首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Several genes of the achaete-scute complex (ASC) of Drosophila melanogaster encode a 60 amino acids long conserved domain which shares a significant homology with a region of the vertebrate myc proteins. Based on these results, the existence of a family of Drosophila genes that would share both this conserved domain and the neurogenic function of the AS-C has been postulated. To test this proposal, we have searched a D. melanogaster genomic library with a probe that encodes the conserved domain. Only under very low stringency hybridization conditions, clones not belonging to the AS-C cross-hybridized with the probe. Those that gave the strongest signals were characterized. Sequencing of the cross-hybridizing regions showed that they had no significant homology with the conserved domain, the sequence similarity extending at the most for 37 nucleotides. Although our results do not conclusively disprove the existence of a family of AS-C-like genes, they indicate that the conservation of the domain would be lower than that found for shared motifs in other families of Drosophila developmental genes.  相似文献   

3.
Summary Using the technique of differential hybridization screening, we have isolated the cDNAs for two low-molecular-mass heat-shock proteins and their corresponding genes, HSP17.4 and HSP18.2, from Arabidopsis thaliana. These two genes encode polypeptides that are 79.2% identical to each other with respect to amino acid sequence, and contain several overlapping sequences that are similar to the consensus sequences for the heat-shock elements (HSE) in Drosophila in the regions upstream from the promoters. The 5 region of the HSP18.2 gene has been fused, in frame, to the uidA gene from Escherichia coli which encodes -glucuronidase (GUS), and the product has been introduced into petunia by Agrobacterium-mediated transformation. We have demonstrated that the GUS activity in transformed petunia plants is enhanced by heat shock.  相似文献   

4.
5.
Summary The nematode,Caenorhabditis elegans, has a six-member gene family encoding vitellogenins, the yolk protein precursors. These genes are expressed exclusively in the intestine of the adult hermaphrodite. Here we report the cloning of all five members of the homologous gene family from anotherCaenorhabditis species,Caenorhabditis briggsae. Nucleotide sequence analysis of these genes reveals they are about 85% identical to theC. elegans genes in the coding regions. Oveerall similarity is much reduced in noncoding and flanking regions. However, two repeated heptamers, previously identified in the upstream regions of theC. elegans genes, are largely conserved in both location and sequence inC. briggsae. Conservation of certain of these heptamers suggests that proteins bound at these positions may be especially important to promoter function and/or regulation. Comparative sequence analysis also suggests the possibility that the first 70 bases of the vitellogenin mRNAs can be folded into stable secondary structures. Almost all base differences between the two species occur in sequences predicted to be unpaired, suggesting that the ability to form intrastrand base pairs has been selected duringCaenorhabditis evolution.  相似文献   

6.
The yeast genome contains a dispersed family of invertase structural genes (SUC1-SUC5, SUC7). Five of these genes are located very close to telomeres and are flanked by large regions of homologous sequence; recombination between telomeres could account for the dispersal of these SUC genes to different chromosomes. The SUC2 locus, in contrast, is not near a telomere and does not share large regions of flanking homology with the other loci. We examine here the relationship between SUC2 and one of the telomeric genes, SUC7. Sequence comparison revealed homology extending from about position -624 to +1791, which is close to the end of the mRNA. The 5' noncoding sequence includes two highly conserved regions: the region between -140 and +1, which contains the TATA box and presumably other promoter elements, and a second region extending from -508 to -400, which corresponds to the upstream regulatory region.  相似文献   

7.
To study the regulated expression of cloned heat-shock genes in homologous cells, hybrid Drosophila heat-shock-Escherichia coli β-galactosidase genes were constructed. Segments of the ecdysterone-inducible 23,000-Da heat-shock protein (hsp23) gene and of two other hsp genes (hsp84 and 70), which are not hormone regulated, were functionally linked to the bacterial coding sequence, and the resulting hybrid genes were introduced into cultured, hormone-responsive Drosophila cells by transfection. All hybrid genes directed the synthesis of E. coli-specific β-galactosidase in heat-treated cells. hsp23 hybrid gene expression was stimulated strongly by ecdysterone, while the activities of the other hybrid genes were not affected at all by the hormone. A hybrid gene with only 147 bp of hsp23 promoter sequence could not be activated by either heat or ecdysterone treatment. Thus, far upstream sequences contain signals required for the regulated expression of the hsp23 gene in Drosophila cells.  相似文献   

8.
The major heat shock protein of 70,000 Mr in Drosophila melanogaster is encoded by two variant gene types located, respectively, at the chromosomal sites 87A7 and 87C1. We present the DNA sequence of a complete hsp702 gene of the 87A7 type and of the adjacent regions from both variants, extending to 1·2 × 103 bases upstream from the start of the messenger coding region. We find an untranslated region of 250 nucleotides at the 5′ end of the messenger coding sequence in both variants. There is only one open reading frame which allows coding of a 70,000 Mr protein within the 87A7 variant, as found for an 87C1 variant (Ingolia et al., 1980). We observe 4·2% nucleotide divergence between these two variants with complete conservation of the reading frame. There is a conserved sequence of 355 nucleotides in front of each hsp70 gene, which is 85% homologous between the two variants. The presence of the same sequence element in γ, in front of the αβ heat shock genes (R. W. Hackett & J. T. Lis, personal communication) suggests that this element contains the regulatory signals for the coordinate expression of both the hsp70 and the αβ heat shock genes. Finally we find a very A + T-rich sequence of 150 basepairs which is highly conserved (91·8%) 0·6 × 103 bases upstream from two hps70 gene variants.  相似文献   

9.
Lloyd V 《Genetica》2000,109(1-2):35-44
Genetic imprinting is a form of epigenetic silencing. But with a twist. The twist is that while imprinting results in the silencing of genes, chromosome regions or entire chromosome sets, this silencing occurs only after transmission of the imprinted region by one sex of parent. Thus genetic imprinting reflects intertwined levels of epigenetic and developmental modulation of gene expression. Imprinting has been well documented and studied in Drosophila, however, these studies have remained largely unknown due to nothing more significant than differences in terminology. Imprinting in Drosophilais invariably associated with heterochromatin or regions with unusual chromatin structure. The imprint appears to spread from imprinted centers that reside within heterochromatin and these are, seemingly, the only regions that are normally imprinted in Drosophila. This is significant as it implies that while imprinting occurs in Drosophila, it is generally without phenotypic consequence. Hence the evolution of imprinting, at least in Drosophila, is unlikely to be driven by the function of specific imprinted genes. Thus, the study of imprinting in Drosophilahas the potential to illuminate the mechanism and biological function of imprinting, and challenge models based solely on imprinting of mammalian genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Mutations in the presenilin genes have been shown to cause the majority of cases of early-onset familial Alzheimer's disease (AD). In addition to their role in AD, presenilins are also known to function during development by interacting with the Notch pathway. To determine if presenilins have additional functions during development and AD we have used a yeast two-hybrid approach to search for proteins that can bind to presenilins. Here, we show the identification and characterization of a novel putative methyltransferase (Metl) that interacts with the loop region of Drosophila presenilin as well as human presenilin-1 and presenilin-2, suggesting that this interaction is evolutionarily conserved and functionally important. Metl appears to be a member of a conserved family of methyltransferases that share homology with, but are distinct from, the UbiE family of methyltransferases involved in ubiquinone and menaquinone biosynthesis. In Drosophila, the metl gene gives rise to two major isoforms by alternative splicing that are broadly expressed throughout development and found in the central nervous system in an overlapping pattern with Drosophila presenilin. Finally, we show that two independent dominant adult phenotypes produced by overexpression of presenilin can be enhanced by overexpression of metl in the same tissue. Taken together, these results suggest that presenilin and Metl functionally and genetically interact during development.  相似文献   

11.
12.
Summary We have cloned from Pseudomonas putida a gene homologous to Escherichia coli dnaA, and determined the sequence of the gene and its neighboring region. The dnaA gene and at least three other genes, dnaN, recF and gyrB, were found to be highly homologous to the genes in the dnaA regions of the E. coli and Bacillus subtilis chromosomes. A non-translatable region of some 600 bp immediately upstream of the dnaA gene is also conserved in the three bacteria and contains 3, 12, and 14 DnaA-boxes (TTATCCACA and closely related sequences) in E. coli, P. putida and B. subtilis, respectively. The present results confirm our hypothesis that the dnaA region is the replication origin region of the ancestral bacterium and that the essential feature of the dnaA and DnaA-box combination is conserved in most eubacteria and plays a central role in initiation of chromosomal replication.  相似文献   

13.
14.
The MSI3 gene was isolated as a multicopy suppressor of the heat shock-sensitive phenotype of the iral mutation, which causes hyperactivation of the RAS-cAMP pathway. Overexpression of MSI3 also suppresses the heat shock-sensitive phenotype of the bcyl mutant. Determination of the DNA sequence of MSI3 revealed that MSI3 can encode a 77.4 kDa protein related to the HSP70 family. The amino acid sequence of Msi3p is about 30% identical to that of the Ssalp of Saccharomyces cerevisiae. This contrasts with the finding that members of the HSP70 family generally show at least 50% amino acid identity. The consensus nucleotide sequence of the heat shock element (HSE) was found in the upstream region of MSI3. Moreover, the steady-state levels of the MSI3 mRNA and protein were increased upon heat shock. These results indicate that the MSI3 gene encodes a novel HSP70-like heat shock protein. Disruption of the MSI3 gene was associated with a temperature sensitive growth phenotype but unexpectedly, thermotolerance was enhanced in the disruptant.  相似文献   

15.
Summary DNA containing the Escherichia coli dam gene and sequences upstream from this gene were cloned from the Clarke-Carbon plasmids pLC29-47 and pLC13-42. Promoter activity was localized using pKO expression vectors and galactokinase assays to two regions, one 1650–2100 bp and the other beyon 2400 bp upstream of the dam gene. No promoter activity was detected immediately in front of this gene; plasmid pDam118, from which the nucleotide sequence of the dam gene was determined, is shown to contain the pBR322 promoter for the primer RNA from the pBR322 rep region present on a 76 bp Sau3A fragment inserted upstream of the dam gene in the correct orientation for dam expression. The nucleotide sequence upstream of dam has been determined. An open reading frame (ORF) is present between the nearest promoter region and the dam gene. Codon usage and base frequency analysis indicate that this is expressed as a protein of predicted size 46 kDa. A protein of size close to 46 kDa is expressed from this region, detected using minicell analysis. No function has been determined for this protein, and no significant homology exist between it and sequences in the PIR protein or GenBank DNA databases. This unidentified reading frame (URF) is termed urf-74.3, since it is an URF located at 74.3 min on the E. coli chromosome. Sequence comparisons between the regions upstream of urf-74.3 and the aroB gene show that the aroB gene is located immediately upstream of urf-74.3, and that the promoter activity nearest to dam is found within the aroB structural gene. This activity is relatively weak (about 15% of that of the E. coli gal operon promoter). The promoter activity detected beyond 2400 bp upstream of dam is likely to be that of the aroB gene, and is 3 to 4 times stronger than that found within the aroB gene. Three potential DnaA binding sites, each with homology of 8 of 9 bp, are present, two in the aroB promoter region and one just upstream of the dam gene. Expression through the site adjacent to the dam gene is enhanced 2-to 4-fold in dnaA mutants at 38°C. Restriction site comparisons map these regions precisely on the Clarke-Carbon plasmids pLC13-42 and pLC29-47, and show that the E. coli ponA (mrcA) gene resides about 6 kb upstream of aroB.  相似文献   

16.
Summary A systematic search for X chromosome loci showing a dominant maternal interaction with the segmentation genes Krüppel, hunchback, knirps and hairy was performed using deficiencies spanning 65% of the X chromosome. No interaction with the knirps gene was observed, but five regions of the X chromosome showed a maternal dominant interaction with the Krüppel gene. Two of these regions also show a maternal dominant interaction with either hunchback (region 10A7–10A8) or hairy (region 10E1–10F3). In all of these interactions dead embryos were observed which showed the same defects as embryos homozygous for the segmentation gene tested. These results suggest that a complex repartition of maternal products necessary for subsequent segmentation may occur in the Drosophila egg.  相似文献   

17.
The structures and functions of many genes are homologous in Drosophilaand humans. Therefore, studying pathological processes in Drosophila, in particular neurogenerative processes accompanied by progressive memory loss, helps to understand the ethiology of corresponding human disorders and to develop therapeutic strategies. It is believed that the development of neurogenerative diseases might result from alterations in the functioning of the heat shock/chaperone machinery. In view of this, we used Drosophila mutant l(1)ts403 with defective synthesis of heat shock proteins for studying learning and memory in a test of conditioned courtship suppression following a heat shock given at different developmental stages. High learning indices were registered immediately and 30 min after training both in the intact controls and in flies subjected to different developmental heat shocks. This indicated normal learning and memory acquisition in the mutant. At the same time, memory retention (3 h after training) suffered to different extent depending on the developmental stage. The remote effects of heat shock given during the formation of the mushroom bodies indicated the important role of this brain structure in the memory formation. The observed memory defects may result from alterations both in mRNA transport and in the functions of molecular chaperones in the l(1)ts403 mutant.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号