首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions between the mycorrhizal fungusGlomus mosseae, the plant pathogenPythium ultimum, and a pathogen-antagonistTrichoderma aureoviride in the rhizosphere ofTagetes erecta (marigold) were studied for their effects on plant growth in a peat-perlite substrate. Mycorrhizal fungus inoculation protected the plant againstP. ultimum, since both phytomass production and foliar development were higher in mycorrhizal plants.T. aureoviride had no effect on nonmycorrhizal plants in the presence or absence ofP. ultimum. However, more biomass was produced by mycorrhizal plants whenT. aureoviride was present, whether or not soil was infested withP. ultimum. ei]R Rodriguez-Kabana  相似文献   

2.
The interactions between biocontrol fungi and bacteria may play a key role in the natural process of biocontrol, although the molecular mechanisms involved are still largely unknown. Synergism can occur when different agents are applied together, and cell wall degrading enzymes (CWDEs) produced by fungi can increase the efficacy of bacteria. Pseudomonas spp. produce membrane-disrupting lipodepsipeptides (LDPs) syringotoxins (SP) and syringomycins (SR). SR are considered responsible for the antimicrobial activity, and SP for the phytotoxicity. CWDEs of Trichoderma spp. synergistically increased the toxicity of SP25-A or SRE purified from P. syringae against fungal pathogens. For instance, the fungal enzymes made Botrytis cinerea and other phytopathogenic fungi, normally resistant to SP25-A alone, more susceptible to this antibiotic. Pseudomonas produced CWDEs in culture conditions that allow the synthesis of the LDPs. Purified bacterial enzymes and metabolites were also synergistic against fungal pathogens, although this mixture was less powerful than the combination with the Trichoderma CWDEs. The positive interaction between LDPs and CWDEs may be part of the biocontrol mechanism in some Pseudomonas strains, and co-induction of different antifungal compounds in both biocontrol bacteria and fungi may occur. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The effects of two arbuscular mycorrhizal fungi (AMF) (Glomus mosseae and G. claroideum) and a pathogenic fungus (Pythium ultimum) on the production of eight flavonoids in roots of two white clover (Trifolium repens L.) cultivars were evaluated. Quantification of AM and pathogenic fungi in the roots showed that the AM symbiosis significantly reduced P. ultimum biomass and in some cases prevented infection. The flavonoid productions in clover roots varied depending on the presence of beneficial and/or pathogenic fungi, fungal isolate or plant cultivar. Only plants colonized with G. claroideum showed detectable concentrations of either coumestrol or kaempferol (cultivar-dependant). In addition, inoculation with G. claroideum resulted in significantly higher concentrations of coumestrol in cv. Sonja and medicarpin in cv. Milo. A low production of coumestrol and kaempferol in mycorrhizal plants may be G. mosseae-specific. Only the concentrations of formononetin and daidzein increased in clover roots in response to infection with P. ultimum. These flavonoids are supposedly stress metabolites, synthesized or produced from glycosides in response to pathogen infection. However, the presence of one or both AMF significantly lowered the formononetin and daidzein concentrations, and overruled the inductive effect of P. ultimum. Therefore the antagonistic action of AM against the pathogen must take place through another mechanism.  相似文献   

4.
Snowdrop lectin ( Galanthus nivalis agglutinin; GNA) has been shown previously to be toxic towards rice brown planthopper ( Nilaparvata lugens ; BPH) when administered in artificial diet. BPH feeds by phloem abstraction, and causes ‘hopper burn’, as well as being an important virus vector. To evaluate the potential of the gna gene to confer resistance towards BPH, transgenic rice ( Oryza sativa L.) plants were produced, containing the gna gene in constructs where its expression was driven by a phloem-specific promoter (from the rice sucrose synthase RSs1 gene) and by a constitutive promoter (from the maize ubiquitin ubi1 gene). PCR and Southern analyses on DNA from these plants confirmed their transgenic status, and that the transgenes were transmitted to progeny after self-fertilization. Western blot analyses revealed expression of GNA at levels of up to 2.0% of total protein in some of the transgenic plants. GNA expression driven by the RSs1 promoter was tissue-specific, as shown by immunohistochemical localization of the protein in the non-lignified vascular tissue of transgenic plants. Insect bioassays and feeding studies showed that GNA expressed in the transgenic rice plants decreased survival and overall fecundity (production of offspring) of the insects, retarded insect development, and had a deterrent effect on BPH feeding. gna is the first transgene to exhibit insecticidal activity towards sap-sucking insects in an important cereal crop plant.  相似文献   

5.
The antagonist strains Gliocladium virens G2 and Trichoderma harzianum T3 originally isolated from Pythium suppressive peat, and two benomyl-resistant strains of T. harzianum, T12B and T95, were evaluated as biological control agents of damping-off and root rot of cucumbers in sphagnum peat caused by Pythium ultimum. All strains were equally effective when applied as 1 % peat-bran preparations, whereas the effectiveness of disease control was reduced at higher concentrations of the antagonists. The two wild-type strains were also found to be effective when applied as conidial suspensions, and in this case no reduction in disease control was seen at higher concentrations. G. virens G2 and T. harzianum T12B showed antibiotic activity against P. ultimum in in vitro tests; however there were no signs of mycoparasitism of P. ultimum by any of the antagonist strains.  相似文献   

6.
7.
Abstract

The possible biological control of damping-off fungi, Fusarium oxysporum and Pythium ultimum by Pythium oligandrum or Trichoderma harzianum was in vitro investigated. Results of comparing the antagonistic activity of P. oligandrum and T. harzianum in dual plates against the tested phytopathogens indicated different degrees of antagonism. After 12 days of incubation colony of the phytopathogenic fungus was completely overgrown by the antagonist, except for the interaction between T. harzianum and F. oxysporum which showed no overgrowth or any hyphal penetration by the antagonist. However, growth and proliferation of F. oxysporum colony was repressed. T. harzianum and P. oligandrum produced chitinase and β-1,3-glucanase when they were grown on liquid culture medium supplemented with chitin or fungal dried mycelium as a sole carbon source, and enzyme production was higher by T. harzianum comparing with P. oligandrum under the same condition. Fungal dried mycelium of F. oxysporum was the most selective carbon source for enzyme production, on the other hand, chitinase production was significant locked when P. ultimum dried mycelium was used as a carbon source. Production of volatile compounds by P. oligandrum or T. harzianum against F. oxysporum and P. ultimum was examined using the inverted plates method. F. oxysporum was inhibited by the antagonist volatile compounds and it is inhibited 100% by increasing the amount of inoculum size. Production of potential biocontrol agents provided with economically features and working under field conditions are recommended.  相似文献   

8.
Many endophytic fungi are known to protect plants from plant pathogens, but the antagonistic mechanism has rarely been revealed. In this study, we wished to learn whether an endophytic Aspergillus sp., isolated from Taxus mairei, would indeed produce bioactive components, and if so whether (a) they would antagonize plant pathogenic fungi; and (b) whether this Aspergillus sp. would produce the compound also under conditions of confrontation with these fungi. The endophytic fungal strain from T. mairei was identified as Aspergillus clavatonanicus by analysis of morphological characteristics and the sequence of the internal transcribed spacers (ITS rDNA) of rDNA. When grown in surface culture, the fungus produced clavatol (2′,4′-dihydroxy-3′,5′-dimethylacetophenone) and patulin (2-hydroxy-3,7-dioxabicyclo [4.3.0]nona-5,9-dien-8-one), as shown by shown by NMR, MS, X-ray, and EI-MS analysis. Both exhibited inhibitory activity in vitro against several plant pathogenic fungi, i.e., Botrytis cinerea, Didymella bryoniae, Fusarium oxysporum f. sp. cucumerinum, Rhizoctonia solani, and Pythium ultimum. During confrontation with P. ultimum, A. clavatonanicus antagonized its growth of P. ultimum, and both clavatol as well as patulin were formed as the only bioactive components, albeit with different kinetics. We conclude that A. clavatonanicus produces clavatol and patulin, and that these two polyketides may be involved in the protection of T. mairei against attack by plant pathogens by this Aspergillus sp.  相似文献   

9.
New cellulases from the fungi Acrophialophora nainiana and Penicillium echinulatum were used in the finishing of knitted cotton fabrics (biopolishing) and compared with the well established enzymes from Trichoderma reesei. Both cellulases reduced the pilling tendency with a lower weight loss than T. reesei cellulases. Cellulases from P. echinulatum were also studied in stonewashing of denim fabrics to obtain the fashionable aged look in indigo dyed jeans ware and were found to remove more colour from denim fabrics and produce less indigo dye redeposition (back-staining) than commercial acid or neutral cellulases under the test conditions. Efficiency was found to be influenced by pH during textile processing and the substrate used for the production of cellulases. Cellulases produced by P. echinulatum grown on cellulose showed better stonewashing results (higher colour removal and less back-staining) than cellulases produced on sugar cane bagasse. The substrate used during enzyme production of P. echinulatum cellulases seems to have a significant influence on cellulose composition, which affects textile processing results.  相似文献   

10.
Various used paper materials have been exposed to the action of cellulases from Penicillium funiculosum, Trichoderma reesei, Trichoderma viride and Aspergillus niger. A 2 h incubation period showed cellulase from T. viride the most active except for office paper that was maximally degraded by A. niger cellulase. Cellulase mixtures increased saccharification while sequential treatment with cellulases from T. reesei and P. funiculosum increased biodegradation at values between 15% and 190%. The maximum increase of saccharification (190%) was obtained when T. reesei cellulase initiated the sequential treatment of newspaper relative to the sole action of P. funiculosum cellulase on this non-pretreated and pretreated material.  相似文献   

11.
Abstract

The biotransformation of lignocellulosic materials into biofuels and chemicals requires the simultaneous action of multiple enzymes. Since the cost of producing an efficient enzyme system maybe high, mixed cultures of microorganisms maybe an alternative to increase enzymatic production and consequently reduce costs. This study investigated the effects of different inoculum ratios and inoculation delays on the biosynthesis of cellulases and xylanases during co-cultivation of Aspergillus niger and Trichoderma reesei under solid-state fermentation (SSF). While the monoculture of T. reesei was more efficient for CMCase production than the co-cultivation of A. niger and T. reesei, a significant increase in β-glucosidase and xylanase production was achieved by co-cultivation of both species. The maximum CMCase activity of 153.91 IU/g was obtained with T. reesei after 48 h of cultivation, while the highest β-glucosidase activity of 119.71 IU/g (after 120 h) was obtained by co-cultivation of A. niger and T. reesei with a 3:1 inoculum ratio (A. niger: T. reesei). The greatest xylanase activity observed was 589.39 IU/g after 72 h of mixed culturing of A. niger and T. Reesei with a 1:1 inoculum ratio. This is the first study where the effects of inoculum ratio and inoculation delay in mixed culture of T. reesei and A. niger under SSF have been systematically assessed, and it indicates co-cultivation as a feasible alternative to increase enzymatic production.  相似文献   

12.
Summary Production and release of cellulolytic enzymes by Trichoderma reesei QM 9414 were studied under induced and non-induced conditions. For that purpose, a method was developmed to produce cellulases by Trichoderma reesei QM 9414 using the soluble inducer, cellobiose, as the only carbon source. The production was based on continuous feeding of cellobiose to a batch culture. For optimum production, the cellobiose supply had to be adjusted according to the consumption so that cellobiose was not accumulated in the culture. With a proper feeding program the repression and/or inactivation by cellobiose could be avoided and the cellulase production by Trichoderma reesei QM 9414 was at least equally as high as with cellulose as the carbon source.During the cultivation, specific activities against filter paper, carboxymethyl cellulose (CMC) and p-nitrophenyl glucoside were analyzed from the culture medium as well as from the cytosol and the cell debris fractions. There was a base level of cell debris bound hydrolytic activity against filter paper and p-nitrophenyl glucoside even in T. reesei grown non-induced on glycerol. T. reesei grown on cellobiose was induced to produce large amounts of extracellular filter paper and CMC hydrolyzing enzymes, which were actively released into the medium even in the early stages of cultivation. -Glucosidase was mainly detected in the cell debris and was not released unless the cells were autolyzing.  相似文献   

13.
In naturally infested soil containingPythium ultimum, P. acanthicum andPhytophthora megasperma, onlyP. ultimum was associated with root rot and damped-off seedlings. Damping-off was promoted by low soil temperatures and by flooding. Seedling stands were markedly reduced when seed was pre-incubated in soil at 12°C but not at 25°C or 35°C. Dusting carrot seed with metalaxyl significantly increased seedling stands in the field at rates from 1.5–6 g kg−1 seed and in both flooded and unflooded, naturally infested soil at 3.15 g kg−1. In greenhouse experiments using artifically infested soil,P. ultimum andP. paroecandrum caused damping-off of carrot seedlings andRhizoctonia solani reduced root and shoot weights.R. solani caused damping-off in nutrient-enriched soil.P. acanthicum andP. megasperma were not pathogenic to seedlings, although both fungi colonized roots. Soil populations of allPythium spp., particularlyP. ultimum, increased during growth of seedlings and population growth ofP. megasperma was promoted by periodic flooding. Infestation of soil withP. acanthicum did not reduce damping-off of carrot seedlings byP. ultimum orP. paroecandrum, but significantly increased root and shoot weights and decreased root colonization byR. solani P. acanthicum has potential as a biocontrol agent againstR. solani.  相似文献   

14.
Monoclonal antibodies have been used to determine the presence of cellobiohydrolases I and II (CBH I and II), and endoglucanase I (EG I) on the surface of conidia from Trichoderma reesei QM 9414 and RUT C-30, and 8 other Trichoderma species. For this purpose, proteins were released from the conidial surface by treatment with a non-ionic detergent (Triton X-100 and -octylglucoside), followed by SDS-PAGE/Western blotting and immunostaining. Both CBH I and II were clearly present, but — unlike in extracellular culture fluids from Trichoderma — CBH II was the predominant cellulase. In T. reesei EG I could not be detected. The higher producer strain T. reesei RUT C-30 exhibited a higher conidial level of CBH II than T. reesei QM 9414. In order to assess the importance of the conidial CBH II level for cellulase induction by cellulose, multiple copies of the chb2 gene were introduced into the T. reesei genome by cotransformation using PyrG as a marker. Stable multicopy transformants secreted the 2- to 4-fold level of CBH II into the culture medium when grown on lactose as a carbon source, but their CBH I secretion was unaltered. Upon growth on cellulose, both CBH I and CBH II secretion was enhanced. Those strain showing highest cellulase activity on cellulose also appeared to contain the highest level of conidial bound CBH II. CBH II was also the predominant conidial cellulase in various other Trichoderma sp. However, roughly the same amount of conidial bound CBH II was detected in all strains, although their cellulase production differed considerably.  相似文献   

15.
The Trichoderma reesei xln2 gene coding for the pI 9.0 endoxylanase was isolated from the wild-type strain QM6a. The gene contains one intron of 108 nucleotides and codes for a protein of 223 amino acids in which two putative N-glycosylation target sites were found. Three different T. reesei strains were transformed by targeting a construct composed of the xln2 gene, including its promoter, to the endogenous cbh1 locus. Highest overall production levels of xylanase were obtained using T. reesei ALK02721, a genetically engineered strain, as a host. Integration into the cbh1 locus was not required for enhanced expression under control of the xln2 promoter.  相似文献   

16.
Most studies of cellulose hydrolysis have been carried out on three components of the cellulolytic systems, viz, endoglucanases, exoglucanases, and cellobiases. Little attention has been paid to the fragmentation activity of certain cellulolytic systems. We have noticed that despite being a more powerful degrader of modified cellulose (CMC), the 7-day grown culture filtrate of Myrothecium verrucaria was less effective than that of Trichoderma reesei at degrading pure unmodified cellulose. Scanning electron microscopy imaging showed that one distinguishing feature of the latter is its ability to fragment (macerate) the cellulose. Cellulose particle size decreased with time as it was incubated in the culture filtrate of T. reesei at 37 °C. This was used as a pre-treatment. Pre-treated cellulose was then washed and incubated with fresh T. reesei or M. verrucaria culture filtrates. Pre-treatment increased liberation of reducing sugars during subsequent incubation of cellulose in T. reesei culture filtrate but not in subsequent incubation in M. verrucaria culture filtrate. It was hypothesized that fragmentation activity of the pre-treatment opened up attack sites for further hydrolysis, but these were not available for attack by other enzyme systems.  相似文献   

17.
The stability and specific activity of endo-β-1,4-glucanase III from Trichoderma reesei QM9414 was enhanced, and the expression efficiency of its encoding gene, egl3, was optimized by directed evolution using error-prone PCR and activity screening in Escherichia coli RosettaBlue (DE3) pLacI as a host. Relationship between increase in yield of active enzyme in the clones and improvement in its stability was observed among the mutants obtained in the present study. The clone harboring the best mutant 2R4 (G41E/T110P/K173M/Y195F/P201S/N218I) selected in via second-round mutagenesis after optimal recombinating of first-round mutations produced 130-fold higher amount of mutant enzyme than the transformant with wild-type EG III. Mutant 2R4 produced by the clone showed broad pH stability (4.4–8.8) and thermotolerance (entirely active at 55°C for 30 min) compared with those of the wild-type EG III (pH stability, 4.4–5.2; thermostability, inactive at 55°C for 30 min). k cat of 2R4 against carboxymethyl-cellulose was about 1.4-fold higher than that of the wild type, though the K m became twice of that of the wild type.  相似文献   

18.
19.
The fungus Trichoderma reesei is employed in the production of most enzyme cocktails used by the lignocellulosic biofuels industry today. Despite significant improvements, the cost of the required enzyme preparations remains high, representing a major obstacle for the industrial production of these alternative fuels. In this study, a new Trichoderma erinaceum strain was isolated from decaying sugarcane straw. The enzyme cocktail secreted by the new isolate during growth in pretreated sugarcane straw-containing medium presented higher specific activities of β-glucosidase, endoxylanase, β-xylosidase and α-galactosidase than the cocktail of a wild T. reesei strain and yielded more glucose in the hydrolysis of pretreated sugarcane straw. A proteomic analysis of the two strains' secretomes identified a total of 86 proteins, of which 48 were exclusive to T. erinaceum, 35 were exclusive to T. reesei and only 3 were common to both strains. The secretome of T. erinaceum also displayed a higher number of carbohydrate-active enzymes than that of T. reesei (37 and 27 enzymes, respectively). Altogether, these results reveal the significant potential of the T. erinaceum species for the production of lignocellulases, both as a possible source of enzymes for the supplementation of industrial cocktails and as a candidate chassis for enzyme production.  相似文献   

20.
Twelve isolates of Pythium species (P. aphanidermatum, P. deliense, P. ultimum var. ultimum and P. ultimum var. sporangiiferum) from different hosts were compared from morphological, pathological and molecular viewpoints. Minimum, optimum and maximum temperatures of P. aphanidermatum and P. deliense were similar while those of P. ultimum var. ultimum and P. ultimum var. sporangiiferum were also similar. All tested isolates were highly virulent against cucumber seedlings with 100% damping-off. RAPD data using three different primers revealed that strains of P. ultimum var. ultimum and P. ultimum var. sporangiiferum are distinct from each other. This data can be used to separate those species from P. aphanidermatum and P. deliense. In contrast, RAPD data cannot be used to separate P. aphanidermatum and P. deliense. Sequence analysis of the ribosomal DNA internal transcribed spacers (ITS) was used to establish phylogenetic relationships among the tested isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号