首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microcosm tests simulating bioslurry reactors with 40% soil content, containing high concentrations of TNT and/or RDX, and spiked with either [14C]-TNT or [14C]-RDX were conducted to investigate the fate of explosives and their metabolites in bioslurry treatment processes. RDX is recalcitrant to indigenous microorganisms in soil and activated sludge under aerobic conditions. However, soil indigenous microorganisms alone were able to mineralize 15% of RDX to CO2 under anaerobic condition, and supplementation of municipal anaerobic sludge as an exogenous source of microorganisms significantly enhanced the RDX mineralization to 60%. RDX mineralizing activity of microorganisms in soil and sludge was significantly inhibited by the presence of TNT. TNT mineralization was poor (< 2%) and was not markedly improved by the supplement of aerobic or anaerobic sludge. Partitioning studies of [14C]-TNT in the microcosms revealed that the removal of TNT during the bioslurry process was due mainly to the transformation of TNT and irreversible binding of TNT metabolites onto soil matrix. In the case of RDX under anaerobic conditions, a significant portion (35%) of original radioactivity was also incorporated into the biomass and bound to the soil matrix.  相似文献   

2.
A pink-pigmented symbiotic bacterium was isolated from hybrid poplar tissues (Populus deltoides × nigra DN34). The bacterium was identified by 16S and 16S-23S intergenic spacer ribosomal DNA analysis as a Methylobacterium sp. (strain BJ001). The isolated bacterium was able to use methanol as the sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. The bacterium in pure culture was shown to degrade the toxic explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine (HMX). [U-ring-14C]TNT (25 mg liter−1) was fully transformed in less than 10 days. Metabolites included the reduction derivatives amino-dinitrotoluenes and diamino-nitrotoluenes. No significant release of 14CO2 was recorded from [14C]TNT. In addition, the isolated methylotroph was shown to transform [U-14C]RDX (20 mg liter−1) and [U-14C]HMX (2.5 mg liter−1) in less than 40 days. After 55 days of incubation, 58.0% of initial [14C]RDX and 61.4% of initial [14C]HMX were mineralized into 14CO2. The radioactivity remaining in solution accounted for 12.8 and 12.7% of initial [14C]RDX and [14C]HMX, respectively. Metabolites detected from RDX transformation included a mononitroso RDX derivative and a polar compound tentatively identified as methylenedinitramine. Since members of the genus Methylobacterium are distributed in a wide diversity of natural environments and are very often associated with plants, Methylobacterium sp. strain BJ001 may be involved in natural attenuation or in situ biodegradation (including phytoremediation) of explosive-contaminated sites.  相似文献   

3.
Klebsiella sp. strain C1 isolated from activated sludge metabolized 2,4,6-trinitrotoluene (TNT) by two different pathways. The typical metabolites in the nitro group reduction pathway of TNT, such as hydroxylamino-dinitrotoluenes and amino-dinitrotoluenes, were detected. Dinitrotoluenes and nitrite were also detected, possibly produced by a denitration pathway. After incubation of [U-14C]TNT for 28 and 77 d, 2.4 and 6.24%, respectively, were released as 14CO2. This mineralization rate was higher than those reported by any other TNT degrading bacteria and might be due to the dual pathways of degradation in this bacterium.  相似文献   

4.
Microbial degradation of explosives: biotransformation versus mineralization   总被引:22,自引:0,他引:22  
The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a reactive molecule that biotransforms readily under both aerobic and anaerobic conditions to give aminodinitrotoluenes. The resulting amines biotransform to give several other products, including azo, azoxy, acetyl and phenolic derivatives, leaving the aromatic ring intact. Although some Meisenheimer complexes, initiated by hydride ion attack on the ring, can be formed during TNT biodegradation, little or no mineralization is encountered during bacterial treatment. Also, although the ligninolytic physiological phase and manganese peroxidase system of fungi can cause some TNT mineralization in liquid cultures, little to no mineralization is observed in soil. Therefore, despite more than two decades of intensive research to biodegrade TNT, no biomineralization-based technologies have been successful to date. The non-aromatic cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) lack the electronic stability enjoyed by TNT or its transformed products. Predictably, a successful enzymatic change on one of the N–NO2 or C–H bonds of the cyclic nitramine would lead to a ring cleavage because the inner C–N bonds in RDX become very weak (<2 kcal/mol). Recently this hypothesis was tested and proved feasible, when RDX produced high amounts of carbon dioxide and nitrous oxide following its treatment with either municipal anaerobic sludge or the fungus Phanaerocheate chrysosporium. Research aimed at the discovery of new microorganisms and enzymes capable of mineralizing energetic chemicals and/or enhancing irreversible binding (immobilization) of their products to soil is presently receiving considerable attention from the scientific community. Received: 14 February 2000 / Received revision: 9 June 2000 / Accepted: 13 June 2000  相似文献   

5.
Native soil microbial populations and unadapted municipal anaerobic sludges were compared for nitramine explosive degradation in microcosm assays under various conditions. Microbial populations from an explosive-contaminated soil were only able to mineralize 12% hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) (at a concentration of 800 mg/kg slurry) or 4% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) (at a concentration of 267 mg/kg slurry). In contrast, municipal anaerobic sludges were able to mineralize them to carbon dioxide, with efficiencies of up to 65%. Reduction of RDX and HMX into their corresponding nitroso-derivatives was notably faster than their mineralization. The biodegradation of HMX was typically delayed by the presence of RDX in the microcosm, confirming RDX is used as an electron acceptor preferentially to HMX. The laboratory-scale bioslurry reactor reproduced the results of the microcosm assays, yet with much higher RDX and HMX degradation rates. A radiolabel-based mass balance in the soil slurry indicated that, besides a significant mineralization to carbon dioxide, 25% and 31% of RDX and HMX, respectively, appeared as acetonitrile-extractable metabolites, while the remaining part was incorporated into biomass and irreversibly bound to the soil matrix. About 10% of the HMX derivatives were estimated to be chemically bound to the soil matrix, while for RDX the estimation was nil.  相似文献   

6.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

7.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

8.
The transformation of TNT and related aminated nitrotoluenes by Clostridium acetobutylicum was investigated. 2,4,6-trinitrotoluene (TNT) was rapidly reduced (537 nM min−1 mg protein−1) to undetermined end products via monohydroxylamino derivatives. TNT reduction was more rapid than that of 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene. The metabolic phase of clostridial cultures affected rates and extents of transformation of TNT and its intermediates. Acidogenic cultures showed rapid transformation rates and the ability to transform TNT and its primary reduction products to below detection limits; solventogenic cultures did not transform TNT completely, and showed accumulation of its hydroxylamino derivatives. Carbon monoxide-induced solventogenesis was capable of slowing the transformation of TNT and intermediates. Studies employing [ring-U-14C]-TNT demonstrated that no significant mineralization occurred and that products of transformation were water-soluble. Received 06 November 1995/ Accepted in revised form 15 August 1996  相似文献   

9.
Biodegradation of 2,4,6-trinitrotoluene (TNT) by the wood-rotting BasidiomycetePhanerochaete chrysosporium was studied in a fixed-film silicone membrane bioreactor and in agitated pellected cultures. The initial intermediate products of TNT biodegradation were shown to be 2-amino-4,6-dinitrotoluene (2amDNT) and 4-amino-2,6-dinitrotoluene (4amDNT). These intermediates were also degraded byP. chrysosporium. However, their rates of degradation were slow and appeared to represent rate-limiting steps in TNT degradation. The fact that 2amDNT and 4amDNT were further degraded is of importance. In most other microbial systems these compounds are typically not further degraded or are dimerized to even more persistent azo and azoxydimers. Similar to previous studies performed in stationary cultures, it was shown that substantial amounts of [14C]-TNT were degrade to [14C]-carbon dioxide in agitated pelleted cultures. Lignin peroxidase activity (assayed by veratryl alcohol oxidation) virtually disappeared upon addition of TNT to ligninolytic cultures ofP. chrysosporium. However, TNT, 2amDNT, and 4amDNT did not inhibit lignin peroxidase activity, nor were they substrates for this enzyme. Subsequent studies revealed that 4-hydroxylamino-2,6-dinitrotoluene, an intermediate in TNT reduction, was a potent lignin peroxidase inhibitor. Further studies revealed that this compound was also a substrate for lignin peroxidase H8.  相似文献   

10.
High concentrations of 2,4,6-trinitrotoluene (TNT) and related nitroaromatic compounds are commonly found in soil and groundwater at former explosive plants. The bacterium, Raoultella terrigena strain HB, isolated from a contaminated site, converts TNT into the corresponding amino products. Radio-HPLC analysis with [14C]TNT identified aminodinitrotoluene, diaminonitrotoluene and azoxy-dimers as the main metabolites. Transformation rate and the type of metabolites that predominated in the culture medium and within the cells were significantly influenced by the culture conditions. The NAD(P)H-dependent enzymatic reduction of nitro-substituted compounds by cell-free extracts of R. terrigena was evaluated in vitro.  相似文献   

11.
The fate of 14C-2,4,6-trinitrotoluene ([U-14C]TNT) in soil/plant systems was studied using onion (Allium cepa L.) plants with only a single root. It was found that the single roots grew exponentially and that the rate of water uptake of the onion plants increased exponentially, as well. The concentration of [U-14C] in the roots at first increased and then appeared to reach a steady state, while the [U-14C] concentration in the leaves was found to increase linearly with time. The [U-14C] concentration in the rhizosphere increased gradually, while in the bulk soil it decreased slowly. The accumulation of [U-14C] in the rhizosphere is likely to difference between movement into the rhizosphere (through advective mass flow of soil water by root uptake) and its uptake into the roots. The distribution of 14C in the soil/plant system was found to be 60–85% in the soil solid phase, 7–11% in the soil liquid phase, <1% in the soil air phase, <1% in the root compartment, and <0.01% in the leaf compartment. The maximum RCF (root concentration factor) value for TNT and its derivates was found to be about 20, and the maximum TSCF (transpiration stream concentration factor) was 0.18. These values can be changed by a variety of factors in soil-plant systems  相似文献   

12.
The potential for extracellular electron shuttles to stimulate RDX biodegradation was investigated with RDX-contaminated aquifer material. Electron shuttling compounds including anthraquinone-2,6-disulfonate (AQDS) and soluble humic substances stimulated RDX mineralization in aquifer sediment. RDX mass-loss was similar in electron shuttle amended and donor-alone treatments; however, the concentrations of nitroso metabolites, in particular TNX, and ring cleavage products (e.g., HCHO, MEDINA, NDAB, and NH4 +) were different in shuttle-amended incubations. Nitroso metabolites accumulated in the absence of electron shuttles (i.e., acetate alone). Most notably, 40–50% of [14C]-RDX was mineralized to 14CO2 in shuttle-amended incubations. Mineralization in acetate amended or unamended incubations was less than 12% within the same time frame. The primary differences in the presence of electron shuttles were the increased production of NDAB and formaldehyde. NDAB did not further degrade, but formaldehyde was not present at final time points, suggesting that it was the mineralization precursor for Fe(III)-reducing microorganisms. RDX was reduced concurrently with Fe(III) reduction rather than nitrate or sulfate reduction. Amplified 16S rDNA restriction analysis (ARDRA) indicated that unique Fe(III)-reducing microbial communities (β- and γ-proteobacteria) predominated in shuttle-amended incubations. These results demonstrate that indigenous Fe(III)-reducing microorganisms in RDX-contaminated environments utilize extracellular electron shuttles to enhance RDX mineralization. Electron shuttle-mediated RDX mineralization may become an effective in situ option for contaminated environments.  相似文献   

13.
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT.  相似文献   

14.
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT.  相似文献   

15.
An aerobic bacterial consortium was shown to degrade 2,4,6-trinitrotoluene (TNT). At an initial concentration of 100 ppm, 100% of the TNT was transformed to intermediates in 108 h. Radiolabeling studies indicated that 8% of [14C]TNT was used as biomass and 3.1% of [14C]TNT was mineralized. The first intermediates observed were 4-amino-2,6-dinitrotoluene and its isomer 2-amino-4,6-dinitrotoluene. Prolonged incubation revealed signs of ring cleavage. Succinate or another substrate—e.g., malic acid, acetate, citrate, molasses, sucrose, or glucose—must be added to the culture medium for the degradation of TNT. The bacterial consortium was composed of variousPseudomonas spp. The results suggest that the degradation of TNT is accomplished by co-metabolism and that succinate serves as the carbon and energy source for the growth of the consortium. The results also suggest that this soil bacterial consortium may be useful for the decontamination of environmental sites contaminated with TNT.  相似文献   

16.
Summary Extensive biodegradation of [14C]-2,4,5-trichlorophenoxyacetic acid ([14C]-2,4,5-T) by the white rot fungus Phanerochaete chrysosporium was demonstrated in nutrient nitrogen-limited aqueous cultures and in [14C]-2,4,5-T-contaminated soil inoculated with this fungus and supplemented with ground corn cobs. After incubation of [14C]-2,4,5-T with aqueous cultures of the fungus for 30 days, 62.0%±2.0% of the [14C]-2,4,5-T initially present was degraded to 14CO2. Mass balance analysis demonstrated that water soluble metabolites were formed during degradation, and HPLC and thin layer chromatography (TLC) of methylene chloride-extractable material revealed the presence of polar and non-polar [14C]-2,4,5-T metabolites. It was also shown that only 5% of the [14C]-2,4,5-T initially present in cultures remained as undegraded [14C]-2,4,5-T. In incubations composed of [14C]-2,4,5-T-contaminated soil, ground corn cobs, and 40% (w/w) water, 32.5%±3.6% of the [14C]-2,4,5-T initially present was converted to 14CO2 after 30 days of incubation. These results suggest that it may be possible to develop practical systems based on the use of this fungus to detoxify 2,4,5-T-contaminated water and soil.  相似文献   

17.
A pink-pigmented symbiotic bacterium was isolated from hybrid poplar tissues (Populus deltoides x nigra DN34). The bacterium was identified by 16S and 16S-23S intergenic spacer ribosomal DNA analysis as a Methylobacterium sp. (strain BJ001). The isolated bacterium was able to use methanol as the sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. The bacterium in pure culture was shown to degrade the toxic explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine (HMX). [U-ring-(14)C]TNT (25 mg liter(-1)) was fully transformed in less than 10 days. Metabolites included the reduction derivatives amino-dinitrotoluenes and diamino-nitrotoluenes. No significant release of (14)CO(2) was recorded from [(14)C]TNT. In addition, the isolated methylotroph was shown to transform [U-(14)C]RDX (20 mg liter(-1)) and [U-(14)C]HMX (2.5 mg liter(-1)) in less than 40 days. After 55 days of incubation, 58.0% of initial [(14)C]RDX and 61.4% of initial [(14)C]HMX were mineralized into (14)CO(2). The radioactivity remaining in solution accounted for 12.8 and 12.7% of initial [(14)C]RDX and [(14)C]HMX, respectively. Metabolites detected from RDX transformation included a mononitroso RDX derivative and a polar compound tentatively identified as methylenedinitramine. Since members of the genus Methylobacterium are distributed in a wide diversity of natural environments and are very often associated with plants, Methylobacterium sp. strain BJ001 may be involved in natural attenuation or in situ biodegradation (including phytoremediation) of explosive-contaminated sites.  相似文献   

18.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitroamine explosive that is a major component in many military high-explosive formulations. In this study, two aerobic bacteria that are capable of using RDX as the sole source of carbon and nitrogen to support their growth were isolated from surface soil. These bacterial strains were identified by their fatty acid profiles and 16S ribosomal gene sequences as Williamsia sp. KTR4 and Gordonia sp. KTR9. The physiology of each strain was characterized with respect to the rates of RDX degradation and [U-14C]RDX mineralization when RDX was supplied as a sole carbon and nitrogen source in the presence and absence of competing carbon and nitrogen sources. Strains KTR4 and KTR9 degraded 180 μM RDX within 72 h when RDX served as the only added carbon and nitrogen source while growing to total protein concentrations of 18.6 and 16.5 μg/ml, respectively. Mineralization of [U-14C]RDX to 14CO2 was 30% by strain KTR4 and 27% by KTR9 when RDX was the only added source of carbon and nitrogen. The addition of (NH4)2SO4 greatly inhibited KTR9's degradation of RDX but had little effect on that of KTR4. These are the first two pure bacterial cultures isolated that are able to use RDX as a sole carbon and nitrogen source. These two genera possess different physiologies with respect to RDX mineralization, and each can serve as a useful microbiological model for the study of RDX biodegradation with regard to physiology, biochemistry, and genetics.  相似文献   

19.

Microbially influenced corrosion (MIC) is being increasingly recognised as a serious problem. To investigate the role of MIC, radiotracer activity and lipid biomass measurements were performed on samples from offshore and on‐shore natural gas transmission systems. These measurements evaluated the biomass and metabolism of microbial communities residing inside transmission pipelines. Aqueous and nonaqueous hydrocarbon samples from liquid separators, sludge catchers and nodules attached to pipe walls were aseptically recovered and inoculated into anaerobic tubes for radiotracer time course experiments or preserved with chloroform‐methanol for total lipid analyses. MPN enrichments and phospholipid biomass determinations estimated microbial populations of 104—107 cells per gram in several samples. General microbial metabolism was demonstrated by [l‐14C]acetate incorporation into lipids and by [14C]CO2 production from [U‐14C]glucose. [14C]Acetate was slowly mineralised to 14CO2 without significant methane production. [14C]Acetate was produced by fermentation of [14C]glucose, [14C]palmitate and by hydrogen mediated acetogenesis in the presence of [I4C]CO2. In one location acetogenesis from hydrogen and carbon dioxide accounted for 0–7 mmol.l‐1 of acetate production per week. These results demonstrated that microorganisms could utilise natural gas impurities to produce organic acids. This activity could adversely affect the structural integrity (MIC) of high pressure natural gas pipelines.  相似文献   

20.
[U-14C]Glucose, added carrier-free to sludge from a thermophilic anaerobic bioreactor being fed a lignocellulose waste, was rapidly turned over with less than one-third of the original radiolabel remaining as glucose after 5 s of incubation. The primary labeled products found were [14C]acetate and 14CO2, which were in a ratio near 2:1. Further incubation resulted in the disappearance of [14C]acetate and the appearance of an equivalent amount of label as 14CH4 and 14CO2. No significant production of [14C]propionate, butyrate, lactate, or ethanol was detected from [14C]glucose, even if these potential intermediates (unlabeled) were added to the sludge at a concentration of 1 mM to trap any label entering their pools. Addition of 0.8 atm (80 kPa) of H2 to the headspace over sludge resulted in some accumulation of [14C]lactate and a corresponding decrease in [14C]acetate produced from [14C]glucose. Production of [14C]propionate, butyrate and ethanol were still not significant in the presence of H2. Incubation of sludge for 1 h in the presence of hydrogen resulted in increases in the lactate and formate concentrations, but not those of propionate, butyrate, or ethanol. These results demonstrate that glucose was metabolized directly to acetate, CO2, and H2 by the microbial populations in the bioreactor with little carbon from glucose flowing through other intermediates, indicating a high degree of coupling between glucose fermentation and hydrogen uptake. The short-term response of these microbial populations to elevated H2 partial pressures was to increase lactate production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号