CH2NHRR′)]+ X ([6-H]+ X; R/R′/X = a, H/NH2CH2C6H5/BF4; a′, H/NH2CH2C6H5/PF6; b, H/NH2CH2(CH2)2CH3/PF6; c, H/(S)-NH2CH(CH3)C6H5/BF4); d, CH2CH3/CH2CH3/PF6; e, CH2(CH2)2CH3/CH2(CH2)2CH3/PF6; f, CH2C6H5/CH2C6H5/PF6; g, -CH2(CH2)2CH2-/PF6; h, -CH2(CH2)3CH2-/PF6; i, CH3/CH2CH2OH/PF6 (62-99%). Deprotonations with t-BuOK afford the amines (η5-C5H5)Re(NO)(PPh3)(CH2NRR′) (6a-i; 99-40%), which are more stable and isolated in analytically pure form when R ≠ H. Enantiopure 1 is used to prepare (RReSC)-[6c-H]+, (RReSC)-6c, (S)-[6g-H]+, and (S)-6g. The crystal structures of [4a-H]+, a previously prepared NH2CH2Si(CH3)3 analog, [6a′,d,f,h-H]+, (RReSC)-6c, and 6f are determined and analyzed in detail, particularly with respect to cation/anion hydrogen bonding and conformation. In contrast to analogous rhenium containing phosphines, 6a-i show poor activities in reactions that are catalyzed by organic amines.  相似文献   

2.
[Ir(η5-C5Me5)(C3S5)] [C3S52− = 4,5-disulfanyl-1,3-dithiole-2-thionate(2−)] was prepared by a reaction of [NMe4]2[C3S5] with [Ir(η5- C5Me5)Cl2]2 in ethanol. It was reacted with bromine to afford a paramagnetic species [IrBr(η5-C5Me5)(C3S5)] with the Ir-Br bond and in the one-electron-oxidized state, and a diamagnetic dinuclear species [IrBr(η5-C5Me5)(μ-C2S4)IrBr(η5-C5Me5)]. ESR spectra for the one-electron-oxidized species in solution are discussed. The X-ray crystal structural analysis for the latter complex revealed the geometry consisting of dinuclear IrBr(η5-C5Me5) moieties bridged by the C2S42− ligand.  相似文献   

3.
The bimetallic cyano-bridged [(η5-C5H5)(PPh3)2Ru(μ-CN)Ru(PPh3)25-C5H5)][PF6] (1) was prepared by reaction of [(η5-C5H5)(PPh3)2RuCl] with N,N′-bis(cyanomethyl)ethylenediamine. The single crystal structure determined by X-ray diffraction showed crystallization on the triclinic P1 space group with a perfect alignment of the cyanide bridges. This accentric crystallization was explored having in view the NLO properties at the macroscopic level, determined by the Kurtz Powder technique. Besides the very low efficiency values for the second harmonic generation, the value obtained for the bimetallic complex 1 showed to be higher than one of the parent complex [(η5-C5H5)(PPh3)2RuCN] (2).  相似文献   

4.
The reaction of cyanamide and its derivatives with the (η5-C5H5)Mn(CO)2(THF) and (η5-C5H4CH3)Mn(CO)2(THF) complexes affords the cyanamide substituted complexes of types (η5-C5H5)Mn(CO)2(NCN(R′)(R″)) (2a-d) and (η5-C5H4CH3)Mn(CO)2(NCN(R′)(R″)) (3a-e). All complexes were characterized by spectroscopy (1H, 13C NMR, IR), elemental and mass spectroscopy analysis. Complex 2b5-C5H5)Mn(CO)2(NCN(CH3)2) was additionally examined by single crystal X-ray structure determination.  相似文献   

5.
Reactions of [PPh4][(η5-C5Me5)WS3] with equimolar M′Cl2 (M′ = Zn, Cd) in MeCN or 0.5 equiv. of HgCl2 in DMF afforded two binuclear clusters [PPh4][(η5-C5Me5)WS3(M′Cl2)] (1: M′ = Zn; 2: M′ = Cd) and one trinuclear cluster [{(η5-C5Me5)WS3}2Hg] (3). Compounds 1-3 were characterized by elemental analysis, IR, UV-Vis, 1H NMR and X-ray crystallography. Compound 1 may be viewed as a 1:1 composite of [PPh4][(η5-C5Me5)WS3] and ZnCl2, in which one [(η5-C5Me5)WS3] anion binds a ZnCl2 moiety via two μ-S atoms. In the structure of 3, two [(η5-C5Me5)WS3] anions coordinate the central Hg atom via two μ-S atoms, forming an unique bent linear structure. In addition, internal redox reactions of [PPh4][(η5-C5Me5)WS3] under the presence of M′Cl2 (M′ = Zn, Cd, Hg) in high concentrations were discussed.  相似文献   

6.
The dicarbonyl and diphosphine complexes of the type (η5-C5H5)Fe(L)2ER3 (L2 = (CO)2 (a), (Ph2P)2CH2 (b); ER3 = CH3 (1a/b); SiMe3 (2a/b), GeMe3 (3a/b), SnMe3 (4a/b)) were synthesized and studied electrochemically. Cyclic voltammetric studies on the dicarbonyl complexes 1a-4a revealed one electron irreversible oxidation processes whereas the same processes for the chelating phosphine series 1b-4b were reversible. The Eox values found for the series 1a-4a were in the narrow range 1.3-1.5 V and in the order Si > Sn ≈ Ge > C; those for 1b-4b (involving replacement of the excellent retrodative π-accepting CO ligands by the superior σ-donor and poorer π-accepting phosphines) have much lower oxidation potentials in the sequence Sn > Si ≈ Ge > C. This latter oxidation potential pattern relates directly to the solution 31P NMR chemical shift data illustrating that stronger donation lowers the Eox for the complexes; however, simple understanding of the trend must await the results of a current DFT analysis of the systems.  相似文献   

7.
The reactions of cycloaurated gold(III) dichloride complexes [LAuCl2] (L = 2-C6H4CH2NMe2 or 2-C6H4PPh2NPh) with monoanionic tripodal oxygen donor Kläui ligands [(η5-C5H5)Co{P(O)(OR)2}3] (R = Me or Et) results in the formation of cationic gold(III) salts [LAu{OP(OR)2}3Co(η5-C5H5)]+. An X-ray structure determination on [(2-C6H4PPh2NPh)Au{OP(OR)2}3Co(η5-C5H5)]BF4 shows that the Kläui ligand coordinates strongly to the gold through two oxygen atoms, and weakly through the third, giving the gold(III) a distorted square pyramidal geometry. This is the first structurally characterised example of this geometry for gold(III) with ligands other than those containing rigid bipyridine or phenanthroline backbones. In solution at room temperature there is rapid interchange (on the NMR timescale) between the oxygen atoms of the Kläui ligands, which is frozen out on cooling.  相似文献   

8.
The reaction of [(η7-C7H7)Zr(η5-C5H5)] with two Lewis bases, tetramethylimidazolin-2-ylidene and PMe3, is reported and their stability probed via spectroscopic and theoretical methods. The strongly σ-basic N-heterocyclic carbene forms a stable adduct which has been structurally characterised, whilst the PMe3 ligand coordinates weakly to the metal centre. Variable temperature 31P NMR spectroscopy has been used to determine the activation energy for this process (ΔG = 40.5 ± 1.9 kJ mol−1). DFT calculations have been performed on both complexes and the structures discussed. In addition, the enthalpies for the formation of these compounds have been calculated [ΔH0(Zr-IMe) = −56.3 kJ mol−1; ΔH0(Zr-PMe3) = −2.3 kJ mol−1] and show that the N-heterocyclic carbene forms a thermodynamically much more stable adduct than that with PMe3.  相似文献   

9.
The reaction of [CpCr(CO)3]2 (Cp = η5-C5H5) (1) with an equivalent of Bz2S3 at ambient temperature gave [CpCr(CO)2]2S (3) [L.Y. Goh, T.W. Hambley, G.B. Robertson, Organometallics 6 (1987) 1051], novel complexes of [CpCr(CO)2(SBz)]2 (4) and together with [CpCr(SBz)]2S (5) as main products. Thermolytic studies showed that 4 underwent complete decarbonylation to give [CpCr(SBz)]2S (5). Final thermal decomposition of 3 and 5 eventually yielded Cp4Cr4S4 (6) (Goh et al., 1987) after prolonged reaction at 100 °C. However, the reaction of [CpCr(CO)2]2 (CrCr) (2) with Bz2S3 was much slower at ambient temperature which required 72 h to complete eventually yielding 3 and 5. All the products have been characterized by elemental and spectral analyses. 4 has been structurally determined.  相似文献   

10.
Reaction of gem-diphenyltetrafluorocyclotriphosphazene with in situ generated lithiated phenylacetylene resulted in the formation of the first example of a gem-diphenyltrifluorophosphazene based alkyne (β-phenylethynyl)-gem-diphenyltrifluorocyclotriphosphazene (NPPh2)(NPF2)[NP(F)CCPh] 1. Reaction of this alkyne with η5-(MeOC(O)C5H4)Co(PPh3)2 resulted in the formation of a CpCo stabilized cyclobutadiene complex [η5-carbomethoxycyclopentadienyl][η4-1,3-bis(gem-diphenyltrifluorocyclotriphosphazenyl)-2,4-diphenylcyclobutadiene]cobalt 2, having two gem-diphenyltrifluorophosphazene moieties trans to each other on the cyclobutadiene ring. The reaction also yielded two structural isomers of the PPh3 stabilized cobaltacyclopentadiene compounds 3 and 4 having gem diphenyl trifluorophosphazene moieties present in the 2,4 and 2,5 positions of the metallacycle. The reaction in addition yielded a novel spirocyclic phosphazacyclopentadiene compound bound to a CpCo unit in the η4-mode 5. All the compounds were characterized by 1H, 13C, 31P and 19F NMR spectroscopy and compounds 2, 3 and 5 were also structurally characterized by X-ray crystallography.  相似文献   

11.
Treatment of the ruthenium(II) diene complexes [(η22-nbd)RuCl2]n or [(η22-cod)RuCl2]n with 4 equiv. of methyllithium in the presence of N,N,N′,N′-tetramethylethylenediamine (tmed) yields the methyl complexes [Li(tmed)]2[(η22-nbd)RuMe4] (1) and [Li(tmed)]2[(η32-C8H11)RuMe3] (2), respectively, where nbd = norbornadiene and cod = 1,5-cyclooctadiene. In the latter compound, the cyclooctadiene ligand has been deprotonated to afford a η32-1,2,3:5,6-cyclooctadienyl group. Both complexes were studied by 1H and 13C{1H} NMR spectroscopy, and the crystal structure of 2 was determined. One lithium atom in 2 is four-coordinate and bridges between one ruthenium-bound methyl group and one of the wingtip allylic carbon atoms in the η32-C8H11 ligand. The other lithium atom is five-coordinate, and forms contacts with the other two Ru-Me groups and with the other wingtip carbon atom of the allyl unit.  相似文献   

12.
The determination of the solid state structure of Cp*Ru(2,4-dimethyl-η5-pentadienyl) (1), where Cp* = pentamethylcyclopentadienyl, fills the gap in the series of previously established structures of closely related compounds. Compound 1 does not exhibit the ideal CS symmetry and its conformation is intermediate between the CS-synperiplanar eclipsed and CS-antiperiplanar arrangements of the ligands. Density functional theory studies indicate that the CS-synperiplanar eclipsed, CS-antiperiplanar, and intermediate conformations of 1 and Cp*Rh(2,4-dimethyl-η5-pentadienyl)+ (2) do not differ by more than a few tenths of 1 kcal/mol. The geometrical features of cation 2 are similar to those of 1, and in both complexes the pentadienyl ligands are not planar. The metal-carbon distances to the Cp* ligands in 1 and 2 are comparable, while the metal-carbon distances to the pentadienyl moiety are somewhat shorter in the Ru complex. A study of the conformational flexibility of the Cp* ligand in 5610 organometallic complexes showed that it usually shields the central metal by 36.2(10)%, provided the metal-centroid(Cp*) distances are normalized to 2.28 Å. The corresponding values in 1 and 2 are 37.2% and 37.4%, respectively.  相似文献   

13.
Condensation of aminomethylferrocene (1) and substituted benzaldehydes resulted in aldimines 2a-c which followed by reduction with sodium borohydride to give 3a-c. N-methylation of 3a-c with HCHO/NaCNBH3/HOAc led to 4a-c. Treatment of 4a-c with sodium palladium tetrachloride in the presence of sodium acetate afforded cleanly cyclopalladated 5a-c in which configurations consisted of the RNRC, SNSC. The preferable activation of CFerrocenyl-H bond over CPhenyl-H bond was also observed. All compounds 2-5 were characterized by elemental analysis, IR and 1H NMR. In addition, the molecular structure of 5c was confirmed by single crystal X-ray diffraction. The possible mechanism for the formation of 5 was also discussed.  相似文献   

14.
[Ir(η5-C5Me5)(C8H4S8)] (1) [ = 2-{(4,5-ethylenedithio)-1,3-dithiole-2-ylidene}-1,3-dithiole-4,5-dithionate(2−)] was reacted with iodine in dichloromethane to afford one-electron- and two-electron-oxidized species [IrI(η5-C5Me5)(C8H4S8)] (2), [IrI(η5-C5Me5)(C8H4S8)](I3) (3) and [IrI(η5-C5Me5)(C8H4S8)](I5) (4). The oxidized species exhibit electrical conductivities of (1.1-5.0) × 10−6 S cm−1 measured for compacted pellets at room temperature. The X-ray crystal structures of the two-electron-oxidized complexes 3 and 4 revealed the Ir-I bonds for both of them and the presence of for 3 and ions for 4 as the counter anions. They have many S-S and S-I non-bonding contacts to form two-dimensional molecular interaction sheets in the solid state.  相似文献   

15.
Photoirradiation with a 150 W medium-pressure Hg lamp for 17 h in acetontrile as the solvent replaces the benzene ligand in the cationic complexes [(η6-C6H6)Ru(CH3CN)2(L)]2+ and [(η6-C6H6)Ru(CH3CN)(L2)]2+ (L=CH3CN, PPh3, L2=dppe, bipy) with acetonitrile. These replacements are equally clean to those reported before for analogous CpRu+ complexes. Crystal structures of the products obtained are included.  相似文献   

16.
The binuclear complex {Cu(μ-CCPh)(triphos)}2 [triphos = (PPh2CH2)3CMe] has been obtained from a reaction between {Cu(CCPh)}n and triphos. The two copper atoms are bridged unsymmetrically by two CCPh groups, each attached through one carbon only [Cu-C, 2.016(4) Å], the separation between the two coppers being 2.4663(8) Å. Only two of the three phosphorus atoms in each ligand are coordinated to copper [Cu-P(1,2) 2.281, 2.273(1) Å]. The observed structure may be rationalised using a recent theoretical study [C. Mealli, S.S.M.C. Godinho, M.J. Calhorda, Organometallics 20 (2001) 1734] and differs from that assumed for the rationalisation of its luminescence properties [V. Pawlowski, G. Knör, C. Lennartz, A. Vogler, Eur. J. Inorg. Chem. (2005) 3167].  相似文献   

17.
The 2-methallyl complex [(η5-C9H7)Ru(η3-2-MeC3H4)(PPh3)] (3), prepared from [(η5-C9H7)Ru(PPh3)2Cl] (2) and 2-MeC3H4MgCl, reacts with HX (X = Cl, CF3CO2) in the presence of ethene to give the chiral-at-metal compounds [(η5-C9H7)Ru(C2H4)(PPh3)X] (4, 5) in nearly quantitative yields. Treatment of 2 with AgPF6 and ethene affords [(η5-C9H7)Ru(C2H4)(PPh3)2]PF6 (6), which reacts with acetone to give the substitution product [(η5-C9H7)Ru(OCMe2)(PPh3)2]PF6 (7). The molecular structure of 7 has been determined crystallographically. Whereas treatment of 4 with CH(CO2Et)N2 yields the olefin complex [(η5-C9H7)Ru{η2-(Z)-C2H2(CO2Et)2}(PPh3)Cl] (8), the reactions of 4 and 5 with Ph2CN2, PhCHN2 and (Me3Si)CHN2 lead to the formation of the carbeneruthenium(II) derivatives [(η5-C9H7)Ru(CRR′)(PPh3)Cl] (9-11) and [(η5-C9H7)Ru(CRR′)(PPh3)(κ1-O2CCF3)] (12-14), respectively. Treatment of 9 (R = R′ = Ph), 10 (R = H, R′ = Ph) and 11 (R = H, R′ = SiMe3) with MeLi produces the hydrido(olefin) complexes [(η5-C9H7)RuH(η2-CH2CPh2)(PPh3)] (15), [(η5-C9H7)RuH(η2-CH2CHPh)(PPh3)] (18a,b) and [(η5-C9H7)RuH(η2-CH2CHSiMe3)(PPh3)] (19) via C-C coupling and β-hydride shift. The analogous reactions of 11 with PhLi gives the η3-benzyl compound [(η5-C9H7)Ru{η3-(Me3Si)CHC6H5}(PPh3)] (20). The η3-allyl complex [(η5-C9H7)Ru(η3-1-PhC3H4)(PPh3)] (17) was prepared from 10 and CH2CHMgBr by nucleophilic attack.  相似文献   

18.
The reactions of the half-open trozircene [(η7-C7H7)Zr(η5-2,4-C7H11)] (1) with the two-electron donor ligands tert-butyl isocyanide (CN-tBu), 1,2-bis(dimethylphosphino)ethane (dmpe), trimethylphosphine (PMe3) and 1,3,4,5-tetramethylimidazolin-2-ylidene (IMe, :C[N(Me)C(Me)]2) have led to the 1:1 adducts 3, 4, 5 and 6, respectively. The latter three were structurally characterized by X-ray diffraction analysis. Additionally, the stability of the adducts was probed by DFT calculations employing the B3LYP and M05-2X functionals showing that the strongly σ-basic N-heterocyclic carbene forms a thermodynamically much more stable adduct than the other three.  相似文献   

19.
The single crystals of dichloro-bridged dinuclear Rh-Cp* complex with neutral Me2CO molecules, [Rh2(Cp*)2(μ-Cl)2(Me2CO)2](BF4)2 (Cp* = η5-C5Me5), was isolated and the structure was in first determined crystallographically.  相似文献   

20.
《Inorganica chimica acta》2004,357(10):3119-3123
Fused double-cluster [(η5-C5Me5)IrB18H18(PH2Ph)] (8), from syn-[(η5-C5Me5)IrB18H20] (1) and PH2Ph, retains the three-atoms-in-common cluster fusion intimacy of 1, in contrast to [(η5-C5Me5)HIrB18H19(PHPh2)] (6), from PHPh2 with 1, which exhibits an opening to a two atoms-in-common cluster fusion intimacy. Compound 8 forms via spontaneous dihydrogen loss from its precursor [(η5-C5Me5)HIrB18H19(PH2Ph)] (7), which has two-atoms-in-common cluster-fusion intimacy and is structurally analogous to 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号